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ON CONVERGENCE THEOREMS IN METRIC SPACES

M. A. AHMED, A. KAMAL , ASMAA M. ABD-ELAL

Abstract. In this paper, we establish some convergence theorems to a unique
fixed point for any map in metric spaces. These theorems generalize and unify
the results of Ahmed [1] and Ahmed et al [3, 4].

1. Introduction

In the last two decades, some convergence theorems to a unique fixed point for
generalized types of quasi-nonexpansive mappings in metric spaces have appeared
(see, e.g., [2, 3], [10, 11, 12]). On the other hand, in 2007, Ahmed [1] introduced a
new iteration and proved a convergence theorem of this iteration to a unique fixed
point for any map in metric spaces. Also, there are some remarks on convergence
theorems such as Kirk [7]. Following [1, 2, 3], let (X, d) be a metric space. Assume
that T : D ⊆ X −→ X is any map and F (T ) is the set of all fixed points of T .

Definition 1.1 The mapping T : D −→ X is said to be quasi-nonexpansive w.r.t. a
sequence {xn} if {xn} ⊆ D and for all n ∈ N∪{0} (N := the set of all positive integers)
and for each p ∈ F (T ), d(xn+1), p) ≤ d(xn, p). is defined by [2].

As in [2, 3] the quasi-nonexpansiveness w.r.t. a sequence {xn} ⇒ the weak quasi-
nonexpansive w.r.t. a sequence {xn} but the converse of the last implication may
not be true.

Definition 2.1 A subset D of a normed space X is called balanced (or circled)
if x ∈ D and | γ |≤ 1 implies γx ∈ D is defined by [13] .

Following [8], we assume that Lc := {x ∈ X : F (x) ≤ c}, where F : X → R. We
use the symbol µ to denote the usual Kuratowski measure of noncompactness. For
some properties of µ, see Zeidler ([14], pages 493-495).

The following definitions is given by Angrisani and Clavelli [6].
Definition 3.1 Let D be a topological space. The function F : X → R is said
to be a regular-global-inf (r.g.i) at x ∈ X if F (x) > infX(F ) implies that there
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exists ϵ > 0 such that ϵ < F (x)− infX(F ) and a neighborhood NX of x such that
F (y) > F (x)− ϵ for each y ∈ Nx. If this condition holds for each x ∈ X, then F is
said to be an r.g.i on X.

Definition 4.1 Let D be a convex subset of a normed space X. A mapping
T : D → D is called directionally nonexpansive if ∥T (x) − T (m)∥ ≤ ∥x − m∥ for
each x ∈ D and for all m ∈ [x, T (x)] where [x, y] denotes the segment joining x and
y; that is, [x, y] = {λx+ (1− λ)y : 0 ≤ λ ≤ 1}.

2. Main Results

First we state and prove our main results as follows.
Theorem 2.1 Let {xn} be a sequence in a subset D of a metric space (X, d) and
T : D −→ X any map such that F (T ) ̸= ∅. Assume that F (T ) is a closed set. Then
{xn} converges to a unique point in F (T ) if and only if lim

n→∞
?d(xn, F (T )) = 0.

Proof. (⇒) Suppose that {xn} converges to a unique point in F (T ). In this case,
lim

n→∞
?xn exists in F (T ). From the closedness of F (T ), we find that lim

n→∞
?xn ∈

F (T ) = F (T ).
Hence, we obtain that d( lim

n→∞
?xn, F (T )) = 0. Since d : X × 2X −→ [0,∞) is a

uniformly continuous (see, [5], page 49), we get that

lim
n→∞

?d(xn, F (T )) = d( lim
n→∞

?xn, F (T )) = 0.

(⇐) Suppose that lim
n→∞

?d(xn, F (T )) = 0. Since d is uniformly continuous, then

d( lim
n→∞

?xn, F (T )) = lim
n→∞

?d(xn, F (T )) = 0

Therefore, we have that lim
n→∞

?xn ∈ F (T ). The closedness of F (T ) leads to lim
n→∞

?xn ∈
F (T ).

Remark 2.1 Theorem 2.1 generalizes and improves each of Theorem 2.1 [1],
Theorem 2.1 [3] and Theorem 2.1 [4] for certain reasons. These reasons are the
following:

(1) The completeness of X is superfluous in Theorem 2.1 [3, 4];

(2) The existence of lim
n→∞

(γT )n(x0), |γ| ≤ 1, is superfluous in Theorem 2.1 [1];

(3) The quasi-nonexpansiveness of T w.r.t. a sequence {xn} (resp., The weak quasi-
nonexpansiveness of T w.r.t. a sequence {xn}) in Theorem 2.1 [3] (resp., Theorem
2.1 [4]) is superfluous.

Corollary 2.1 Let F (T ) be nonempty closed set. Then

(i) lim
n→∞

?d(xn, F (T )) = 0 if {xn} converges to a point in F (T ).
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(ii) {xn} converges to a point in F (T ) if lim
n→∞

d(xn, F (T )) = 0, T is quasi nonex-

pansive w.r.t {xn} and X is complete.

Corollary 2.2 Let F (γT ), |γ| ≤ 1, be a nonempty set. Then

(i) lim
n→∞

?d((γT )n(x0), F (γT )) = 0 if {(γT )n(x0)} converges to a unique point in

F (γT ),

(ii) {(γT )n(x0)} converges to a unique point in F (γT ) if lim
n→∞

?d((γT )n(x0), F (γT )) =

0, T ((γT )n−1(x0)) for all n ∈ N and for some x0 ∈ D, F (γT ) is a closed set and
lim

n→∞
?(γT )n(x0) exists.

Corollary 2.3 Let {xn} be sequence in a subset D of a metric space (X, d) and
let T : D −→ X be a map such that F (T ) ̸= ∅. then

(i) lim
n→∞

?d(xn, F (T )) = 0 if {xn} converges to a point in F (T );

(ii) {xn} converges to a point in F (T ) if lim
n→∞

?d(xn, F (T )) = 0 is closed set, T is

weakly quasi-nonexpansive with respect to {xn}, and X is complete.
As a consequence of Theorem 2.1, We state and prove the following theorem

Theorem 2.2 Let {xn} be a sequence in a subset D of a metric space (X, d)
and T : D −→ X any map such that F (T ) ̸= ∅. Assume that

(i) F (T ) is closed set;

(ii) d(xn, F (T )) is monotonically decreasing sequence in [0,∞);

(iii) lim
n→∞

?d(xn, xn+1) = 0 ;

(iv)If the sequence {yn} satisfies lim
n→∞

?d(yn, yn+1) = 0, then

lim inf
n→∞

?d(yn, F (T )) = 0 or lim sup
n→∞

?d(yn, F (T )) = 0.

Then {xn} converges to a unique point in F (T ).

proof. From (ii) and the boundedness from below by zero of the sequence
d(xn, F (T )), we find that lim

n→∞
?d(xn, F (T )) exists and equals say, y. Therefore,

lim inf
n→∞

?d(yn, F (T )) = lim sup
n→∞

?d(yn, F (T )) = y.

The conditions (iii) and (iv) asserts that lim inf
n→∞

?d(xn, F (T )) = 0 or lim sup
n→∞

?d(xn, F (T )) =

0.
From the uniqueness of y, then lim

n→∞
?d(xn, F (T )) = 0. Applying Theorem 2.1, we

conclude that {xn} converges to unique point in F (T ).
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Corollary 2.4 Let {xn} be a complete metric space and let F (T ) be nonempty
closed set. Assume that

(i) T is quasi-nonexpansive with respect to {xn};

(ii) lim
n→∞

?d(xn, xn+1) = 0, equivalently, {xn} is cauchy sequence;

(iii) if the sequence {yn} satisfies lim
n→∞

?d(yn, yn+1) = 0, then

lim inf
n→∞

?d(yn, F (T )) = 0 or lim sup
n→∞

?d(yn, F (T )) = 0.

Then Tn(x0) converges to a point in F (T ).

Corollary 2.5 LetD be balanced subset of normed spaceX and let F (γT ), |γ| ≤
1, be a nonempty closed set. Assume that

(i) T ((γT )n−1(x0)) ∈ D for all n ∈ N and (γT ) is quasi-nonexpansive w.r.t.
{(γT )n(x0)};

(ii) (γT ) is asymptotically regular at x0 ∈ D;

(iii) if the sequence {yn} in D satisfies lim
n→∞

∥(I − γT )(yn)∥ = 0, then

lim inf
n

d(yn, F (γT )) = 0 or lim sup
n

d(yn, F (γT )) = 0.

If lim
n→∞

(γT )n(x0) exists, then {(γT )n(x0)} converges to a unique point in F (γT ).

Corollary 2.6 Let {xn} be a sequence in a subset D of a complete metric space
(X, d) and T : D −→ X be a map such that F (T ) ̸= ∅ is a closed set. Assume that

(i) T is weakly quasi-nonexpansive with respect to {xn};

(ii) {d(xn, F (T ))} is monotonically decreasing sequence in [0,∞);

(iii) lim
n→∞

?d(xn, xn+1) = 0 ;

(iv) If the sequence {yn} satisfies lim
n→∞

?d(yn, yn+1) = 0, then

lim inf
n→∞

?d(yn, F (T )) = 0 or lim sup
n→∞

?d(yn, F (T )) = 0.

Then {xn} converges to a point in F (T ).
From ([8], Corollary 2.4) and Theorem 2.1, we state and prove the following

theorem.



EJMAA-2015/3(2) ON CONVERGENCE THEOREMS IN METRIC SPACES 151

Theorem 2.3 Let T be self map on a complete metric space (X, d) satisfy:

(i) d(T (x), T 2(x)) ≤ hd(x, T (x)) for some h ∈ (0, 1)and for all x ∈ X;

(ii) µ(T (Lc)) ≤ kµ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on X;

(iv) {xn} is a sequence inXsuch that lim
n→∞

d(xn, Txn) = 0.

Then {xn} converges to a unique point in F (T ).

Proof. Using ([8], Corollary 2.4) and the conditions (i), (ii) and (iii) lead to
the nonemptyness and closdness of F (T ). Since the condition (iv) holds, then
lim

n→∞
d(xn, F (T )) = 0. Applying Theorem 2.1, we obtain that {xn} converges to a

unique point in F (T ).

Corollary 2.7 Let T : X −→ X be a mapping of a complete metric space (X, d)
satisfying

(i) d(T (x), T 2(x)) ≤ hd(x, T (x)) for some h ∈ (0, 1) and for all x ∈ X;

(ii) µ(T (Lc)) ≤ kµ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on X;

(iv) {xn} is a sequence in X such that lim
n→∞

d(xn, Txn) = 0 and T is weakly quasi-

nonexpansive with respect to {xn}.
Then {xn} converges to a point F (T ).

From ([8], Theorem 3.3) and Theorem 2.2, we state the following theorem with-
out proof.
Theorem 2.4 Let D be a bounded closed subset of a Banach space X. Suppose
T : D → D satisfies

(i) ∥T (x)− T 2(x)∥ ≤ h∥x− T (x)∥ for some h ∈ (0, 1) and for all x ∈ X;

(ii) µ(T (Lc)) ≤ kµ(Lc) for some k < 1 and for all c > 0;

(iii) F is an r.g.i. on X;

(iv) {xn} ⊆ D satisfies lim
n→∞

∥xn − Txn∥ = 0.

Then {xn} converges to a unique point in F (T ).

3. Applications

Motivated by the paper of Ahmed [2], we apply Theorem 2.1 and Theorem 2.2
for obtaining convergence theorems in metric spaces.
Definition 3.1 Let D be a nonempty subset of a metric space (X, d). A point
q ∈ D ⊆ X is closed fixed point of T : D×D −→ X if q = T (q, u) for some u ∈ D
is defined by [2].
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Theorem 3.1 Let {xn} be a sequence in a subset D of a metric space (X, d)
and let T : D ×D −→ X be any map such that F (T ) ̸= ∅. Assume that F (T ) is
closed set {xn} converges to a unique point in F (T ) if and only if

lim inf
n→∞

?d(xn, F (T )) = 0.

Theorem 3.2 Let {xn} be a sequence in a subset D of a metric space (X, d)
and T : D ×D −→ X be any map such that F (T ) ̸= ∅. Assume that

(i) F (T ) is closed set;

(ii) d(xn, F (T )) is monotonically decreasing sequence in [0,∞);

(iii) lim
n→∞

?d(xn, xn+1) = 0 ;

(iv) If the sequence {yn} satisfies lim
n→∞

?d(yn, yn+1) = 0, then

lim inf
n→∞

?d(yn, F (T )) = 0 or lim sup
n→∞

?d(yn, F (T )) = 0.

Then {xn} converges to a point in F (T ).
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