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MULTIDUAL NUMBERS AND THEIR MULTIDUAL
FUNCTIONS

FARID MESSELMI

Abstract. The purpose of this paper is to develop a general theory of multi-
dual numbers. We start by de�ning the notion of multidual numbers and their
algebraic properties. In addition, we develop a simple mathematical method
based on matrices, simplifying manipulation of multidual numbers. Inspired
from multicomplex analysis, we de�ne the multidual functions and we gen-
eralize the concept of hyperholomorphicity. Moreover, we obtain a general
representation of hyperholomorphic multidual functions using the notion of
generator polynomials. As concrete examples, some usual real functions have
been generalized to the case of multidual numbers, such that the exponential
and logarithmic multidual function. Finally, we extend, using the multidual
functions, the Galilean Trigonometric functions and their inverses functions
to the multi-dimensional case as well as some of their algebraic and analytic
properties.

1. Introduction

The theory of algebra of dual numbers has been originally introduced by W.
K. Cli¤ord [2] in 1873, and he showed that they form an algebra but not a �eld
because only dual numbers with real part not zero possess an inverse element. In
1891 E. Study [14] realized that this associative algebra was ideal for describing
the group of motions of three-dimensional space. At the turn of the 20th century,
A. Kotelnikov [8] developed dual vectors and dual quaternions. Algebraic study of
dual numbers is the topic of numerous papers, e.g. [2, 7]. This nice concept has
lots of applications in many �elds of fundamental sciences; as, algebraic geometry,
Riemannian geometry, quantum mechanics and astronomy. It also arises in various
contexts of engineering: aerospace, robotic and computer science. For more details
about the applications of dual numbers, we refer the reader to [3, 5, 14, 16, 17].
However, up to now there are only a few attempts in the mathematical study of

dual functions (functions of dual variable). An early attempt is due to E. E. Kramer
[9] in 1930. Later, in 2011, Z. Ercan and S. Yüce [4] obtained generalized Euler�s
and De Moivre�s formulas for functions with dual Quaternion variable. Recently, F.
Messelmi [11] develops a theory, inspired from complex analysis, of dual function
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and he generalizes the notion of holomorphic dual functions and obtained some
interesting properties.
Furthermore, the concept of multicomplex numbers has been de�ned and intro-

duced by many mathematicians and Physicists. The starting point is the intro-
duction of a generator i; such that in = �1 and create the space of multicomplex
numbers of order n;MCn: In keeping with the case n = 2 of usual complex numbers
and their trigonometric functions, an associated extended trigonometry follows. It
is characterized by speci�c �angular�functions dubbed multisine (mus): A collec-
tion of useful relations exists between the mus-functions: additions, derivatives, etc,
see for more details about multicomplex numbers the references [?, 6, 10, 12, 13]
More recently, the theory becomes one of the important impulses for developing

some new concept of quantum mechanics and cosmology.
The purpose of this paper is to contribute to the development of multidual

numbers, by generalizing the dual numbers in higher dimensions, as well as their
functions. Moreover, in the study of multidual functions (functions of multidual
variable) some natural question raise:

� When and under what conditions a multidual function is di¤erentiable ?.
� How can one extend regularly real functions to multidual variable ?.

Throughout the paper, we will try to answer some of these questions.
In details, we start by generalizing the notion of hyperholomorphicity to mul-

tidual functions. To this end, as in multicomplex analysis, we study the Di¤eren-
tiability of multidual dual functions. The notion of hyperholomorphicity has been
introduced and a general representation of hyperholomorphic functions was shown,
using the new concept of generator polynomial. Moreover, we provide the basic
statements that allow us to extend holomorphically real functions to the wider
multidual generalized Cli¤ord Algebra and we ensure that such an extension is
meaningful. As an application, we generalize some usual real functions to multid-
ual Algebra.
In this work we have not shown physical applications of all concepts presented

here. However, we will try to �nd future applications.
The outline of the paper is as follows. In Section 2 we focus on the development

of multidual numbers and their algebraic properties.
Section 3 is devoted to the study of multidual functions. To this aim, we gener-

alize the concept of hyperholomorphy to multidual numbers and a few properties
have been established. As example, we generalize in the last chapter some usual real
function to multidual variables and we introduce the Galilean multi-Trigonometric
functions and their inverses.

2. Multidual Numbers

We introduce the concept of Multidual numbers as follows.
A multidual number z is an ordered (n+ 1)�tuple of real numbers (x0; x1; :::; xn)

associated with the real unit 1 and the powers of the multidual unit "; where " is
an (n+ 1)�nilpotent number i.e. "n+1 = 0 and "i 6= 0 for i = 1; :::; n: A multidual
number is usually denoted in the form

z =
nX
i=0

xi"
i: (1)

for which, we admit that "0 = 1:
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We denote by Dn the set of multidual numbers de�ned as

Dn =

(
z =

nX
i=0

xi"
i j xi 2 R where "n+1 = 0 and "i 6= 0 for i = 1; :::; n

)
(2)

Furthermore, every element z =
nP
i=0

xi"
i of Dn can be also written

z = X (z)T E ; (3)

where X (z) is the real vector associated to the multidual number z given by

X (z) =

26666664
x0
x1
:
:
:
xn

37777775 ; (4)

and E represents the following vector, called multidual vector,

E =

26666664
1
"
"2

:
:
"n

37777775 : (5)

There are many ways to choose the multidual unit number ": As simple example,
we can take the real matrix

" =

26666664
0 0 : : : 0
1 0 : : : 0
0 1 : : : :
: : : : : :
0 : : : 0 0
0 0 : 0 1 0

37777775 : (6)

Addition and multiplication of the multidual numbers are de�ned by
nX
i=0

xi"
i +

nX
i=0

yi"
i =

nX
i=0

(xi + yi) "
i; (7)

8>>>><>>>>:

�
nP
i=0

xi"
i

�
:

�
nP
i=0

yi"
i

�
=

nP
i=0

 
iP

j=0

xjyi�j

!
"i

=
nP
i=0

 
iP

j=0

yjxi�j

!
"i:

(8)

If z =
nP
i=0

xi"
i is a multidual number, we will denote by real (z) the real part of

z given by
real (z) = x0: (9)

Thus, the multidual numbers form a commutative ring with characteristic 0:
Moreover the inherited multiplication gives the multidual numbers the structure of
(n+ 1)�dimensional generalized Cli¤ord Algebra.
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For n = 1; D1 is the Cli¤ord algebra of dual numbers, see for more details
regarding dual numbers the references [2, 7, 11].
In abstract algebra terms, the multidual numbers can be described as the quo-

tient of the polynomial ring R [X] by the ideal generated by the polynomial Xn+1;
i.e.

Dn � R [X] =Xn+1: (10)

If z is a multidual number, the conjugate of z denoted by �z is the multidual
number described by �

real (�z) = real (z) ;
z�z 2 R: (11)

Suppose now that z =
nP
i=0

xi"
i and �z =

nP
i=0

xi"
i: Then, using relation (11) we get

z�z = x20 +
nX
1=1

0@ iX
j=0

xjxi�j

1A "i 2 R:
Which implies that

iX
j=0

xjxi�j = 0 8i = 1; :::; n:

This can be written in matrix form26666664
x0 0 : : 0 0
x1 x0 : : : 0
x2 x1 : : : :
: : : : : :
: : : : : 0

xn�1 : : x2 x1 x0

37777775

26666664
x1
x2
:
:
:
xn

37777775 = �x0
26666664
x1
x2
:
:
:
xn

37777775 : (12)

Hence z =
nP
i=0

xi"
i has a unique conjugate, solution of the system (12), if and

only if real (z) = x0 6= 0: On the other hand if x0 = 0; we remark that the number
nP
i=1

xi"
i is a divisor of zero in Dn:

Proposition 1 Let z =
nP
i=0

xi"
i and t =

nP
i=0

yi"
i be two multidual numbers, such

that x0; y0 6= 0: Then,
zt = �z�t: (13)

Proof. We get from the relation (11)

z�z = x20 8z 2 Dn:

This allows us to write
(zt)

�
zt
�
= (x0y0)

2
:

Thus, under the hypothesis x0; y0 6= 0; we �nd

zt =
x20y

2
0

zt

=
x20
z

y20
t
= zt:
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Particularly, the map z 2 Dn � f0g 7�! z 2 Dn � f0g is an automorphism of
groups.
Remark 1 If n � 2; z + t 6= �z + �t:
It is also important to know that every multidual number has another represen-

tation, using matrices.
To this aim, let us denote by Gn+1 (R) the subset ofMn+1 (R) given by

Gn+1 (R) = fA = (aij) 2Mn+1 (R) j aij = 0 if i > j
and ai+1;j+1 = aij if 0 � i � j � ng : (14)

So, every matrix A of Gn+1 (R) is such that

A =

26666664
a0 0 : : 0 0
a1 a0 0 : : 0
: : : : : :
: : : : : :

an�1 : : : a0 0
an an�1 : : a1 a0

37777775 : (15)

One can easily verify that Gn+1 (R) is a subring of Mn+1 (R) which forms a
(n+ 1)�dimensional associative and commutative Algebra.
If a0 6= 0; Gn+1 becomes a �eld. It is also a subgroup of GL (n+ 1) :
Introducing now the map8>>>>>>>><>>>>>>>>:

N : Dn �! Gn+1 (R) ;

N
�

nP
i=0

xi"
i

�
=

26666664
x0 0 : : : 0
x1 x0 0 : : 0
: x1 : : : :
: : : : : :

xn�1 : : : x0 0
xn xn�1 : : x1 x0

37777775
(16)

The following results are immediate consequences of the de�nitions Gn+1 (R) of
and N :
Theorem 2 N is an isomorphism of rings.

Corollary 3 Let z =
nP
i=0

ai"
i 2 Dn: Then,

(1) z = eT1N (z)
T E ; where e1 is the �rst element in the canonical base of Rn+1:

(2) zn = eT1 (N (z)
n
)
T E :

(3) In addition, if z 6= 0; then 1
z = e1

�
N (z)

�1
�T
E :

3. Multidual Functions

We start by giving some topological de�nitions and properties of Dn:
Introducing the mapping �

P : Dn �! R+;
P (z) = jreal (z)j : (17)
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One can easily to verify that8>>>><>>>>:
z�z = P (z)2 8z 2 Dn:

P (z1 + z2) � P (z1) + P (z2) 8z1; z2 2 Dn;
P (z1z2) = P (z1)P (z2) 8z1; z2 2 Dn;
P (�z) = j�j P (z) 8z 2 Dn;8� 2 R;

P (0) = 0:

(18)

In particularl, P de�nes a semi-norm in Dn: It inducess a structure of pseudo-
topology over Dn.
Thus, we can de�ne the multidual disk and multidual sphere of centre t =

nP
i=0

yi"
i 2 Dn and radius r > 0; respectively, by

D (t; r) =

(
z =

nX
i=0

xi"
i 2 Dn j p (z � t) < r

)

=

(
z =

nX
i=0

xi"
i 2 Dn j jxi � yij < r; xi 2 R; i = 1; :::; n

)
; (19)

S (t; r) =

(
z =

nX
i=0

xi"
i 2 Dn j p (z � t) = r

)

=

(
z =

nX
i=0

xi"
i 2 Dn j jxi � yij = r; xi 2 R; i = 1; :::; n

)
: (20)

S (t; r) can be also called the generalized Galilean sphere.
De�nition 1
(1) We say that 
 is a multidual subset of the multidual algebra Dn if there

exists a subset O � R such that


 = O � Rn: (21)

O is called the generator of 
:
(2) We say that 
 is an open multidual subset of the multidual algebra Dn if the

generator of 
 is an open subset of R:
(3) 
 is said to be a closed multidual subset of Dn if the complemente is an open

subset of D:
(4) 
 is said to be a connected multidual subset of Dn if the generator is a

connected subset of R:
(5) 
 is said to be a compact multidual subset of Dn if the generator is a compact

subset of R:
We discuss now some properties of multidual functions. We investigate the

continuity of multidual functions and the di¤erentiability in the multidual sense,
which can be also called hyperholomorphicity, as in multicomplexe case.
In the following de�nitions, we suppose that Dn is equipped with the usual

topology of Rn+1:
De�nition 2 A multidual function is a mapping from a subset 
 � Dn to Dn:
Let 
 be an open subset of Dn; t =

nP
i=0

yi"
i 2 
 and f : 
 �! Dn a multidual

function.
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De�nition 3 We say that the function f is continuous at t if

lim
z!t

f (z) = f (t) : (22)

where the limit is calculated coordinate by coordinate, this means that

lim
z!t

f (z) = lim
xi!yi i=0;:::;n

f (z) = f (t) : (23)

De�nition 4 The function is continuous in 
 � Dn if it is continuous at every
point of 
:
De�nition 5 The multidual function f is said to be di¤erentiable in the multi-

dual sense at t =
nP
i=0

yi"
i if the following limit exists

df

dz
(t) = lim

z!t

f (z)� f (t)
z � t ; (24)

df
dz (t) is called the derivative of f at the point t:
If f is di¤erentiable for all points in a neighbourhood of the point t then f is

called hyperholomorphic at t:
De�nition 6 The function f is hyperholomorphic in 
 � Dn if it is hyperholo-

morphic at every point of 
:
The de�nition of derivative in the multidual sense has to be treated with a little

more care than its real companion; this is illustrated by the following example.
Example 1 The function f : D1 �! D1 such that f (z) = z is nowhere di¤eren-

tiable. To this aim, a simple calculation gives

lim
z!z0

f (z)� f (z0)
z � z0

= lim
z!z0

z � z0
z � z0

= lim
z!z0

z � z02

(x� x0)2

= 1� 2" lim
x!x0;y!y0

y � y0
x� x0

:

But this limit does not exist.
The basic properties for derivatives are similar to those we know from real cal-

culus. In fact, one should convince oneself that the following rules follow mostly
from properties of the limit.
Proposition 4 Suppose f and g are di¤erentiable at z 2 Dn; and that c 2 Dn;

n 2 Z; and h is di¤erentiable at g (z) : Then, we have8>>>>>>>>><>>>>>>>>>:

d (f + cg)

dz
=
df

dz
+ c

dg

dz
;

d (f:g)

dz
=
df

dz
g + f

dg

dz
:

d
�
f
g

�
dz

=
df
dz g � f

dg
dz

g2
(we have to be aware of division by zero):

d (h � g)
dz

=
dh

dz
(g)

dg

dz
:

In the following results we generalize the Cauchy-Riemann formulas to multidual
functions.
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Theorem 5 Let f be a multidual function in 
 � Dn; which can be written in
terms of its real and multidual parts as

f (z) =
nX
i=0

'i (x0; x1; :::; xn) "
i: (25)

f is hyperholomorphic in 
 � Dn if and only if the derivative of f satis�es

df

dz
=
@f

@x0
=

nX
i=0

@'i
@x0

"i: (26)

Proof. The proof will be done by recurrence on n:
For n = 1 the result was already proved by F. Messelmi in the reference [11].

Suppose that n = 2: We can compute the derivative of f at t =
2P
i=0

yi"
i 2 
 as

follows

lim
z!t

f (z)� f (t)
z � t = lim

xi!yi i=0;1;2

(f (z)� f (t))
�
z � t

�
(x0 � y0)2

= lim
xi!yi i=0;1;2

1

(x0 � y0)2
f('0 (x0; x1; x2)� '0 (y0; y1; y2))+

('1 (x0; x1; x2)� '1 (y0; y1; y2)) "+ ('2 (x0; x1; x2)� '2 (y0; y1; y2)) "2
	
�(

(x0 � y0)� (x1 � y1) "+
 
(x1 � y1)2

x0 � y0
� (x2 � y2)

!
"2

)

= lim
xi!yi i=0;1;2

�
'0 (x0; x1; x2)� '0 (y0; y1; y2)

x0 � y0
�

x1 � y1
(x0 � y0)2

('0 (x0; x1; x2)� '0 (y0; y1; y2)) "+ 
(x1 � y1)2

(x0 � y0)3
� x2 � y2
(x0 � y0)2

!
('0 (x0; x1; x2)� '0 (y0; y1; y2)) "2+

'1 (x0; x1; x2)� '1 (y0; y1; y2)
x0 � y0

"� x1 � y1
(x0 � y0)2

('1 (x0; x1; x2)� '1 (y0; y1; y2)) "2

+
'2 (x0; x1; x2)� '2 (y0; y1; y2)

x0 � y0
"2
�
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Hence, this limit becomes

lim
z!t

f (z)� f (t)
z � t =

@'0
@x0

(y0; y1; y2) +
@'1
@x0

(y0; y1; y2) "+
@'2
@x0

(y0; y1; y2) "
2�

lim
xi!yi i=0;1;2

�
x1 � y1
x0 � y0

�2
'0 (x0; x1; x2)� '0 (y0; y1; y2)

x1 � y1
"�

lim
xi!yi i=0;1;2

�
x2 � y2
x0 � y0

�2
'0 (x0; x1; x2)� '0 (y0; y1; y2)

x2 � y2
"2+

lim
xi!yi i=0;1;2

�
x1 � y1
x0 � y0

�2�
'0 (x0; x1; x2)� '0 (y0; y1; y2)

x0 � y0
�

'1 (x0; x1; x2)� '1 (y0; y1; y2)
x1 � y1

�
"2:

However, it is well-known that the limit exists if and only if it is independent of

limit of the bounded ratios
�
x1�y1
x0�y0

�2
and

�
x2�y2
x0�y0

�2
: Hence, we should impose the

following conditions

@'0
@x0

(y0; y1; y2) =
@'1
@x1

(y0; y1; y2) ;

@'0
@x1

(y0; y1; y2) = 0;

@'0
@x2

(y0; y1; y2) = 0:

So, the formula (26) follows.
Suppose now that the formula is true for n � 2 and let us prove that it remains

true for n+ 1:
Denoting by "n and "n+1 the unit multidual numbers of the algebras Dn and

Dn+1; respectively.
Considering a multidual function in 
 � Dn+1 and denoting by

zn+1 =
n+1X
i=0

xn+1;i"
i
n+1 and tn+1 =

n+1X
i=0

yn+1;i"
i
n+1

two elements of Dn+1:
Clearly, we have

f (zn+1)� f (tn+1)
zn+1 � tn+1

=
f (zn+1)� f (tn+1)

�
zn+1 � tn+1

�
(xn+1;0 � yn+1;0)2

=
1

(xn+1;0 � yn+1;0)2

 
n+1X
i=0

(xn+1;i � yn+1;i) "in+1

!

�
(
n+1X
i=0

('i (xn+1;0; :::; xn+1;n+1)� 'i (xn+1;0; :::; xn+1;n+1)) "in+1

)
:
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So, we obtain after some algebraic calculations

f (zn+1)� f (tn+1)
zn+1 � tn+1

=
f (zn+1)� f (tn+1)

�
zn+1 � tn+1

�
(xn+1;0 � yn+1;0)2

=
1

(xn+1;0 � yn+1;0)2

 
nX
i=0

(xn+1;i � yn+1;i) "in+1

!
�(

nX
i=0

('i (xn+1;0; :::; xn+1;n+1)� 'i (xn+1;0; :::; xn+1;n+1)) "in+1

)
+

xn+1;n+1 � yn+1;n+1
(xn+1;0 � yn+1;0)2

('0 (xn+1;0; :::; xn+1;n+1)� '0 (xn+1;0; :::; xn+1;n+1)) "in+1+

1

xn+1;0 � yn+1;0
�
'n+1 (xn+1;0; :::; xn+1;n+1)� 'n+1 (xn+1;0; :::; xn+1;n+1)

�
"in+1:

Since in the proof of the case n = 2 there is no in�uence of the unit multidual
number, we can infer for every n

lim
xi!yi i=0;:::;n+1

1

(xn+1;0 � yn+1;0)2

 
nX
i=0

(xn+1;i � yn+1;i) "in+1

!

�
(

nX
i=0

('i (xn+1;0; :::; xn+1;n+1)� 'i (xn+1;0; :::; xn+1;n+1)) "in+1

)

=

nX
i=0

@'i (xn+1;0; :::; xn+1;n+1)

@x0
"in+1:

Furthermore, since the formula is supposed to be true for n; we �nd get, as in
the proof of the case n = 2;

@'0
@xi

(yn+1;0; :::; yn+1;n+1) = 0 8i = 1; :::; n+ 1:

By the use of this relation we reach the expression

lim
zn+1!tn+1

f (zn+1)� f (tn+1)
zn+1 � tn+1

=
n+1X
i=0

@'i (xn+1;0; :::; xn+1;n+1)

@x0
"in+1:

This achieves the proof.
Theorem 6 Let f be a multidual function in 
 � Dn; which can be written in

terms of its real and multidual parts as in the relation (25) and suppose that the
partial derivatives of f exist. Then,
(1) f is hyperholomorphic in 
 if and only if following formulas hold(

@'i
@xj

=
@'i�j
@x0

if j � i;
@'i
@xj

= 0 if j > i:
(27)

(2) f is hyperholomorphic in 
 if and only if its partial derivatives satisfy

@f

@xj
= "j

@f

@x0
8j = 0; :::; n: (28)
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Proof. (1) Consider f as a multi-valued real function. We can assert that her
total di¤erential can be written

df =
nX
j=0

@f

@xj
dxj :

So, making use (25), it follows

df =
nX
i=0

nX
j=0

@'j
@xi

dxi"
i: (29)

On the other hand, by virtue of the relation (26) we have

df =
@f

@x0
dz

=
@

@x0

 
nX
i=0

'i"
i

! 
nX
i=0

dxi"
i

!

=

nX
i=0

0@ iX
j=0

@'i�j
@x0

dxj

1A "i:
Combining this with (29), we �nd

nX
j=0

@'j
@xi

dxi =
iX

j=0

@'i�j
@x0

dxj 8i = 0; :::; n: (30)

Which eventually gives (27), after simple developments.
(2) By de�ntion of f; we know that

@f

@xj
=

nX
i=0

@'i
@xj

"i:

So, in view of (27), we get

@f

@xj
=

nX
i=j

@'i�j
@x0

"i

= "j
nX
k=0

@'k
@x0

"k:

Hence, the proof is done.
In the following statement, we give another représentation of the Cauchy-Riemann

formulas as a di¤erential matrix equations.
Corollary 7 Let f be a multidual function in 
 � Dn; which can be written in

terms of its real and multidual parts as

f (z) =

nX
i=0

'i (x0; x1; :::; xn) "
i;

and admit that the partial derivatives of f exist. Then, f is hyperholomorphic in

 if and only if f is solution of the following di¤erential matrix equation

rX (f) = @N (f)

@x0
: (31)
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Proof. If we consider f as a multi-valued function, then that her gradient can
be computed as

rX (f) =

266666664

@'0
@x0

@'0
@x1

: : : @'0
@xn

@'1
@x0

@'1
@x1

: : : @'1
@xn

: : : : : :
: : : : : :
: : : : : :

@'n
@x0

@'n
@x1

: : : @'n
@xn

377777775
:

Taking into account the relation (27), we can infer

rX (f) =

266666664

@'0
@x0

0 : : : 0
@'1
@x0

@'0
@x0

0 : : 0

: @'1
@x0

: : : :

: : : : : :
: : : : : 0

@'n
@x0

: : : @'1
@x0

@'0
@x0

377777775
=

@N (f)

@x0
:

Which permits us to conclude the proof.

4. Extension and Generator Polynomials

De�nition 7 A multidual function de�ned in 
 � Dn is said to be homogeneous
if

f (real (z)) 2 R: (32)

The following Theorem shows that we can extend any homogeneous hyperholo-
morphic function de�ned in a subset 
 � Dn to the wider multidual subset gener-
ated by the �rst orthogonal projection of 
:
Theorem 8 Let f be an homogeneous multidual function in 
 � Dn; which can

be written in terms of its real and multidual parts as

f (z) =
nX
i=0

'i (x0; x1; :::; xn) "
i;

and suppose that the partial derivatives of f exist. Then, if f is hyperholomorphic
in 
; the functions 'i verify

(1) '0 2 Cn (P1 (
)) and
dn+1'0
dxn+1 exists in P1 (
) ;

(2) 'i 2 Cn�i (P1 (
))� C1 (Rn) and
@n�i+1'i
@xn�i+1 exists in P1 (
) ; 8i = 1; :::; n;

where P1 (
) represents the �rst projection of 
 on R:
Particularly, f can be hyperholomorphically extended to the multidual subset

P1 (
)� Rn:
Proof. Suppose that f is hyperholomorphic in 
; then by Cauchy-Riemann

formulas we �nd

'i (x0; x1; :::; xn) = 'i (x0; x1; :::; xi) ; 8i = 0; :::; n; (33)
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Moreover, Cauchy-Riemann formulas lead also to8>>>>>>><>>>>>>>:

@'i
@x0

= @'i
@x0
;

@'i�1
@x0

= @'i
@x1
;

...
@'1
@x0

= @'i
@xi�1

;
d'0
dx0

= @'i
@xi
:

These yield for i = 1

'1 (x0; x1) =
d'0
dx0

x1:

For i = 2; we get by similar argument

'2 (x0; x1; x2) =
1

2

d2'0
dx20

x21 +
d'0
dx0

x2:

Since f is homogeneous, we can then generalize these relations by recurence on
i = 1; :::; n; to �nd

'i (x0; x1; :::; xi) =

iX
j=1

Pij (x1; :::; xi)
di+1�j'0

dxi+1�j0

;

where Pij 2 R [x1; :::; xi] ; called the generator polynomials.
We deduce that the multidual function f can be written in explicit from

f (z) = '0 (x0) +

nX
i=1

iX
j=1

Pij (x1; :::; xi)
di+1�j'0

dxi+1�j0

"i: (34)

Thus, we can also obtain employing (26)

df

dz
=
d'0
dx0

+

nX
i=1

iX
j=1

Pij (x1; :::; xi)
di+2�j'0

dxi+2�j0

"i: (35)

In particular, the proof is an immediate consequence.
In the following proposition, we give some properties of the generator polynomials

Pij :
Proposition 9 The generator polynomials verify the following statements:8>><>>:

Pij = 0 8i = 1; :::; n and j = i+ 1; :::; n;
@Pij
@xk

= 0 8i = 1; :::; n; k = 1; :::; i and j = 1; :::; k � 1;
@Pij
@xk

= Pi�k;j�k+1 8i = 2; :::; n; k = 1; :::; i� 1 and j = k; :::; i� 1;
Pii (x1; :::; xi) = xi 8i = 1; :::; n:

(36)

The proof follows directly from the Cauchy-Riemann formulas.
The object of the following corollary is the study of multidual constant functions.
Corollary 10 (Constant functions) Let f be an homogeneous multidual function

de�ned in a connected multidual subset O � Rn � Dn: The following statements
hold
(1) If dfdz = 0 in O � R

n; then f � const:
(2) If f is bounded in O�Rn (in the sense that j'i (x0; x1; :::; xi)j � c 8i = 1; :::; n

and 8 (x0; x1; :::; xn) 2 O � Rn); then f � const:
The following proposition ensures us that every regular real function can be

holomorphically extended to the multidual numbers.
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Proposition 11 (Extension of real functions) Let f : O �! R be a real function,
where O is an open connected domain of R:
Suppose that f 2 Cn (O) and dn+1f

dxn+1 exists in O: Then, there exists a unique
hyperholomorphic homogeneous multidual function F : O � Rn �! Dn satisfying

F (x0) = f (x0) 8x0 2 O: (37)

In addition, if f 2 Cq (O) ; q � n+ 1; then F 2 Cq�n�1 (O � Rn) : In Particular,
if f 2 C1 (O) ; then F 2 C1 (O � Rn) : We say in that case that f is an analytic
multidual function in the multidual subset O � Rn and we write f 2 A (O � Rn) :

5. Concrete Examples

We can think of applying the statement of proposition 8 to build homogeneous
multidual functions similar to the usual real functions, obtained as their extensions.
In detail, we de�ne the multidual exponential function, the multiduale Logarithmic
function. Also we introduce the concept of Galilean multi-trigonometric functions
and we give and discuss some of their interesting properties.

5.1. Multidual Exponential function. The multidual exponential function can
be obtained as extension of the exponential real function to multidual numbers,
but there is some technical di¢ culties to work with such de�nition. To this aim,
we prefer to use the exponential of matrices.
Let A 2 Gn+1 (R) and suppose that kAk < +1 for some norm. It is well known

that the exponential of A can be de�ned by the series

exp (A) = eA =
+1X
m=0

1

m!
Am: (38)

In addition, the series converges normally in each bounded domain of Gn+1 (R) :
Since A 2 Gn+1 (R) ; we can a¢ rm that for all m 2 N we have Am 2 Gn+1 (R) :

Thus, by passage to the limit it follows that

exp (A) 2 Gn+1 (R) : (39)

Introducing now the multidual function f de�ned for every z 2 Dn by
f (z) = N�1 � exp �N (z) : (40)

We �nd via this de�nition

N (f (z)) = exp (N (z)) ; (41)

and so
f (z) = eT1 : exp (N (z))

T
:E : (42)

We are now ready to de�ne rigorously the multidual exponential function.
De�nition 8 We de�ne the multidual exponential function by�

exp : Dn �! Dn
exp (z) = ez = eT1 : exp (N (z))

T
:E 8z 2 Dn:

(43)

Some properties of the multidual exponential function are collected in the fol-
lowing.
Proposition 12
(1) ez1+z2 = ez1ez2 8z1; z2 2 Dn:
(2) e�z = 1

ez 8z 2 Dn:
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Proof. (1) For all z1; z2 2 Dn we get using formulat (35)

N
�
ez1+z2

�
= eN (z1+z2):

Since, N (z1) :N (z2) = N (z2) :N (z1) ; we �nd

N
�
ez1+z2

�
= eN (z1)eN (z2)

= N (ez1)N (ez2)

= N (ez1ez2) :

Hence, the �rst statement holds.
(2) For every z 2 Dn; it follows thinks to the previous assertion

N (ez) :N
�
e�z
�
= N

�
eze�z

�
= N

�
ez�z

�
= In+1:

Which allows us to deduce that

N
�
e�z
�
= N (ez)

�1

= N
�
1

ez

�
:

So the second statement follows.
Since the extension of regular real functions to multidual numbers is unique, one

can easily prove that the de�nition given above of multidual exponential function
coincides with that obtained as extension of real exponential function. Hence we
can write

ez = eT1 : exp (N (z))
T
:E = ex0

0@1 + nX
i=1

iX
j=1

Pij (x1; :::; xi) "
i

1A : (44)

Proposition 13 The derivative of exp is given by

dez

dz
= ez 8z 2 Dn: (45)

Proof. It is enough for this to use theorem to �nd

dez

dz
=

@ez

@x0

=
@ex0

@x0

0@1 + nX
i=1

iX
j=1

Pij (x1; :::; xi) "
i

1A
= ez

As consequence, we have

exp 2 A (Dn) and
dmez

dzm
= ez 8z 2 Dn; m � 1: (46)

As in the proof of Corollary 7, one can easily aboutis to the following di¤erential
matrix equation veri�ed by the multidual exponential function

rX (exp) = N (exp) : (47)
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5.2. Galilean Multi-Trigonometric functions. De�nition 9 For all (x1; :::; xn) 2
Rn and i = 0; :::; n; we de�ne the Galilean multi-Trigonometric functions by

mugi : Ri �! R such that8<:
mug0 = 1;

mugi (x1; :::; xi) =
iP

j=1

Pij (x1; :::; xi) :
(48)

these function generalizes in higher dimensions the classical Galilean Trigono-
metric functions, see [4].
Under the formula (44) the multidual exponential function can be rewritten

exp

 
nX
i=1

xi"
i

!
= mug0 +

nX
i=1

mugi (x1; :::; xi) "
i: (49)

The expression (49) is called the generalized Euler formula for multidual num-
bers.
Proposition 14
(1) The Galilean multi-Trigonometric functions mugi verify8><>:

@mugi
@xj

(x1; :::; xi) = mugi�j (x1; :::; xi�j) for i; j = 1; :::; n and j < i;
@mugi
@xi

(x1; :::; xi) = 1 8i = 1; :::; n;
mugi (0; :::; 0; xi) = xi 8i = 1; :::; n:

(50)

8>>>><>>>>:
mugi (x1 + y1; :::; xi + yi) =

iP
j=0

mugj (x1; :::; xj)mugi�j (y1; :::; yi�j)

=
iP

j=0

mugj (y1; :::; yj)mugi�j (x1; :::; xi�j)

8i = 1; :::; n; 8 (x1; :::; xi) ; (y1; :::; yi) 2 Rn:

(51)

(2) 8 (x1; :::; xn) 2 Rn; mugi (�x1; :::;�xi) is solution of the linear system26666664
mug1 (x1) 0 : : : 0
mug2 (x1; x2) mug1 (x1) 0 : : :

: mug2 (x1; x2) : : : :
: : : : 0 :
: : : : mug1 (x1) 0

mugi (x1; :::; xi) : : : mug2 (x1; x2) mug1 (x1)

37777775

�

26666664
mug1 (�x1)

mug2 (�x1;�x2)
:
:
:

mugi (�x1; :::;�xi)

37777775 =
26666664

mug1 (x1)
mug2 (x1; x2)

:
:
:

mugi (x1; :::; xi)

37777775 : (52)

The proof of the above proposition is simple and direct, making use the de�nition
of mugi and Cauchy-Riemann formulas.

5.3. Multidual Logarithmic function. We de�ne the multidual Logarithmic
function as the unique extension, via Corollary, of Logarithmic real function to the
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multidual algebra. Thus, the multidual Logarithmic function can be de�ned as8<:
log : R�+ � Rn � Dn �! Dn;

log (z) = log (x0) +
nP
i=1

iP
j=1

(�1)i�j
(i�j)!

Pij(x1;:::;xi)

x
i�j+1
0

"i
(53)

It is di¢ cult to work with this de�nition. To this aim, we try to proceed by
introducing the following homogeneous multidual function, which represents the
inverse of the multidual exponential function

� : Dn �! Dn j e�(z) = z: (54)

Proposition 15 The multidual function � is hyperholomorphic in the multidual
subset R�+ � Rn:
In addition, we have �

rX (�) = N�1;
d�(z)
dz = 1

z 8z 2 R
�
+ � Rn:

(55)

Proof. First, by de�nition of the multidual exponential function, we know that

real
�
e�(z)

�
= ereal(�(z)) > 0:

This means that the function � is well-de�ned if and only if real (z) > 0:
Elsewhere, we get by deriving with respect to xj ; j = 1; :::; n

@�

@xj
z = "j : (56)

It also follows
@�

@xj
= "j

@�

@x0
:

Hence, theorem a¢ rms 6 us that � is hyperholomorphic in the multidual subset
R�+ � Rn:
Now, writing � in terms of its real and multidual parts as

� (z) =
nX
i=0

'i (x0; x1; :::; xn) "
i;

and deriving the two sides of the expression e�(z) = z with respect to xk; j = k; :::; n:
The following formula holds

iX
j=0

@'i�j
@xk

= �ik:

This formula can be rewritten explicitly

N (z)
@X (�)
@xk

= ek+1 8k = 0; :::; n:

On the other hand, since � is hyperholomorphic function, Cauchy-Riemann for-
mulas permit us to write

d�

dz
=
@�

@x0
:

This yields, combining with equation (56)

d�

dz
=
1

z
;
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which achieves the proof.
Proposition 16 For all z 2 R�+ � Rn the following relation holds

� (z) = log z: (57)

Proof. From relation (54), we can infer

ereal(�(z)) = real (z) ;

Moreover, we �nd using the de�nition (53) of log z gives

real (log z) = log (real (z)) :

By virtue of the two above relations, we obatin the identity

real (� (z)) = real (log z) :

Consequently, the result follows from the proposition 11.
The next properties follow mostly from the de�nition of the multidual Logarith-

mic function.
Proposition 17
(1) log

�
1
z

�
= � log z:

(2) log (z1z2) = log z1 + log (z2) :
(3) log (z�) = � log z 8z 2 R�+ � R; 8� 2 R:

5.4. Galilean inverse multi-Trigonometric functions. The fact that elog z = z
and log ez = z allows us to introduce the Galilean inverse multi-trigonometric
functions using the de�nition of the multidual Logarithmic function. To do this,
putting x0 = 1 in the relation, we obtain the equality

log

 
1 +

nX
i=1

xi"
i

!
=

nX
i=1

iX
j=1

(�1)i�j

(i� j)! Pij (x1; :::; xi) "
i: (58)

De�ning the Galilean inverse multi-trigonometric functions as follows
De�nition 10 For all (x1; :::; xn) 2 Rn and i = 0; :::; n; we de�ne the Galilean

multi-trigonometric functions by

mug�i : Ri �! R such that8<:
mug�0 = mug0 = 1;

mug�i (x1; :::; xi) =
iP

j=1

(�1)i�j
(i�j)! Pij (x1; :::; xi) :

(59)

Since multidual Logarithmic function represents the inverse of multidual expo-
nential function, the following proposition holds.
Proposition 18 For all (x1; :::; xn) 2 Rn and i = 1; :::; n; we have the inversion

formulas

mug�i (mug1 (x1) ; :::;mugi (x1; :::; xi)) = xi; (60)

mugi (mug�1 (x1) ; :::;mug�i (x1; :::; xi)) = xi: (61)

The following collects some basic properties of mug�i:
Proposition 19 The Galilean inverse multi-trigonometric functions mug�i ver-

ify 8<: @mug�i
@xj

(x1; :::; xi) = �
i�1P
k=j

xi�k
@mug�k
@xj

(x1; :::; xk)

for i; j = 1; :::; n and j < i;
(62)
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@xj

(x1; :::; xi) = �
j�1P
k=1

@mug�i
@xk

(x1; :::; xi)
@mugk
@xj

(x1; :::; xk)

for i; j = 1; :::; n and j < i
(63)

@mug�i
@xi

(x1; :::; xi) = 1 8i = 1; :::; n; (64)

mug�i (0; :::; 0; xi) = xi 8i = 1; :::; n: (65)8>>>>><>>>>>:

mug�1 (x1 + y1) = mug�1 (x1) +mug�1 (x1)

mug�i

 
x1 + y1; x2 + y2 + x1y1; :::; xi + yi +

i�1P
j=1

xjyi�j

!
= mug�i (x1; :::; xi) +mug�i (y1; :::; yi)

8i = 1; :::; n; 8 (x1; :::; xi) ; (y1; :::; yi) 2 Rn:

(66)
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