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STABILITY IN NONLINEAR NEUTRAL VOLTERRA

DIFFERENCE EQUATIONS

ABDELOUAHEB ARDJOUNI, AHCENE DJOUDI

Abstract. In this paper we use the contraction mapping theorem to ob-
tain asymptotic stability results of the zero solution of the nonlinear neutral
Volterra difference equation with variable delays

△x (n) = −a (n)x (n− τ1 (n)) +△g (n, x (n− τ2 (n)))

+

n−1∑
s=n−τ2(n)

k (n, s) q (x (s)) .

Some conditions which allow the coefficient sequences to change sign and do

not ask the boundedness of delays are given. An asymptotic stability theorem
with a sufficient condition is proved.

1. Introduction

Certainly, the Lyapunov direct method has been, for more than 100 years, the
efficient tool for the study of stability properties of ordinary, functional, partial dif-
ferential and difference equations. Nevertheless, the application of this method to
problems of stability in differential and difference equations with delay has encoun-
tered serious difficulties if the delay is unbounded or if the equation has unbounded
terms ([3],[4],[6]-[9],[14]). Recently, Burton, Furumochi, Zhang, Raffoul, Islam,
Yankson and others have noticed that some of these difficulties vanish or might
be overcome by means of fixed point theory (see [1]-[4],[10],[12],[13],[16]-[18]). The
fixed point theory does not only solve the problem on stability but has a significant
advantage over Lyapunov’s direct method. The conditions of the former are often
averages but those of the latter are usually pointwise (see [3]).

In this paper we consider the nonlinear neutral Volterra difference equation with
variable delays

△x (n) = −a (n)x (n− τ1 (n)) +△g (n, x (n− τ2 (n))) +
n−1∑

s=n−τ2(n)

k (n, s) q (x (s)) ,

(1)
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with the initial condition

x (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z,

where ψ is bounded sequence and for each n0 ∈ Z+,

mj (n0) = inf {n− τj (n) , n ≥ n0} , m (n0) = min {mj (n0) , j = 1, 2} .

Here △ denotes the forward difference operator △x (t) = x (n+ 1)− x (n) for any
sequence {x (n) , n ∈ Z+}. Throughout this paper we assume that a : Z+ → R, k :
Z+×([m2 (n0) ,∞) ∩ Z) → R, q : R → R and τ1, τ2 : Z+ → Z+ with n−τ1 (n) → ∞
and n−τ2 (n) → ∞ as n→ ∞. The functions g (n, x) and q (x) are locally Lipschitz
in x. That is, there are positive constants E and L so that if |x| , |y| ≤ L1 for some
positive constant L1 then

|g (n, x)− g (n, y)| ≤ E ∥x− y∥ and g (n, 0) = 0, (2)

and

|q (x)− q (y)| ≤ L ∥x− y∥ and q (0) = 0. (3)

Equation (1) and its special cases have been investigated by many authors. For
example, Raffoul in [12] and Yankson in [16] have studied the equation

△x (n) = −a (n)x (n− τ1 (n)) , (4)

and proved the following.
Theorem A (Raffoul [12]). Suppose that τ1 (n) = r and a (n+ r) ̸= 1 and there
exists a constant α < 1 such that

n−1∑
s=n−r

|a (s+ r)|+
n−1∑
s=0

(
|a (s+ r)|

∣∣∣∣∣
n−1∏

k=s+1

[1− a (k + r)]

∣∣∣∣∣
s−1∑

u=s−r

|a (u+ r)|

)
≤ α,

(5)

for all n ∈ Z+ and

n−1∏
s=0

[1− a (s+ r)] → 0 as n→ ∞. Then, for every small initial

sequence ψ : [−r, 0] ∩ Z → R, the solution x (n) = x (n, 0, ψ) of (4) is bounded and
tends to zero as n→ ∞.
Theorem B (Yankson [16]). Suppose that the inverse sequence g of n − τ1 (n)
exists, 1−a (g (n)) ̸= 0 and there exists a constant α ∈ (0, 1) for all n ∈ [n0,∞)∩Z
such that

n−1∑
s=n−τ1(n)

|a (g (s))|+
n−1∑
s=n0

|a (g (s))|

∣∣∣∣∣
n−1∏

k=s+1

[1− a (g (s))]

∣∣∣∣∣
s−1∑

u=s−τ1(s)

|a (g (s))|

 ≤ α.

(6)

Then the zero solution of (4) is asymptotically stable if

n−1∏
s=n0

[1− a (g (s))] → 0 as

n→ ∞.
Obviously, Theorem B improves and generalizes Theorem A.
Our purpose here is to give, by using the contraction mapping principle, as-

ymptotic stability results of a nonlinear neutral Volterra difference equation with
variable delays (1). For details on contraction mapping principle we refer the
reader to [15] and for more on the calculus of difference equations, we refer the
reader to [5] and [11]. It is important to note that, in our consideration, the neu-
tral term △g (n, x (n− τ2 (n))) of (1) produces nonlinearity in the neutral term
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△x (n− τ2 (n)). While, the neutral term △x (n− τ2 (n)) in [1, 17] enters linearly.
As a consequence, we have performed an appropriate analysis which is different
from that used in [1, 17] to construct the mapping in order to employ fixed point
theorems. Also, the results presented in this paper improve and generalize the main
results in [12, 16].

2. Main results

Let D (n0) denote the set of bounded sequences ψ : [m (n0) , n0]∩Z → R with the
maximum norm ∥.∥. Also, let (B, ∥.∥) be the Banach space of bounded sequences
x : [m (n0) ,∞)∩Z → R with the maximum norm. For each (n0, ψ) ∈ Z+×D (n0),
a solution of (1) through (n0, ψ) is a sequence [m (n0) , n0 + α] ∩ Z → R for some
positive constant α > 0 such that x satisfies (1) on [n0, n0 + α) ∩ Z and x =
ψ on [m (n0) , n0] ∩ Z. We denote such a solution by x (n) = x (n, n0, ψ). For
each (n0, ψ) ∈ Z+ × D (n0), there exists a unique solution x (n) = x (n, n0, ψ) of
(1) defined on [m (n0) ,∞) ∩ Z. For a fixed n0, we define ∥ψ∥ = {|ψ (n)| : n ∈
[m (n0) , n0] ∩ Z}.

Let hj : [m (n0) ,∞) ∩ Z → R be an arbitrary sequence. Rewrite (1) as

△x (n) = −
2∑

j=1

hj (n)x (n) +△n

2∑
j=1

n−1∑
s=n−τj(n)

hj (s)x (s)

+
2∑

j=1

hj (n− τj (n))x (n− τj (n))

− a (n)x (n− τ1 (n)) +△g (n, x (n− τ2 (n)))

+
n−1∑

s=n−τ2(n)

k (n, s) q (x (s)) , (7)

where △n represents that the difference is with respect to n. If we let H (n) =

1−
∑2

j=1 hj (n) then (7) is equivalent to

x (n+ 1) = H (n)x (n) +△n

2∑
j=1

n−1∑
s=n−τj(n)

hj (s)x (s)

+

2∑
j=1

hj (n− τj (n))x (n− τj (n))

− a (n)x (n− τ1 (n)) +△g (n, x (n− τ2 (n)))

+

n−1∑
s=n−τ2(n)

k (n, s) q (x (s)) . (8)
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Lemma 2.1. Suppose that H (n) ̸= 0 for all n ∈ [n0,∞)∩Z. Then x is a solution
of equation (1) if and only if

x (n) =

x (n0)− g (n0, x (n0 − τ2 (n0)))−
2∑

j=1

n0−1∑
s=n0−τj(n0)

hj (s)x (s)


n−1∏
u=n0

H (u)

+ g (n, x (n− τ2 (n))) +
2∑

j=1

n−1∑
s=n−τj(n)

hj (s)x (s)

+
n−1∑
s=n0

n−1∏
u=s+1

H (u) {[h1 (s− τ1 (s))− a (s)]x (s− τ1 (s))

+ h2 (s− τ2 (s))x (s− τ2 (s)) +
s−1∑

u=s−τ2(s)

k (s, u) q (x (u))


−

2∑
j=1

n−1∑
s=n0

{1−H (s)}
n−1∏

u=s+1

H (u)
s−1∑

u=s−τj(s)

hj (u)x (u)

−
n−1∑
s=n0

{1−H (s)}
n−1∏

u=s+1

H (u) g (s, x (s− τ2 (s))) . (9)

Proof. Let x be a solution of (1). By multiplying both sides of (8) by

n∏
u=n0

H−1 (u)

and by summing from n0 to n− 1 we obtain

n−1∑
s=n0

△

[
s−1∏
u=n0

H−1 (u)x (s)

]

=
n−1∑
s=n0

s∏
u=n0

H−1 (u)△s

2∑
j=1

s−1∑
u=s−τj(s)

hj (u)x (u)

+
n−1∑
s=n0

s∏
u=n0

H−1 (u)
2∑

j=1

{hj (s− τj (s))}x (s− τj (s))

+

n−1∑
s=n0

s∏
u=n0

H−1 (u)

−a (s)x (s− τ1 (s)) +

s−1∑
u=s−τ2(s)

k (s, u) q (x (u))


+

n−1∑
s=n0

s∏
u=n0

H−1 (u)△g (s, x (s− τ2 (s))) .
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As a consequence, we arrive at

n−1∏
u=n0

H−1 (u)x (n)−
n0−1∏
u=n0

H−1 (u)x (n0)

=
2∑

j=1

n−1∑
s=n0

s∏
u=n0

H−1 (u)△s

s−1∑
u=s−τj(s)

hj (u)x (u)

+
2∑

j=1

n−1∑
s=n0

s∏
u=n0

H−1 (u) {hj (s− τj (s))}x (s− τj (s))

+
n−1∑
s=n0

s∏
u=n0

H−1 (u)

−a (s)x (s− τ1 (s)) +
s−1∑

u=s−τ2(s)

k (s, u) q (x (u))


+

n−1∑
s=n0

s∏
u=n0

H−1 (u)△g (s, x (s− τ2 (s))) .

By dividing both sides of the above expression by
n−1∏
u=n0

H−1 (u) we get

x (n) = x (n0)

n−1∏
u=n0

H (u)

+

2∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u)△s

s−1∑
u=s−τj(s)

hj (u)x (u)

+

2∑
j=1

n−1∑
s=n0

n−1∏
u=s+1

H (u) {hj (s− τj (s))}x (s− τj (s))

+
n−1∑
s=n0

n−1∏
u=s+1

H (u)

−a (s)x (s− τ1 (s)) +
s−1∑

u=s−τ2(s)

k (s, u) q (x (u))


+

n−1∑
s=n0

n−1∏
u=s+1

H (u)△g (s, x (s− τ2 (s))) . (10)

By performing a summation by parts, we have

n−1∑
s=n0

n−1∏
u=s+1

H (u)△s

s−1∑
u=s−τj(s)

hj (u)x (u)

=

n−1∑
s=n−τj(n)

hj (s)x (s)−
n−1∏
u=n0

H (u)

n0−1∑
s=n0−τj(n0)

hj (s)x (s)

−
n−1∑
s=n0

{1−H (s)}
n−1∏

u=s+1

H (u)

s−1∑
u=s−τj(s)

hj (u)x (u) , (11)
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and

n−1∑
s=n0

n−1∏
u=s+1

H (u)△g (s, x (s− τ2 (s)))

= −g (n0, x (n0 − τ2 (n0)))
n−1∏
u=n0

H (u) + g (n, x (n− τ2 (n)))

−
n−1∑
s=n0

{1−H (s)}
n−1∏

u=s+1

H (u) g (s, x (s− τ2 (s))) . (12)

Finally, substituting (11) and (12) into (10) completes the proof. �

Definition 2.2. The zero solution of (1) is Lyapunov stable if for any ϵ > 0 and
any integer n0 ≥ 0 there exists a δ > 0 such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0]∩Z
implies |x (n, n0, ψ)| ≤ ϵ for n ∈ [n0,∞) ∩ Z.

Theorem 2.3. Let H (n) ̸= 0 for all n ∈ [n0,∞) ∩ Z. Suppose that (2) and (3)
holds, and there exists a positive constant M and a constant α ∈ (0, 1) such that
for n ∈ [n0,∞) ∩ Z, ∣∣∣∣∣

n−1∏
u=n0

H (u)

∣∣∣∣∣ ≤M, (13)

and

E +
2∑

j=1

n−1∑
s=n−τj(n)

|hj (s)|

+
n−1∑
s=n0

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣ {|h1 (s− τ1 (s))− a (s)|

+ |h2 (s− τ2 (s))|+ L
s−1∑

u=s−τ2(s)

|k (s, u)|


+

2∑
j=1

n−1∑
s=n0

|1−H (s)|

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τj(s)

|hj (u)|

+ E

n−1∑
s=n0

|1−H (s)|

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣ ≤ α . (14)

Then the zero solution of (1) is stable.

Proof. Let ϵ > 0 be given. Choose δ > 0 such that

(M + αM) δ + αϵ ≤ ϵ.

Let ψ ∈ D (n0) such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0] ∩ Z. Define

S = {φ ∈ B : φ (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z, ∥φ∥ ≤ ϵ} .

This (S, ∥.∥) is a complete metric space where ∥.∥ is the maximum norm.
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Use (9) to define the operator P : S → S by (Pφ) (n) = ψ (n) for n ∈ [m (n0) , n0]∩Z
and

(Pφ) (n)

=

ψ (n0)− g (n0, ψ (n0 − τ2 (n0)))−
2∑

j=1

n0−1∑
s=n0−τj(n0)

hj (s)ψ (s)


n−1∏
u=n0

H (u)

+ g (n, φ (n− τ2 (n))) +

2∑
j=1

n−1∑
s=n−τj(n)

hj (s)φ (s)

+

n−1∑
s=n0

n−1∏
u=s+1

H (u) {[h1 (s− τ1 (s))− a (s)]φ (s− τ1 (s))

+ h2 (s− τ2 (s))φ (s− τ2 (s)) +

s−1∑
u=s−τ2(s)

k (s, u) q (φ (u))


−

2∑
j=1

n−1∑
s=n0

{1−H (s)}
n−1∏

u=s+1

H (u)

s−1∑
u=s−τj(s)

hj (u)φ (u)

−
n−1∑
s=n0

{1−H (s)}
n−1∏

u=s+1

H (u) g (s, φ (s− τ2 (s))) , (15)

for n ∈ [n0,∞)∩Z. Clearly, Pφ is bounded. We first show that P maps from S to
S. We have

|(Pφ) (n)|

≤Mδ + αMδ +

E +
2∑

j=1

n−1∑
s=n−τj(n)

|hj (s)|

+
n−1∑
s=n0

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣ {|h1 (s− τ1 (s))− a (s)|

+ |h2 (s− τ2 (s))|+ L
s−1∑

u=s−τ2(s)

|k (s, u)|


+

2∑
j=1

n−1∑
s=n0

|1−H (s)|

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τj(s)

|hj (u)|

+E
n−1∑
s=n0

|1−H (s)|

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣
}
∥φ∥

≤ (M + αM) δ + αϵ

≤ ϵ,
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by (2), (3), (13) and (14). Thus P maps S into itself. We next show that P is a
contraction. Let φ1, φ2 ∈ S, then

|(Pφ1) (n)− (Pφ2) (n)|

≤

E +

2∑
j=1

n−1∑
s=n−τj(n)

|hj (s)|

+
n−1∑
s=n0

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣ {|h1 (s− τ1 (s))− a (s)|

+ |h2 (s− τ2 (s))|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|


+

2∑
j=1

n−1∑
s=n0

|1−H (s)|

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τj(s)

|hj (u)|

+E
n−1∑
s=n0

|1−H (s)|

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣
}
∥φ1 − φ2∥

≤ α ∥φ1 − φ2∥ ,

by (2), (3) and (14). This shows that P is a contraction with contraction constant
α. Thus, by the contraction mapping principle ([15], p. 2), P has a unique fixed
point x in S which is a solution of (1) with x = ψ on [m (n0) , n0]∩Z and |x (n)| =
|x (n, n0, ψ)| ≤ ϵ for n ∈ [n0,∞) ∩ Z. This proves that the zero solution of (1) is
stable. �

Definition 2.4. The zero solution of (1) is asymptotically stable if it is Lyapunov
stable and if for any integer n0 ≥ 0 there exists a δ > 0 such that |ψ (n)| ≤ δ for
n ∈ [m (n0) , n0] ∩ Z implies x (n, n0, ψ) → 0 as n→ ∞.

Theorem 2.5. Assume that the hypotheses of Theorem 2.3 hold. Also assume that

n−1∏
u=n0

H (u) → 0 as n→ ∞. (16)

Then the zero solution of (1) is asymptotically stable.

Proof. We have already proved that the zero solution of (1) is stable. Let ψ ∈ D (n0)
such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0] ∩ Z and define

S∗= {φ ∈ B : φ (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z, ∥φ∥ ≤ ϵ

and φ (n) → 0 as n→ ∞} .

Define P : S∗ → S∗ by (15). From the proof of Theorem 2.3, the map P is a
contraction with the contraction constant α and for every φ ∈ S∗, ∥Pφ∥ ≤ ϵ.

We next show that (Pφ) (n) → 0 as n → ∞. There are five terms on the right
hand side in (15). Denote them, respectively, by Ik, k = 1, 2, ..., 6. It is obvious
that the first term I1 tends to zero as t → ∞, by condition (16). Also, due to the
condition (2) and the facts that φ (n) → 0 and n − τj (n) → ∞ for j = 1, 2 as
n → ∞, the second term I2 tends to zero, as n → ∞. Left to show that each one
of the remaining terms in (15), go to zero at infinity.
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Let φ ∈ S∗ be fixed. For the given ϵ1 > 0, we choose N0 > n0 large enough such
that n− τj (n) ≥ N0, j = 1, 2 implies |φ (s)| < ϵ1 if s ≥ n− τj (n). Therefore, the
third term I3 in (15) satisfies

|I3| =

∣∣∣∣∣∣
2∑

j=1

n−1∑
s=n−τj(n)

hj (s)φ (s)

∣∣∣∣∣∣
≤

2∑
j=1

n−1∑
s=n−τj(n)

|hj (s)| |φ (s)|

≤ ϵ1

2∑
j=1

n−1∑
s=n−τj(n)

|hj (s)| ≤ αϵ1 < ϵ1.

Thus, I3 → 0 as n→ ∞. Now for a given ϵ1 > 0, there exists a N1 > n0 such that
s ≥ N1 implies |φ (s− τj (s))| < ϵ1 for j = 1, 2. Thus, for n ≥ N1, the term I4 in
(15) satisfies

|I4| =

∣∣∣∣∣
n−1∑
s=n0

n−1∏
u=s+1

H (u) {[h1 (s− τ1 (s))− a (s)]φ (s− τ1 (s))

+ [h2 (s− τ2 (s))− ϕ (s)]φ (s− τ2 (s)) +

s−1∑
u=s−τ2(s)

k (s, u) q (φ (u))


∣∣∣∣∣∣

≤
N1−1∑
s=n0

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣ {|h1 (s− τ1 (s))− a (s)| |φ (s− τ1 (s))|

+ |h2 (s− τ2 (s))− ϕ (s)| |φ (s− τ2 (s))|+ L
s−1∑

u=s−τ2(s)

|k (s, u)| |φ (u)|


+

n−1∑
s=N1

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣ {|h1 (s− τ1 (s))− a (s)| |φ (s− τ1 (s))|

+ |h2 (s− τ2 (s))| |φ (s− τ2 (s))|+ L

s−1∑
u=s−τ2(s)

|k (s, u)| |φ (u)|


≤ sup

σ≥m(n0)

|φ (σ)|
N1−1∑
s=n0

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣ {|h1 (s− τ1 (s))− a (s)|

+ |h2 (s− τ2 (s))|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|


+ ϵ1

n−1∑
s=N1

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣ {|h1 (s− τ1 (s))− a (s)|

+ |h2 (s− τ2 (s))|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|

 .
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By (16), we can find N2 > N1 such that n ≥ N2 implies

sup
σ≥m(n0)

|φ (σ)|
N1−1∑
s=n0

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣ {|h1 (s− τ1 (s))− a (s)|

+ |h2 (s− τ2 (s))|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|


= sup

σ≥m(n0)

|φ (σ)|

∣∣∣∣∣
n−1∏
u=N2

H (u)

∣∣∣∣∣
N1−1∑
s=n0

∣∣∣∣∣
N2−1∏
u=s+1

H (u)

∣∣∣∣∣ {|h1 (s− τ1 (s))− a (s)|

+ |h2 (s− τ2 (s))|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|

 < ϵ1 .

Now, apply (14) to have |I4| < ϵ1 + αϵ1 < 2ϵ1. Thus, I4 → 0 as n→ ∞. Similarly,
by using (14), then, if n ≥ N2 then term I5 and I6 in (15) satisfy

|I5| =

∣∣∣∣∣∣
2∑

j=1

n−1∑
s=n0

{1−H (s)}
n−1∏

u=s+1

H (u)

s−1∑
u=s−τj(s)

hj (u)φ (u)

∣∣∣∣∣∣
≤ sup

σ≥m(n0)

|φ (σ)|

∣∣∣∣∣
n−1∏
u=N2

H (u)

∣∣∣∣∣
2∑

j=1

N1−1∑
s=n0

|1−H (s)|

∣∣∣∣∣
N2−1∏
u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τj(s)

|hj (u)|

+ ϵ1

2∑
j=1

n−1∑
s=N1

|1−H (s)|

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τj(s)

|hj (u)|

< ϵ1 + αϵ1 < 2ϵ1,

and

|I6| =

∣∣∣∣∣
n−1∑
s=n0

{1−H (s)}
n−1∏

u=s+1

H (u) g (s, φ (s− τ2 (s)))

∣∣∣∣∣
≤ sup

σ≥m(n0)

|φ (σ)|E

∣∣∣∣∣
n−1∏
u=N2

H (u)

∣∣∣∣∣
N1−1∑
s=n0

|1−H (s)|

∣∣∣∣∣
N2−1∏
u=s+1

H (u)

∣∣∣∣∣
+ ϵ1E

n−1∑
s=N1

|1−H (s)|

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣
< ϵ1 + αϵ1 < 2ϵ1.

Thus, I5, I6 → 0 as n → ∞. In conclusion (Pφ) (n) → 0 as n → ∞, as required.
Hence P maps S∗ into S∗.

By the contraction mapping principle, P has a unique fixed point x ∈ S∗ which
solves (1). Therefore, the zero solution of (1) is asymptotically stable. �

Letting τ1 = 0, we have
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Corollary 2.6. Let H (n) ̸= 0 for all n ∈ [n0,∞) ∩ Z. Suppose that (2) and (3)
hold and there exists a constant α ∈ (0, 1) such that for n ∈ [n0,∞) ∩ Z,

E +
n−1∑

s=n−τ2(n)

|h2 (s)|

+
n−1∑
s=n0

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣
|h1 (s)− a (s)|+ |h2 (s− τ2 (s))|+ L

s−1∑
u=s−τ2(s)

|k (s, u)|


+

n−1∑
s=n0

|1−H (s)|

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣
s−1∑

u=s−τ2(s)

|h2 (u)|

+ E
n−1∑
s=n0

|1−H (s)|

∣∣∣∣∣
n−1∏

u=s+1

H (u)

∣∣∣∣∣ ≤ α . (17)

Then the zero solution of (1) is asymptotically stable if

n−1∏
u=n0

H (u) → 0 as n→ ∞.

For the special case g (n, x) = 0 and q (x) = 0, we can get

Corollary 2.7. Suppose that 1−h1 (n) ̸= 0 for all n ∈ [n0,∞)∩Z, and there exists
a constant α ∈ (0, 1) such that for n ∈ [n0,∞) ∩ Z,

n−1∑
s=n−τ1(n)

|h1 (s)|+
n−1∑
s=n0

∣∣∣∣∣
n−1∏

u=s+1

[1− h1 (n)]

∣∣∣∣∣ |h1 (s− τ1 (s))− a (s)|

+

n−1∑
s=n0

|h1 (s)|

∣∣∣∣∣
n−1∏

u=s+1

[1− h1 (n)]

∣∣∣∣∣
s−1∑

u=s−τ1(s)

|h1 (u)| ≤ α . (18)

Then the zero solution of (4) is asymptotically stable if

n−1∏
u=n0

[1− h1 (n)] → 0 as n→ ∞.

Remark 2.8. When h1 (s) = a (g (s)), Corollary 2.7 reduces to Theorem B.
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