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APPROXIMATE SOLUTIONS OF FRACTIONAL WAVE

EQUATIONS USING VARIATIONAL ITERATION METHOD AND

LAPLACE TRANSFORM

YANQIN LIU, XIULING YIN, LINLIN ZHAO

Abstract. A relatively novel modification of the variational iteration method,
by means of the Laplace transform, is applied to obtain an approximate solu-
tion of fractional wake-like equations with variable coefficients. The fractional

derivatives described in this paper are in the Caputo sense. It is observed that
the approach is a reliable tool to analytically investigating wave models with
fractional derivatives and can be implemented to other fractional models.

1. Introduction

The application of fractional calculus is a hot topic in fluid mechanics, viscoelas-
ticity, biology, physics, engineering and other areas of science[1, 2, 3]. With the
development of nonlinear sciences, many analytical and numerical techniques[4,
5, 6, 7, 8, 9, 10, 11] have been developed by various scientists. But these frac-
tional differential equations are difficult to get their exact solutions[12, 13, 14].
So, the numerical methods have largely been used to solve these equations. Most
of these methods have their inbuilt deficiencies like the calculation of Adomian’s
polynomials, the Lagrange multiplier, divergent results, and huge computational
work. Recently, some improved homotopy perturbation methods[15, 16]and im-
proved variational iteration method[17, 18] have been used by many researches.

The variational iteration method(VIM)[5, 6, 7] was extended to initial value
problems of differential equations and become a widely used method. Yulita[19]
applied this method to obtain analytical solutions of fractional heat- and wave-like
equations and the chose Lagrange multiplier as −1. The key problem of the VIM is
the correct determination of the Lagrange multiplier when the method is applied to
fractional equations, combined with the Laplace transform, the crucial point of this
method is solved efficiently by Wu[20, 21]. Laplace transform overcoms principle
drawbacks in application of the VIM to fractional equations.
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The main objective of this paper is to extend this new modified method to solve
variable coefficient and inhomogeneous space and time fractional wake equations.
And the fractional derivatives are described in the Caputo sense.

2. Preliminaries

The Caputo time-fractional derivative operator of order α > 0 is defined as

C
0 D

α
t u(x, t) =

1

Γ(m− α)

∫ t

0

(t− τ)m−α−1 ∂
mu(x, τ)

∂τm
dτ, m = [α] + 1,m ∈ N.

(1)
where Γ(·) denotes the Gamma function.

The Caputo space-fractional derivative operator of order β > 0 is defined as

C
0 D

β
xu(x, t) =

1

Γ(m− β)

∫ x

0

(x−ξ)m−β−1 ∂
mu(ξ, t)

∂ξm
dξ, m = [β]+1,m ∈ N. (2)

Laplace transform of C
0 D

α
t u is given as

L[C0 D
α
t u(x, t)] = sαU(x, s)−

m−1∑
k=0

uk(x, 0+)sα−1−k, m− 1 < α ≤ m, (3)

where U(x, s) = L[u(x, t)] =
∫∞
0

e−stu(x, t)dt. And further information about
fractional derivatives and its properties can be found in [1, 2].

3. Description of the method

Let us consider the time fractional equation as follows:

C
0 D

α
t u(x, t) +Ru(x, t) +Nu(x, t) = g(x, t), (4)

u(k)(x, 0+) = ak, t > 0, α > 0,m = [α] + 1, k = 0, · · · ,m− 1 (5)

where g(x, t) is the source term, N represents the general nonlinear differential
operator and R is the linear differential operator. Now, we consider the application
of the modified VIM[20, 21]. Taking the above Laplace transform to both sides of
Equation (4) and (5), the iteration formula of Eq.(4) can be constructed as

Un+1(x, s) = Un(x, s) + λ(s)[sαUn(x, s)−
m−1∑
k=0

uk(x, 0+)sα−1−k

+ L[R[un(x, t)] +N [un(x, t)]− g(x, t)]], (6)

Considering L[R[un(x, t)] + N [un(x, t)]] as restricted terms, one can derive a
Lagrange multiplier as

λ = −1/sα, (7)

With Equation (7) and the inverse-laplace transform L−1, the iteration formula
(6) can be explicitly given as

un+1(x, t) = un(x, t)− L−1[
1

sα
[sαUn(x, s)−

m−1∑
k=0

uk(x, 0+)sα−1−k

+L[R[un(x, t)] +N [un(x, t)]− g(x, t)]]]

= u0(x, t)− L−1[
1

sα
[L[R[un(x, t)] +N [un(x, t)]]], (8)
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u0(x, t) is an initial approximation of Eq.(4), and

u0(x, t) = L−1(
m−1∑
k=0

uk(x, 0+)sα−1−k) + L−1[
1

sα
L[g(x, t)]]

= u(x, 0) + u′(x, 0)t+ · · ·+ um−1(x, 0)tm−1

(m− 1)!
+ L−1[

1

sα
L[g(x, t)]], (9)

then the approximations un(x, t) can be completely determined. Finally, the ap-
proximate solution is

u(x, t) = lim
n→∞

un(x, t). (10)

4. Applications

We will apply the new modified VIM to the following fractional wave equations,
wave equation is a kind of important evolution equation, it plays an important
role in describe the vibration of thin film, the spread of electromagnetic waves or
sound waves in space. All the results in this paper are calculated by using the
Mathematica symbolic computation software.

Example 1: Consider the following one-dimensional linear inhomogeneous frac-
tional wave equation[22]

C
0 D

α
t u(x, t) +

∂u

∂x
=

t1−α

Γ(2− α)
sin(x) + t cos(x), t > 0, x ∈ R, 0 < α ≤ 1. (11)

u(x, 0) = 0. (12)

After taking the Laplace transform to both sides of Equation (11) and (12), we
get the following iteration formula:

Un+1(x, s) = Un(x, s) + λ(s)[sαUn(x, s)− sα−1u(x, 0)

+ L[
∂un(x, t)

∂x
− t1−α

Γ(2− α)
sin(x)− t cos(x)]], (13)

Considering L[∂un(x,t)
∂x ] as restricted terms, Lagrange multiplier can be defined

as λ(s) = −1/sα, with the inverse-Laplace transform, the approximate solution of
Equation (11) can be given as

un+1(x, t) = L−1[
1

sα
[L[

t1−α

Γ(2− α)
sin(x)− t cos(x)]]]− L−1[

1

sα
[L[

∂un(x, t)

∂x
]]], (14)

which reads

u0(x, t) = L−1[
1

sα
[L[

t1−α

Γ(2− α)
sin(x)− t cos(x)]]] = t sin(t)+

tα+1

Γ(α+ 1)
cos(x), (15)

u1 = −L−1[
1

sα
[L[

∂u0(x, t)

∂x
]]]

= t sin(t) +
tα+1

Γ(α+ 1)
cos(x)− tα+1

Γ(α+ 1)
cos(x) +

t2α+1

Γ(2α+ 2)
sin(x), (16)

u2 = −L−1[
1

sα
[L[

∂u1(x, t)

∂x
]]]

= t sin(t) +
tα+1

Γ(α+ 1)
cos(x)− tα+1

Γ(α+ 1)
cos(x) +

t2α+1

Γ(2α+ 2)
sin(x)
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− t2α+1

Γ(2α+ 2)
sin(x)− t3α+1

Γ(3α+ 2)
cos(x), (17)

...

Canceling the noise terms and keeping the non-noise terms yield the exact solu-
tion u(x, t) = t sin(x) of Equation (11).

Example 2: Consider the following two-dimensional space-time fractional initial
boundary value problem which describes the wave-like models

∂αu(x, y, t)

∂tα
=

1

12
(x2 ∂

βu(x, y, t)

∂xβ
+ y2

∂γu(x, y, t)

∂yγ
), 0 < x, y < 1, t > 0 (18)

subject to the Neumann boundary conditions

ux(0, y, t) = 0, ux(1, y, t) = 4 cosh(t), (19)

uy(x, 0, t) = 0, uy(x, 1, t) = 4 sinh(t), (20)

and initial conditions

u(x, y, 0) = x4, ut(x, y, 0) = y4. (21)

the time-space fractional derivative defined here is in the Caputo sense, and 1 <
α, β, γ ≤ 2.

After taking the Laplace transform to both sides of Equation (18) and (21), we
get the following iteration formula:

Un+1(x, y, s) = Un(x, y, s) + λ(s)[sαUn(x, y, s)− sα−1un(x, y, 0)− sα−2unt(x, y, 0)

− 1

12
L[x2 ∂

βun(x, y, t)

∂xβ
+ y2

∂γun(x, y, t)

∂yγ
]], (22)

Considering L[x2 ∂βun(x,y,t)
∂xβ + y2 ∂γun(x,y,t)

∂yγ ] as restricted terms, Lagrange mul-

tiplier can be defined as λ(s) = −1/sα, with the inverse-Laplace transform, the
approximate solution of Equation (18) can be given as

un+1(x, y, t) = u0(x, y, t) +
1

12
L−1[

1

sα
[L[x2 ∂

βun(x, y, t)

∂xβ
+ y2

∂γun(x, y, t)

∂yγ
]]], (23)

where u0(x, y, t) is an initial approximation of Equation (18), and

u0(x, y, t) = u(x, y, 0) + tut(x, y, 0) = x4 + ty4, (24)

by the present VIM, we have the following solutions:

u1(x, y, t) = x4 + ty4 +
tαx6−βΓ(5)

12Γ(1 + α)Γ(5− β)
+

t1+αy6−γΓ(5)

12Γ(2 + α)Γ(5− γ)
(25)

u2(x, y, t) = x4 + ty4 +
tαx6−βΓ(5)

12Γ(1 + α)Γ(5− β)
+

t1+αy6−γΓ(5)

12Γ(2 + α)Γ(5− γ)

+
t2αx8−2βΓ(5)Γ(7− β)

144Γ(1 + 2α)Γ(7− 2β)
+

t1+2αy8−2γΓ(5)Γ(7− γ)

144Γ(2 + 2α)Γ(7− 2γ)
, (26)

...

for n → ∞, the iteration solution will be given in the following formula

u(x, y, t) = (x4 +
tαx6−βΓ(5)

12Γ(1 + α)Γ(5− β)
+

t2αx8−2βΓ(5)Γ(7− β)

144Γ(1 + 2α)Γ(7− 2β)
+ · · · )
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+ (ty4 +
t1+αy6−γΓ(5)

12Γ(2 + α)Γ(5− γ)
+

t1+2αy8−2γΓ(5)Γ(7− γ)

144Γ(2 + 2α)Γ(7− 2γ)
+ · · · ) (27)

when the fractional derivative α = β = γ = 2, the solution Equation (27) comes to

u(x, y, t) = x4(1 +
t2

2!
+

t4

4!
+ · · · ) + y4(t+

t3

3!
+

t5

5!
+ · · · ) (28)

and in a close form by

u(x, y, t) = x4 cosh(t) + y4 sinh(t), (29)

which is in full agreement with the result given in[23].

Example 3: Consider the following three-dimensional inhomogeneous time frac-
tional initial boundary value problem which describes the wave-like models

∂αu

∂tα
= x2+y2+z2+

1

2
(x2uxx+y2uyy+z2uzz), 0 < x, y, z < 1, t > 0, 1 < α ≤ 2

(30)
subject to the boundary conditions

u(0, y, z, t) = y2(et− 1)+ z2(e−t− 1), u(1, y, z, t) = (1+ y2)(et− 1)+ z2(e−t− 1),
(31)

u(x, 0, z, t) = x2(et−1)+ z2(e−t−1), u(x, 1, z, t) = (1+x2)(et−1)+ z2(e−t−1),
(32)

u(x, y, 0, t) = (x2 + y2)(et − 1), u(x, y, 1, t) = (x2 + y2)(et − 1) + (e−t − 1), (33)

and the initial conditions

u(x, y, z, 0) = 0, ut(x, y, z, 0) = x2 + y2 − z2. (34)

After taking the Laplace transform to both sides of Equation (30) and (34), we
get the following iteration formula:

Un+1 = Un(x, y, z, s) + λ(s)[sαUn − sα−1un(x, y, z, 0)− sα−2unt(x, y, z, 0)

−L[x2 + y2 + z2]− 1

2
L[x2 ∂

2un(x, y, z, t)

∂x2
+ y2

∂2un(x, y, z, t)

∂y2
+ z2

∂2un(x, y, z, t)

∂z2
]],

(35)

Considering L[x2 ∂2un(x,y,z,t)
∂x2 +y2 ∂2un(x,y,z,t)

∂y2 +z2 ∂2un(x,y,z,t)
∂z2 ] as restricted terms,

Lagrange multiplier can be defined as λ(s) = −1/sα, with the inverse-Laplace
transform, the approximate solution of Equation (30) can be given as

un+1 = u0+
1

2
L−1[

1

sα
[L[x2 ∂

2un(x, y, z, t)

∂x2
+y2

∂2un(x, y, z, t)

∂y2
+z2

∂2un(x, y, z, t)

∂z2
]]],

(36)
where u0 is an initial approximation of Equation (30), and

u0 = t(x2 + y2 − z2) +
tαx2

Γ(1 + α)
+

tαy2

Γ(1 + α)
+

tαz2

Γ(1 + α)
, (37)

by the present VIM, we have the following solutions:

u1 = (x2 + y2)(t+
tα

Γ(1 + α)
+

t1+α

Γ(2 + α)
) + z2(−t+

tα

Γ(1 + α)
+

t1+α

Γ(2 + α)
) (38)

...
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for n → ∞, the iteration solution will be given in the following formula

u(x, y, z, t) = (x2+y2)(t+
tα

Γ(1 + α)
+

t1+α

Γ(2 + α)
+· · · )+z2(−t+

tα

Γ(1 + α)
+

t1+α

Γ(2 + α)
+· · · )

(39)
when the fractional derivative α = 2, the solution Equation (39) comes to

u(x, y, z, t) = (x2 + y2)(t+
t2

2!
+

t3

3!
+ · · · ) + z2(−t+

t2

2!
+

t3

3!
+ · · · ) (40)

and in a close form by

u(x, y, z, t) = (x2 + y2)et + z2e−t − (x2 + y2 + z2), (41)

which was given in[23].

5. Conclusion

In this letter, we implement relatively new analytical techniques, a modified
variational iteration method to solve fractional equations. The key problem of the
VIM is the correct determination of the Lagrange multiplier when the method is
applied to fractional equations, to the best of our knowledge, there is no effective
method to identify the Lagrange multipliers, by using the Laplace transform, we can
easily derive Lagrange multipliers without tedious calculation and new variational
iteration formulae can be derived. some inhomogeneous fractional wave equations
with variable coefficients and the Caputo derivatives are illustrated, The results
show the modified method is efficiency compared with other versions of the VIM
in fractional calculus. Unlike the ADM, the modified VIM is free from the need to
use Adomian polynomials. In contrast to homotopy analysis method, its efficiency
is very much depended on choosing auxiliary parameter. And this modified VIM
can also be used to solve the fractional equations of Riemann-Liouville type.
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