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MULTIDUAL NUMBERS AND THEIR MULTIDUAL
FUNCTIONS

FARID MESSELMI

ABSTRACT. The purpose of this paper is to develop a general theory of multi-
dual numbers. We start by defining the notion of multidual numbers and their
algebraic properties. In addition, we develop a simple mathematical method
based on matrices, simplifying manipulation of multidual numbers. Inspired
from multicomplex analysis, we define the multidual functions and we gen-
eralize the concept of hyperholomorphicity. Moreover, we obtain a general
representation of hyperholomorphic multidual functions using the notion of
generator polynomials. As concrete examples, some usual real functions have
been generalized to the case of multidual numbers, such that the exponential
and logarithmic multidual function. Finally, we extend, using the multidual
functions, the Galilean Trigonometric functions and their inverses functions
to the multi-dimensional case as well as some of their algebraic and analytic
properties.

1. INTRODUCTION

The theory of algebra of dual numbers has been originally introduced by W.
K. Clifford [2] in 1873, and he showed that they form an algebra but not a field
because only dual numbers with real part not zero possess an inverse element. In
1891 E. Study [14] realized that this associative algebra was ideal for describing
the group of motions of three-dimensional space. At the turn of the 20th century,
A. Kotelnikov [8] developed dual vectors and dual quaternions. Algebraic study of
dual numbers is the topic of numerous papers, e.g. [2] [7]. This nice concept has
lots of applications in many fields of fundamental sciences; as, algebraic geometry,
Riemannian geometry, quantum mechanics and astronomy. It also arises in various
contexts of engineering: aerospace, robotic and computer science. For more details
about the applications of dual numbers, we refer the reader to [3], Bl [14), [T6], [T7].

However, up to now there are only a few attempts in the mathematical study of
dual functions (functions of dual variable). An early attempt is due to E. E. Kramer
[9] in 1930. Later, in 2011, Z. Ercan and S. Yiice [4] obtained generalized Euler’s
and De Moivre’s formulas for functions with dual Quaternion variable. Recently, F.
Messelmi [IT] develops a theory, inspired from complex analysis, of dual function
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and he generalizes the notion of holomorphic dual functions and obtained some
interesting properties.

Furthermore, the concept of multicomplex numbers has been defined and intro-
duced by many mathematicians and Physicists. The starting point is the intro-
duction of a generator ¢, such that " = —1 and create the space of multicomplex
numbers of order n, M(C,,. In keeping with the case n = 2 of usual complex numbers
and their trigonometric functions, an associated extended trigonometry follows. It
is characterized by specific “angular” functions dubbed multisine (mus). A collec-
tion of useful relations exists between the mus-functions: additions, derivatives, etc,
see for more details about multicomplex numbers the references [?, [6], [0} [12] 3]

More recently, the theory becomes one of the important impulses for developing
some new concept of quantum mechanics and cosmology.

The purpose of this paper is to contribute to the development of multidual
numbers, by generalizing the dual numbers in higher dimensions, as well as their
functions. Moreover, in the study of multidual functions (functions of multidual
variable) some natural question raise:

e When and under what conditions a multidual function is differentiable 7.
e How can one extend regularly real functions to multidual variable 7.

Throughout the paper, we will try to answer some of these questions.

In details, we start by generalizing the notion of hyperholomorphicity to mul-
tidual functions. To this end, as in multicomplex analysis, we study the Differen-
tiability of multidual dual functions. The notion of hyperholomorphicity has been
introduced and a general representation of hyperholomorphic functions was shown,
using the new concept of generator polynomial. Moreover, we provide the basic
statements that allow us to extend holomorphically real functions to the wider
multidual generalized Clifford Algebra and we ensure that such an extension is
meaningful. As an application, we generalize some usual real functions to multid-
ual Algebra.

In this work we have not shown physical applications of all concepts presented
here. However, we will try to find future applications.

The outline of the paper is as follows. In Section 2 we focus on the development
of multidual numbers and their algebraic properties.

Section 3 is devoted to the study of multidual functions. To this aim, we gener-
alize the concept of hyperholomorphy to multidual numbers and a few properties
have been established. As example, we generalize in the last chapter some usual real
function to multidual variables and we introduce the Galilean multi-Trigonometric
functions and their inverses.

2. MULTIDUAL NUMBERS

We introduce the concept of Multidual numbers as follows.

A multidual number z is an ordered (n + 1) —tuple of real numbers (zg, 21, ..., )
associated with the real unit 1 and the powers of the multidual unit ¢, where ¢ is
an (n + 1) —nilpotent number i.e. e"™! =0 and €' # 0 for i = 1,...,n. A multidual
number is usually denoted in the form

z= Zn:xlsz (1)
i=0

for which, we admit that € = 1.
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We denote by D, the set of multidual numbers defined as

D, = {Z = Zz,;si | 2; € R where ¢"™! =0 and &' # 0 for i = 1, ,n} (2)
=0

n .
Furthermore, every element z = Y z;e’ of I, can be also written

=0
2=X(2)" €, (3)
where X (2) is the real vector associated to the multidual number z given by
Zg
T
x@=| | (@)
Tn

and & represents the following vector, called multidual vector,

(5)

There are many ways to choose the multidual unit number e. As simple example,
we can take the real matrix

oo . . .0
1 0 0

|0 (6)
o . . . 00

00 . 010

Addition and multiplication of the multidual numbers are defined by

n

dowiEt + > et = (i), (7)
=0 =0

i=0

n
=3
1=0
n 1 .
=> | X ywiy |
i=0 \ j=0

If z = Xn: z;e’ is a multidual number, we will denote by real (z) the real part of

z given b}ll ’

real (z) = xo. (9)

Thus, the multidual numbers form a commutative ring with characteristic 0.

Moreover the inherited multiplication gives the multidual numbers the structure of
(n + 1) —dimensional generalized Clifford Algebra.
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For n = 1, Dy is the Clifford algebra of dual numbers, see for more details
regarding dual numbers the references [2 [7) [TT].

In abstract algebra terms, the multidual numbers can be described as the quo-
tient of the polynomial ring R [X] by the ideal generated by the polynomial X"+
i.e.

D, ~R[X] /X" (10)

If z is a multidual number, the conjugate of z denoted by z is the multidual
number described by

{ real () = real (z), (11)

zzZ € R.

n ) n .
Suppose now that z = > z;e* and Z = Y T;¢*. Then, using relation we get
i=0 i=0

n %
= 2 § —_— i
zZZ = 1’0 + CCjLEl'_j g€ R
1=1 \ j=0

Which implies that
3
Z.’L‘j.%‘i,j =0 Vi= 1, ey T
j=0
This can be written in matrix form

ZTo 0 . . 0 0 T Iy
T X0 0 To T2
T2 r1 . . . . . .
= —2Xp . (12)
0
Tn—1 . . Ty T1 Xg Ty T

n .
Hence z = > z;e* has a unique conjugate, solution of the system , if and

i=0
only if real (z) = o # 0. On the other hand if g = 0, we remark that the number
n

> xie* is a divisor of zero in D,.
i=1

Proposition 1 Let z = Y x;¢? and t = Y ;' be two multidual numbers, such
i=0 i=0
that xg,yg 7# 0. Then,
2t = 2. (13)

Proof. We get from the relation

22 =1} Yz € D,.
This allows us to write

(1) () = (woy0)”.
Thus, under the hypothesis zg, yo # 0, we find

2,2
71 — XoY%
zt

2,2
= T _
z t
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Particularly, the map z € D,, — {0} — z € D,, — {0} is an automorphism of
groups.

Remark 1 Ifn>2 2 +t# 2+t

It is also important to know that every multidual number has another represen-
tation, using matrices.

To this aim, let us denote by G,+1 (R) the subset of M,, 41 (R) given by

Gnr1(R) = {A=(ai) € Mny1(R) [a;; =0ifi>j
and Ajt1,54+1 = Q45 if 0 S 7 S] S Tl} . (14)

So, every matrix A of G,41 (R) is such that

agp 0 ... 0 0
ay ap 0 0
A= (15)
Ap—1 . . . ap 0
anp ap—1 . . Q1 Qg

One can easily verify that G, 1 (R) is a subring of M, (R) which forms a
(n 4+ 1) —dimensional associative and commutative Algebra.

If ag # 0, G,, 1 becomes a field. It is also a subgroup of GL (n + 1).

Introducing now the map

N D, — gn+1 (R)a
i) 0 . . . 0
T o 0 . . 0
i=0 . . . . . .
Tp—1 . . . ZTo 0
In Tn—1 . . X1 29

The following results are immediate consequences of the definitions G,,11 (R) of
and N.
Theorem 2 N is an isomorphism of rings.
Corollary 3 Let z = Y a;e’ € D,,. Then,
i=0
(1) z = €N (2)" €, where ey is the first element in the canonical base of R™ 1,

(2) 2" =l W (x)")" €.
T
(3) In addition, if z # 0, then 1 = ¢, (/\/ (z)_1> 3

3. MULTIDUAL FUNCTIONS

We start by giving some topological definitions and properties of 1),,.
Introducing the mapping
P:D, — Ry,
{ P (z) = |real (2)]. (17)
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One can easily to verify that

22="P(z)° VzeD,.
P(Z1 + 22) < P(Zl) —|—’P(22) Vz1,29 € Dy,

P (2122) = P (21) P (22) V21,22 € Dy, (18)
P(Az) = AP (z) VzeD,,VAeR,
P(0) = 0.

In particularl, P defines a semi-norm in I,,. It inducess a structure of pseudo-
topology over D,,.
Thus, we can define the multidual disk and multidual sphere of centre t =

n .
> yie* € D, and radius r > 0, respectively, by
i=0

D(t,r)= {z:ixiai e, |p(z—1) <r}

=0

= {Z—Zlii&i e D, | |ZE1—yZ| <r, x; €R, i—l,...,n}, (19)

=0
S(t,r)= {z: insi €D, |p(z—1t) :r}
=0
= {z = insi eEDy||zi—yi|l=m z €R, i = 1,...,n}. (20)
=0

S (t,r) can be also called the generalized Galilean sphere.

Definition 1

(1) We say that Q is a multidual subset of the multidual algebra D,, if there
exists a subset O C R such that

Q=0 xR" (21)

O is called the generator of (2.

(2) We say that € is an open multidual subset of the multidual algebra D,, if the
generator of {2 is an open subset of R.

(3) Q2 is said to be a closed multidual subset of D, if the complemente is an open
subset of D.

(4) Q is said to be a connected multidual subset of D, if the generator is a
connected subset of R.

(5) Q is said to be a compact multidual subset of I,, if the generator is a compact
subset of R.

We discuss now some properties of multidual functions. We investigate the
continuity of multidual functions and the differentiability in the multidual sense,
which can be also called hyperholomorphicity, as in multicomplexe case.

In the following definitions, we suppose that I),, is equipped with the usual
topology of R*+1,

Definition 2 A multidual function is a mapping from a subset Q C D,, to D,,.

n

Let Q be an open subset of D,,, t = Y y;e? € Q and f : Q — D,, a multidual

function. =
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Definition 3 We say that the function f is continuous at ¢ if

limf (2) = £ (0). (2)

where the limit is calculated coordinate by coordinate, this means that
mf(z)=  lm  f(z)=F(1). (23)
z— z;—y; 1=0,...,n

Definition 4 The function is continuous in Q2 C D, if it is continuous at every
point of 2.
Definition 5 The multidual function f is said to be differentiable in the multi-

n .
dual sense at t = > y;e* if the following limit exists
i=0

Ayl D=1

24
dz =t z—t (24)

j—’; (t) is called the derivative of f at the point ¢.
If f is differentiable for all points in a neighbourhood of the point ¢ then f is
called hyperholomorphic at .
Definition 6 The function f is hyperholomorphic in Q C D, if it is hyperholo-
morphic at every point of Q.
The definition of derivative in the multidual sense has to be treated with a little
more care than its real companion; this is illustrated by the following example.
Example 1 The function f: Dy — Dy such that f(z) = Z is nowhere differen-

tiable. To this aim, a simple calculation gives

lim f(2) — f (=) —  lim 20
Z—20 zZ— 20 Z—2Z0Z — 20
2
= lim Sl

zZ—20 (ZL‘ _ ZEO)Q

— 1-2 lm 2200
T—=T0,Y—=Yo L — X

But this limit does not exist.

The basic properties for derivatives are similar to those we know from real cal-
culus. In fact, one should convince oneself that the following rules follow mostly
from properties of the limit.

Proposition 4 Suppose f and g are differentiable at z € D,,, and that ¢ € D,,,
n € Z, and h is differentiable at ¢ (z) . Then, we have

d(f +cg) :ﬂ+0@’
dz dz dz
d(f.9) _df
dz dz

ar dg
=913
2

dz g

(we have to be aware of division by zero).

d(hog) dh 6  dg

4 a9

In the following results we generalize the Cauchy-Riemann formulas to multidual
functions.
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Theorem 5 Let f be a multidual function in 2 C D,,, which can be written in
terms of its real and multidual parts as

f is hyperholomorphic in  C D, if and only if the derivative of f satisfies

df_ﬁ_ - d¢;
%_8330 _;8{1306. (26)

Proof. The proof will be done by recurrence on n.
For n =1 the result was already proved by F. Messelmi in the reference [I1].

2 .
Suppose that n = 2. We can compute the derivative of f at t = ) y,e* €  as

i=0
follows
NIOES [0 NN VIO RS {01 ciax)
z—t z—1 z;—y; 1=0,1,2 (;L-O — yo)
= lim %{(s@o (w0, 1, 22) — @0 (Yo, Y1, Y2)) +

z;—y; 1=0,1,2 (xO - y(])

(<P1 (o, 21, 22) — 1 (y07y1,y2))5 + (o (xo,xhxz) — P2 (y07y1,y2))52} X

2
{m o) — (1 — ) e + <(””‘_“ ~ (s —y2>> }
Zo — Yo

_ lim {900 (1‘0,.%'1,.’1]2) — %o (yanhyQ)
Lo — Yo

iy i=0,1,2 a
1 — Y1
m (0o (zo, 21, 22) — 0o (Yo, Y1,Y2)) e+

0— Yo

2
((1‘1 - y1)3 X2 Y2 2) (00 (20, 21,22) — @y (yo7y1,y2))€2+
(o —y0)” (w0 — o)
@y (T0, 71, %3) — ¢y (yo7y1,y2)8 I S )
Zo — Yo (zo — y0)*
P2 (T0, 1, T2) — 9 (yovylay2)€2}
Zo — Yo

(1 (w0, 21, 22) — 91 (Yo, Y1, Y2)) g?

+
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Hence, this limit becomes

, —f@® o 9] o)
l{%%: 20 (Z/07y1,yz)+ai(yoyyl’yz)5+ai(y07yhy2) -

T1— W <Po (20, 21, %2) — g (yanl;y2)€7
:cl—>yl 1 0,1,2

Zo — Yo 1 — U
2
<£L'2—y2> ) ($0,$1,$2)—§DO (y07y17y2)€2+
Izﬁyz Z 0,1,2 \ g — Yo — Y2
2
1 — Y1 Po (To, 21, 22) — @0 (Yo, Y1, Y2)
zl—n/l = 0,172 o — Yo Zo — Yo
@1 (w0, 1, 22) — 01 (Y0, Y1, Y2) } 2
1 — Y1

However, it is well-known that the limit exists if and only if it is independent of

2 2
limit of the bounded ratios (ﬁ) and (ﬁ) . Hence, we should impose the
following conditions

_ dipq
D0  (yo,y1,92) = o (Yo, Y1, y2) ,
O
8 (y07y1,y2) - 07
3900 _
87302 (y07y17y2) = 0.

So, the formula follows.

Suppose now that the formula is true for n > 2 and let us prove that it remains
true for n + 1.

Denoting by €, and €,4+1 the unit multidual numbers of the algebras I,, and
Dy, 41, respectively.

Considering a multidual function in Q C D,, 1 and denoting by

n+1 n+1
Zny1 = E Tpt1,i€p41 and tpp1 = § Yn+1,i€n41
=0 =0

two elements of D, 1.
Clearly, we have

fzng1) = f(tng1) — f (as1) = f (fns1) (Bt = tngr)

Znt1 — tnti (Tnt1,0 = Ynt1,0)
1 n+1 )
= ; (Z Ty e;ﬂ)
(Trnt1,0 = Ynt10)” \iDp

=0

n+1
X {Z (@i (Tn41,05 s Tng1,n41) = @5 (Tnt1,05 s Tt 1,n41)) EZH} .
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So, we obtain after some algebraic calculations

[ (zng1) = f (tngr) . [ (zns1) = f(tns1) (Zn+1 - tn+1)

2
Zn+1 — tn+1 (anrl,O - yn+1,0)

1 o
- )2 (Z (Tnt1, yn+1,i)6;+1> X
1

(fEn-&-l,O - y77,+1,0 i—=0

n
{Z (i (Tn41,05 - Tnt1,nt1) = i (Tnt1,05 - Tnt1,nt1)) EZH} +
=0

Tnt 1 — Yn Lt -
L S (00 (Tt 1,05 s Tt Lt 1) — Po (Tnt1,05 0 Tr L)) €1+

($n+1,o - yn+1,())2

1 )
1

N (80n+1 (Tn1,05 s Tt 1nt1) — Prn+1 (Tn+1,05 -~-,9€n+1,n+1)) Ent1-

Tn+1,0 — Yn+1,0

Since in the proof of the case n = 2 there is no influence of the unit multidual
number, we can infer for every n

: 1 -
lim 3 (Z (Trt1, yn+1,z')€n+1)

2i=yi =0, H 1 (2 110 = Ynt1,0)” \i=g

n
X {Z (%’ (33n+1,0, e $n+1,n+1) —¥; ($n+1,0, -~-,$n+1,n+1)) €Z+1}
i=0

_ " &Pl (anrl,O; sy $n+1,n+1) i
o Z or En1-
i=0 0

Furthermore, since the formula is supposed to be true for n, we find get, as in
the proof of the case n = 2,

de .
870 (yn+1,07 "'7yn+1,n+1) = O VZ = 17 ey N + 1
X
By the use of this relation we reach the expression
n+1
i Ger) = () _ 3 0; (Tn+1.0, - Tnt1int1) i
Zn41—tn41 Zn+1 — tn+1 —o 6.’170 ntl

This achieves the proof.

Theorem 6 Let f be a multidual function in Q C D,,, which can be written in
terms of its real and multidual parts as in the relation and suppose that the
partial derivatives of f exist. Then,

(1) f is hyperholomorphic in € if and only if following formulas hold

B, _ Opi_j .p - .
af_é_ dzo if j <4, (27)
an; =0ifj > 1.
(2) f is hyperholomorphic in € if and only if its partial derivatives satisfy
0 0
9F _ g9 o (28)

(%cj (9330
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Proof. (1) Consider f as a multi-valued real function. We can assert that her
total differential can be written

df = ——dx;.

f Z 8£Ej i
Jj=0

So, making use (25)), it follows

F=3 Y ;J daie’, (29)

1=0 j=0
On the other hand, by virtue of the relation we have
of ..
d =
f a{IJ()

A

Op;_; ;
= dxj; | €.
jz 8350 ¢

Combining this with , we find

0 0
Z %dxz Z i dej Vi=0,..,n. (30)

Which eventually gives , after simple developments.
(2) By defintion of f, we know that

9¢; i
837 Z ox;
V- J

So, in view of , we get

of 8%“
B = Zazo

jzasﬂk e

Hence, the proof is done.

In the following statement, we give another représentation of the Cauchy-Riemann
formulas as a differential matrix equations.

Corollary 7 Let f be a multidual function in Q C D,,, which can be written in
terms of its real and multidual parts as

n
Z) = Z‘pz (movxlv 7xn) €i7
=0

and admit that the partial derivatives of f exist. Then, f is hyperholomorphic in
Q if and only if f is solution of the following differential matrix equation

ON ()

va(f) =5

(31)
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Proof. If we consider f as a multi-valued function, then that her gradient can
be computed as

[ Opo  Ovg 9pq 7]
e dx1 T Qzp
O¢, ¢, ¢,
I Oy o Oz
vepn=| '
O0p,  Op, O,
L aIO a:rl : : : 617,, .

Taking into account the relation (27)), we can infer

B
900 oy
8—*;; s 0. . 0
9oy
vX(f) = | ow
. . .. . 0
Opn 9p1 Ovq
L Oz : . : Oz Ozxg 4
AN
8x0 '

Which permits us to conclude the proof.

4. EXTENSION AND GENERATOR POLYNOMIALS

Definition 7 A multidual function defined in 2 C D, is said to be homogeneous
if
f(real(2)) € R. (32)

The following Theorem shows that we can extend any homogeneous hyperholo-
morphic function defined in a subset 2 C D), to the wider multidual subset gener-
ated by the first orthogonal projection of €.

Theorem 8 Let f be an homogeneous multidual function in 2 C D,,, which can
be written in terms of its real and multidual parts as

fz)= Zg@i (T0,T1, vy Tp) €7,
=0

and suppose that the partial derivatives of f exist. Then, if f is hyperholomorphic
in Q, the functions ¢, verify
m+1

(1) g € C™ (P (Q)) and 20 exists in Py (),

(2) ¢; € C™1 (Py (Q)) x € (R™) and 9 "184 exists in Py (), Vi = 1,...,n,
where P; (£2) represents the first projection of 2 on R.

Particularly, f can be hyperholomorphically extended to the multidual subset
Pl (Q) x R™.

Proof. Suppose that f is hyperholomorphic in €2, then by Cauchy-Riemann
formulas we find

©; (o, 1, ooy Tn) = @; (X0, 1, oy xi), Vi =0, ..., (33)
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Moreover, Cauchy-Riemann formulas lead also to

Op; __ Ov;
610 6.110 ’

Opi1 _ 9,
Oxrg ~ Oz’

Op1 _ B¢,
OZEO - 8931'71’

dpg _ Op;

da}o - Ba;i :

These yield for i =1
de
O
¥1 (J)o, xl)

dzg "

For i = 2, we get by similar argument

1d° 800 22+ d%
Ty

2 d d.’Eo

Since f is homogeneous, we can then generalize these relations by recurence on
i=1,...,n, to find

dH_l_]@O
@i (1'07.’)31, ...,{Ei) = ZP” ($1, ceey J}i) 7dxi+1_j ,
j 0

P2 (m07x17x2) L2.

where P;; € R[z1,...,2;], called the generator polynomials.
We deduce that the multidual function f can be written in explicit from

n 7 di_;’_l_j(p ;
i=1 j=1 0
Thus, we can also obtain employing
_ deg A,
d,z d{L‘O +ZZPU Ll1yeeey T ) Ws . (35)
i=1 j=1 0

In particular, the proof is an immediate consequence.
In the following proposition, we give some properties of the generator polynomials
]Proposition 9 The generator polynomials verify the following statements:
Pj=0vVi=1,..,nand j=i+1,...,n
O —0 Vi=1,.,nk=1,.,iand j=1,..,k— 1,
OP;; * . . .
Por = P g k1 Vi= 27 onk=1..,i—1land j=k,...,i—1
Pii (:cl, ,.’[1) =; Vi = 1, ey

The proof follows directly from the Cauchy-Riemann formulas.
The object of the following corollary is the study of multidual constant functions.
Corollary 10 (Constant functions) Let f be an homogeneous multidual function

defined in a connected multidual subset O x R® C D,,. The following statements
hold

(1) If % =01in O x R", then f = const.

(2) If f is bounded in O xR™ (in the sense that |@; (o, 21, ..., z;)| < c Vi=1,..,n
and V (g, z1, ..., xy) € O X R™), then f = const.

The following proposition ensures us that every regular real function can be
holomorphically extended to the multidual numbers.

(36)
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Proposition 11 (Extension of real functions) Let f : O — R be a real function,
where O is an open connected domain of R.
n—+1
Suppose that f € C"(0) and ‘;Jiﬁf exists in O. Then, there exists a unique

hyperholomorphic homogeneous multidual function F': O x R® — D), satisfying
F (LE()) = f (1’0) VSCO € 0. (37)

In addition, if f € C?(0), ¢ >n+1, then F € C?~"! (O x R"). In Particular,
if feC>(0), then F € C*® (O x R™). We say in that case that f is an analytic
multidual function in the multidual subset O x R™ and we write f € A(O x R").

5. CONCRETE EXAMPLES

We can think of applying the statement of proposition 8 to build homogeneous
multidual functions similar to the usual real functions, obtained as their extensions.
In detail, we define the multidual exponential function, the multiduale Logarithmic
function. Also we introduce the concept of Galilean multi-trigonometric functions
and we give and discuss some of their interesting properties.

5.1. Multidual Exponential function. The multidual exponential function can
be obtained as extension of the exponential real function to multidual numbers,
but there is some technical difficulties to work with such definition. To this aim,
we prefer to use the exponential of matrices.
Let A € G,+1 (R) and suppose that ||A]| < +oo for some norm. It is well known
that the exponential of A can be defined by the series
A — 1
J— p— m
exp(A)=e —ngjom!/l . (38)
In addition, the series converges normally in each bounded domain of G, 1 (R).
Since A € Gp41 (R), we can affirm that for all m € N we have A™ € G,,11 (R).
Thus, by passage to the limit it follows that

exp (4) € Gnt1 (R). (39)
Introducing now the multidual function f defined for every z € I,, by
f(z) =N "toexpoN (2). (40)
We find via this definition
N (f(2)) = exp (N (2)), (41)
and so
Fz)=elexpW (2)" £ (42)

We are now ready to define rigorously the multidual exponential function.
Definition 8 We define the multidual exponential function by

exp: D, — D,
exp (2) = e = el exp(N (2))" .£ VzeD,.

Some properties of the multidual exponential function are collected in the fol-
lowing.

Proposition 12

(1) e1722 = 1?2 ¥z, 25 € D,,.

(2) e* =L VzeD,.

(43)
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Proof. (1) For all 2y, 20 € I,, we get using formulat
N(621+22) _ e/\/(zl-«-zQ)_
Since, N (z1) N (z2) = N (22) N (21), we find
N (6z1+zQ) _ eN(zl)eN(Z2)
N (e N (e)
= N (ee*).

Hence, the first statement holds.
(2) For every z € D, it follows thinks to the previous assertion

N()N(e?) = N(efe )
= N (e£77)
= Inq1.
Which allows us to deduce that
N(E™) = N(e)™

1
N(ﬁ).

So the second statement follows.

Since the extension of regular real functions to multidual numbers is unique, one
can easily prove that the definition given above of multidual exponential function
coincides with that obtained as extension of real exponential function. Hence we
can write

e“=el expW(2) £=e™ [ 1+ ZZPU (z1,.ymi) et | . (44)

i=1 j=1
Proposition 13 The derivative of exp is given by
de®

dz

Proof. It is enough for this to use theorem to find

de? oe*
dz Oxo
aexo n 7 .
= 8;130 1+ZZRJ (zl,...,mi)s

i=1 j=1

=€ Vz e D,. (45)

= ez
As consequence, we have

m ,z

d
exp € A(D,,) and 7 € _ e VzeD,, m>1. (46)
Zm

As in the proof of Corollary 7, one can easily aboutis to the following differential
matrix equation verified by the multidual exponential function

VX (exp) = N (exp) . (47)



154 F. MESSELMI EJMAA-2015/3(2)

5.2. Galilean Multi-Trigonometric functions. Definition 9 For all (x4, ...,z,) €
R™ and i = 0, ..., n, we define the Galilean multi-Trigonometric functions by

mug; : R — R such that

muge = 1,

U 48
mug; (T1,...,2:) =y, Pij (T1,..., %) . (48)
=1

these function generalizes in higher dimensions the classical Galilean Trigono-
metric functions, see [4].
Under the formula the multidual exponential function can be rewritten

exp (Z xl€L> = mugy + Zmugi (1, .., 2;) €% (49)
i=1

i=1

The expression is called the generalized Euler formula for multidual num-
bers.

Proposition 14

(1) The Galilean multi-Trigonometric functions mug; verify

Omug;
ox; : (£L'1,

,1’1) = mug;—; (561, ...7£L'i,j) for ivj = ]_7 ey TV and ] < ’i,
8757;%(751,---,%) =1Vi=1,..,n, (50)
mug; (0,...,0,2;) =x; Vi=1,..,n.

mug; (T1 4+ Y1, -, Ti +Yi) =

-

mug; (@1, o 25) mugi—j (Y1, - Yi—j)

7=0
i 51
= Zomugj (Y1, s Ys) MUGi—j (T1, oy Ty ) (51
j=
Vi=1,...,n, V(l‘l,...,.’l’}i), <y17-~-7yi) € R™.
(2) V (21, ..., zn) € R, mug; (—z1, ..., —x;) is solution of the linear system
mug (1) 0 . . 0
mugs (1, T2) mugy (1) 0
mugs (x1,T2) .
0 .
. mugy (z1) 0
mug; (1, ..., T;) . .. mugs (z1,z2) mug (z1)
mugy (—x1) mugy (z1)
mugs (—1, —T2) mugs (21, 2)
X ' = ' . (52)
mug; (_1'1,--.,—931‘) mug; (wla"'azi)

The proof of the above proposition is simple and direct, making use the definition
of mug; and Cauchy-Riemann formulas.

5.3. Multidual Logarithmic function. We define the multidual Logarithmic
function as the unique extension, via Corollary, of Logarithmic real function to the
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multidual algebra. Thus, the multidual Logarithmic function can be defined as
log : R} x R® C D, — Dy,

2 & (—1)id Pii(x1,...,x;) 4 53
log (z) = log (o) + 2:1 Zl ((ilf)j)! Jié—jﬁ—l Le (53)
i=1j=

It is difficult to work with this definition. To this aim, we try to proceed by
introducing the following homogeneous multidual function, which represents the
inverse of the multidual exponential function

x:Dp — Dy | eX®) =2, (54)
Proposition 15 The multidual function x is hyperholomorphic in the multidual
subset R} x R™.
In addition, we have
{ V& (x) =N,

z) — 1y, e R% x R™

Proof. First, by definition of the multidual exponential function, we know that

real (eX(Z)> = erlx(2)) >

(55)

This means that the function x is well-defined if and only if real (z) > 0.
Elsewhere, we get by deriving with respect to z;, j =1,...,n

%z =¢l (56)
It also follows
o _ox
8$j &co '
Hence, theorem affirms 6 us that y is hyperholomorphic in the multidual subset

R* x R™
T .
Now, writing x in terms of its real and multidual parts as

n
X (Z) = Z 2 (1‘071‘1, ---,:En) 52,
=0

and deriving the two sides of the expression eX(*) = z with respect to z, j = k, ..., n.
The following formula holds
: 8901‘73‘
=0 (9$k
This formula can be rewritten explicitly
X (x)

8.73k

=0k

=er+1 VE=0,...,n.

On the other hand, since x is hyperholomorphic function, Cauchy-Riemann for-
mulas permit us to write

dx _ 9x

dz ~ Oxzo’
This yields, combining with equation
dy 1

dz 2’
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which achieves the proof.
Proposition 16 For all z € R} x R" the following relation holds

X (z) =log z. (57)
Proof. From relation 7 we can infer
e (X(2)) = real (2),
Moreover, we find using the definition of log z gives
real (log z) = log (real (2)) .
By virtue of the two above relations, we obatin the identity
real (x (z)) = real (log 2) .

Consequently, the result follows from the proposition 11.

The next properties follow mostly from the definition of the multidual Logarith-
mic function.

Proposition 17

(1) log (%) = —log 2.

(2) log (z122) = log 21 + log (22) .

(3) log (2*) = alogz Vz € RY xR, Va € R.

5.4. Galilean inverse multi-Trigonometric functions. The fact that e/°8% = 2
and loge* = z allows us to introduce the Galilean inverse multi-trigonometric
functions using the definition of the multidual Logarithmic function. To do this,
putting xg = 1 in the relation, we obtain the equality

log <1+Zl‘i€i> :ZZ((;?j)!Pij (‘T1,...,$i)€i. (58)

Defining the Galilean inverse multi-trigonometric functions as follows
Definition 10 For all (z1,...,2,) € R® and i = 0, ..., n, we define the Galilean
multi-trigonometric functions by

mug_; : R — R such that

mug—o = mugo = 1,
' (59)

i ivieg
mug—_; (L1, ..., T;) = Y. %PM (T1y ey ) -
j=1

Since multidual Logarithmic function represents the inverse of multidual expo-
nential function, the following proposition holds.

Proposition 18 For all (z1,...,z,) € R™ and i = 1, ...,n, we have the inversion
formulas

mug—; (mugl (ml) 5 -eey UG, ("1317 ,$7,)) = Ty, (60)
mug; (mug—1 (1), ..., mug—; (T1, ..., T;)) = ;. (61)

The following collects some basic properties of mug_;.
Proposition 19 The Galilean inverse multi-trigonometric functions mug_; ver-
ify

dmug_; = dmug_
777(};;? (1‘1, ...,xi) = — kzlxi,k 77;)1;9] k (31‘1, ,.Tk) (62)
=J

fori,j=1,...,n and j < i,
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(1]

i—1
omug_; _ J omug_; e :
78:701- (:Cl, ...,Z‘i) = — kzz:l T Own (1‘1, ...,SCi) Tg;]gk (.’I,‘l, ...,l‘k) (63)
fori,j=1,...,nand j <1
omug_;
———(z1,..,x;) =1 Vi=1,...,n, 64
P (01, ) (64)
mug—; (0,....,0,2;) =x; Vi=1,..,n. (65)
mug—1 (z1 + y1) = mug—1 (z1) +mug_1 (1)
i—1
mug—; | x1 +y1, 22 + Y2 + T1y1, -, T Y + D TjlYi—j (66)
j=1

=mug_; (T1, ..., z;) + mug—; (Y1, ..., Yi)
Vi=1,..,n, V(x1,....x;), (y1,..,¥;) € R™
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