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OSCILLATION THEOREMS FOR FOURTH-ORDER NONLINEAR

DYNAMIC EQUATIONS ON TIME SCALES

F. Z. LADRANI, A.HAMMOUDI, A. BENAISSA CHERIF

Abstract. In this paper, we will establish some oscillation criteria for the

fourth-order nonlinear dynamic equation on time scales

(p(x∆)α)∆
3
(t) + q (t) (p(x∆)α)∆

2
(t) + f (t, x (τ (t))) = 0

on a time scales, where α is a quotient of odd positive integer and α > 0.

1. Introduction

Consider the fourth-order nonlinear delay dynamic equation with damping

(p(x∆)α)∆
3

(t) + q (t) (p(x∆)α)∆
2

(t) + f (t, x (τ (t))) = 0 (1)

on a time scale T, where α is a quotient of odd positive integer and α > 0. Since
we are interested in oscillation, we assume throughout this paper that the given
time scale T is unbounded above and is a time scale interval of the form [t0,∞)T :=
[t0,∞) ∩ T with t0 ∈ T.

The equation (1) will be studied under the following assumptions:

A1: f : T× R −→ R is a continuous function verifying

xf (t, x) > 0, for all t ∈ [t0,∞)T , x ∈ R\ {0} .
A2: There exist a function r : T −→ R which is a positive and rd-continuous,

such that

f (t, x)

xα
≥ r(t), for all t ∈ [t0,∞)T , x ∈ R\ {0} .

A3: p and q are positive real-valued and rd-continuous functions defined on
T, 1− q (t)µ (t) ̸= 0, τ ∈ Crd (T,T), τ (t) ≤ t, and τ (t) → ∞ as t→ ∞.

By a solution of (1) we mean a nontrivial real-valued function x ∈ C4
rd ([Tx,∞)T ,R),

Tx ∈ [t0,∞)T which satisfies (1) on [Tx,∞)T. The solutions vanishing in some
neighbourhood of infinity will be excluded from our consideration.

A solution x of (1) is said to be oscillatory if it is neither eventually positive nor
eventually negative, otherwise it is nonoscillatory. Equation (1) is called oscillatory
if all its solutions are oscillatory.

2000 Mathematics Subject Classification. 34K11; 39A10; 39A99.
Key words and phrases. Time scale, Oscillation, Fourth-order nonlinear.

Submitted April 22, 2014.

46



EJMAA-2015/3(2) FOURTH-ORDER NONLINEAR DYNAMIC EQUATIONS 47

The theory of time scales was introduced by Hilger [1] in order to unify, extend,
and generalize ideas from discrete calculus, quantum calculus, and continuous cal-
culus to arbitrary time scale calculus. The books on the subjects of time scale, that
is, measure chain, by Bohner and Peterson [2],[3], summarize and organize much of
time scale calculus.

The theory of oscillations is an important branch of the applied theory of dynamic
equations related to the study of oscillatory phenomena in technology, natural and
social sciences. In recent years, there has been much research activity concerning
the oscillation of solutions of various dynamic equations on time scales.

Recently, there has been an increasing interest in obtaining sufficient conditions
for oscillation and nonoscillation of solutions of various equations on time scales,
we refer the reader to the articles [6],[7],[1],[12],[4],[11] and the references cited
therein. S.H. Saker [4] studied a class of second-order delay dynamic equation with
a half-linear damping

(p (t)
(
x∆ (t)

)γ
)∆ + q (t)xγ (t) = 0.

Erbe et al [7] studied a class of second-order delay dynamic equations with a non-
linear damping

(r (t)
(
x∆ (t)

)γ
)∆ + p (t)

(
x∆

σ

(t)
)γ

(t) + q (t) f (t, x (τ (t))) = 0.

Erbe et al [6] investigated a third-order dynamic equation with a half-linear damp-
ing

x∆
3

(t) + q (t)x (t) = 0.

Said R. Grace et al [8] studied oscillation of the fourth-order dynamic equations

x∆
4

(t) + q (t)xλ (t) = 0.

Yunsong et al [11] studied a fourth-order dynamic equation with a half-linear damp-
ing

x∆
4

(t) + p (t)xγ (τ (t)) = 0.

Tongxing Li et al [9] studied oscillation for the fourth-order delay dynamic equation
on time scales

(rx∆
3

)∆ (t) + p (t)x (τ (t)) = 0.

Ravi P et al [12] studied oscillation of unbounded solutions to a fourth-order delay
dynamic equation with a half-linear damping

(r(x∆
3

)γ)∆ (t) + p (t) (x∆
3

)γ (t) + q (t)xγ (τ (t)) = 0.

So far, there are any results on oscillatory of (1). Hence the aim of this paper is to
give some oscillation criteria for this equation.

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
Since we are interested in oscillatory behavior, we suppose that the time scale is
not bounded above and is of the form [t0,∞)T. It follows that the jump operators
σ, ρ : T → T defined by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
where inf ∅ := supT and sup ∅ := inf T denotes the empty set. The point t ∈ T is
left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t, σ(t) =
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t, σ(t) > t, respectively. The graininess function µ, for a time scale, is defined by
µ(t) := σ(t)− t.

For a function f : T −→ R, the function fσ (t) denotes f (σ (t)). The ∆−derivative
of f : T −→ R at a right dense point t is defined by

f∆(t) = lim
s−→t

f(t)− f(s)

t− s
.

If t is not right scattered, then the derivative is defined by

f∆(t) =
fσ(t)− f(t)

µ(t)
.

A function f : T −→ R is said to be rd-continuous if it is continuous at each right-
dense point and if there exists a finite left limit in all left-dense points. The set of
rd-continuous functions f : T −→ R is denoted by Crd(T,R).

A function f is said to be differentiable if its derivative exists. The set of functions
f : T −→ R that are differentiable and whose derivative is rd-continuous is denoted
by C1

rd(T,R).
The ∆−derivative f∆ and the shift fσ of a function f are related by the equation

fσ (t) = f(t) + µ(t)f∆(t).

We will use the following product and quotient rules for the derivative of the product

fg and the quotient
f

g
(where gσ(t)g(t) ̸= 0) of two differentiable functions f and

g,

(fg)
∆
= f∆g + fσg∆,

and (
f

g

)∆

=
f∆g − g∆f

ggσ
.

For a, b ∈ T, and for a differentiable function f , the Cauchy integral of f∆ is defined
by ∫ b

a

f∆(t)∆t = f(b)− f(a).

An integration by parts formula reads

b∫
a

f(t)g∆(t)∆t = [f(t)g(t)]
b
a −

b∫
a

f∆(t)gσ(t)∆t,

and the improper integrals are defined in the usual way by

∞∫
a

f(t)∆t = lim
b−→∞

b∫
a

f(t)∆t.

The following result is used frequently in the remainder of this paper.

Lemma 2.1. [2] Assume 1+µ(t)p(t) ̸= 0 and fix t0 ∈ T. Then ep(·, t0) is a solution
of the initial value problem

y∆ (t) = p (t) y (t) , y (t0) = y0.
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3. Main results

In this section, we establish some sufficient conditions which guarantee that every
solution x of (1) oscillates on [t0,∞).
Before stating the main results, we begin with the following lemma.

Lemma 3.1. Suppose that x is an eventually positive solution of (1) and

∞∫
t0

e−q(t) (t, t0)∆t =

∞∫
t0

{
1

p (t)

} 1
α

∆t = ∞, (2)

then there are only the following two possible cases for t ∈ [t1,∞)T , where t1 ∈
[t0,∞)T sufficiently large:

(1) x∆ (t) > 0, (p
(
x∆
)α

)∆(t) > 0, (p(x∆)α)∆
2

(t) > 0,

(2) x∆ (t) > 0, (p
(
x∆
)α

)∆(t) < 0, (p(x∆)α)∆
2

(t) > 0.

Proof. Let x be an eventually positive solution of (1). Then there exists a t1 ∈
[t0,+∞)T such that x (t) > 0 and x (τ (t)) > 0 for t ∈ [t1,+∞)T. From (1), we have

(p(x∆)α)∆
3

(t) + q (t) (p(x∆)α)∆
2

(t) = −f (t, x (τ (t))) < 0, (3)

for t ∈ [t1,+∞)T. Hence, we obtain by (3) that(
(p(x∆)α)∆

2

e−q (., t0)

)∆

(t) =
(p(x∆)α)∆

3

(t) + q (t) (p(x∆)α)∆
2

(t)

eσ−q (t, t0)
< 0.

Thus,

(
p
(
x∆
)α)∆2

e−q (., t0)
is decreasing on [t1,+∞)T. Then (p

(
x∆
)α

)∆
2

, (p
(
x∆
)α

)∆,

and x∆ are of constant sign eventually. We claim that (p
(
x∆
)α

)∆
2

> 0 for t ∈
[t1,+∞)T. If not, then there exist a t2 ∈ [t1,+∞)T such that

(p
(
x∆
)α

)∆
2

(t) ≤ −e−q (t, t0) , t ∈ [t2,+∞)T .

Integrating the above inequality from t2 to t, we obtain

lim
t−→∞

(p
(
x∆
)α

)∆ (t) ≤ −
+∞∫
t2

e−q (s, t0)∆s = −∞,

which implies that

lim
t−→∞

p (t)
(
x∆
)α

(t) = −∞,

and so there exist a t3 ∈ [t2,+∞)T such that

x∆ (t) ≤ −
(

1

p (t)

) 1
α

, t ∈ [t3,+∞)T .

Integrating the above inequality from t3 to t, we obtain

x (t) ≤ x (t3)−
t∫

t3

(
1

p (s)

) 1
α

∆s.
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This gives lim
t−→∞

x (t) = −∞, which is a contradiction.

If (p
(
x∆
)α

)∆ (t) > 0, then x∆ (t) > 0 due to (p
(
x∆
)α

)∆
2

(t) > 0. If (p
(
x∆
)α

)∆ (t) <

0, then x∆ (t) > 0 due to x (t) > 0. The proof is complete. �
Lemma 3.2. Assume that x is a solution of (1) which satisfies case (1) of Lemma
3.1. Then

(p
(
x∆
)α

)∆(t) ≥ (t− t1) (p
(
x∆
)α

)∆
2

(t), t ∈ [t1,∞)T . (4)

If there exist a function ϕ ∈ C1
rd ([t0,∞)T ,R+) and t2 ∈ [t1,∞)T such that

ϕ (t)− ϕ∆ (t) (t− t1) ≤ 0, t ∈ [t2,∞)T , (5)

then
(p
(
x∆
)α

)∆

ϕ
is a nonincreasing function on [t2,∞)T , and

ϕ (t) p (t)
(
x∆
)α

(t) ≥ (p
(
x∆
)α

)∆ (t)

t∫
t2

ϕ (s)∆s, t ∈ [t2,∞)T . (6)

Further, if there exist a function ψ ∈ C1
rd ([t0,∞)T ,R+) and t3 ∈ [t2,∞)T such that

ϕ (t)ψ (t)− ψ∆ (t)

t∫
t2

ϕ (s)∆s ≤ 0, t ∈ [t3,∞)T , (7)

then
p
(
x∆
)α

ψ
is a nonincreasing function on [t3,∞)T , and

x (t) ≥ x∆ (t)

{
p (t)

ψ (t)

} 1
α

t∫
t3

{
ψ (s)

p (s)

} 1
α

∆s := R (t, t3)x
∆ (t) , t ∈ [t3,∞)T . (8)

Proof. From (p
(
x∆
)α

)∆ (t) > 0, and (p
(
x∆
)α

)∆
2

(t) > 0, for t ∈ [t1,∞)T, we have

(p
(
x∆
)α

)∆(t) ≥
t∫

t1

(p
(
x∆
)α

)∆
2

(s)∆s ≥ (p
(
x∆
)α

)∆
2

(t) (t− t1) .

Thus, (
(p
(
x∆
)α

)∆

ϕ

)∆

(t) =
(p
(
x∆
)α

)∆
2

(t)ϕ (t)− (p
(
x∆
)α

)∆ (t)ϕ∆ (t)

ϕ (t)ϕσ (t)

≤
(p
(
x∆
)α

)∆(t)

ϕ (t)ϕσ (t)

{
ϕ (t)

t− t1
− ϕ∆ (t)

}
≤ 0.

Therefore,
(p
(
x∆
)α

)∆

ϕ
is a nonincreasing function on [t2,∞)T. Then, we obtain

p (t)
(
x∆
)α

(t) = p (t2)
(
x∆
)α

(t2) +

t∫
t2

(p
(
x∆
)α

)∆(s)

ϕ (s)
ϕ (s)∆s

≥
(p
(
x∆
)α

)∆(t)

ϕ (t)

t∫
t2

ϕ (s)∆s.
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Hence, (
p
(
x∆
)α

ψ

)∆

(t) =
(p
(
x∆
)α

)∆(t)ψ (t)− p
(
x∆
)α

(t)ψ∆ (t)

ψ (t)ψσ (t)

≤
p (t)

(
x∆
)α

(t)

ψ (t)ψσ (t)

{
ϕ (t)ψ (t)∫ t

t2
ϕ (s)∆s

− ψ∆ (t)

}
≤ 0.

Thus,
p
(
x∆
)α

ψ
is a nonincreasing function on [t3,∞)T, we have

x (t) ≥
t∫

t3

{
p (s)

(
x∆
)α

(s)

ψ (s)

} 1
α (

ψ (s)

p (s)

) 1
α

∆s = R (t, t3)x
∆ (t) .

This completes the proof. �

Remark 3.3. We can take for example ϕ (t) := (t− t1) and ψ (t) :=
∫ t

t2
(s− t1)∆s.

We give the main results and for simplification, we note Td (t) :=
dσ (t)

d (t)
, d+ (t) :=

max {0, d (t)} and

Qd
α (t) :=

{
1 if α ≥ 1,
Tdα−1 (t) if α < 1.

Theorem 3.4. Let (2) holds. Assume that there exist a positive function δ ∈
C1

rd ([t0,∞)T ,R) such that for all sufficiently large t1 ∈ [t0,∞)T , for some t1 ∈
[t0,∞)T, t2 ∈ [t1,∞)T , t3 ∈ [t2,∞)T, and t4 ∈ [t3,∞)T

lim sup
t−→∞

t∫
t4

δσ (s) r (s) k (s, t3)−
1

4

{
δ∆ (s)

δ (s)
− q (s)

Tδ (s)

Tϕ (s)

}2
δ (s)Tϕ (s)

Tδ (s)
∆s = ∞,

(9)
where ϕ and ψ are defined as in Lemma 3.2, and

k (t, t3) :=
1

ψ (τ (t))ϕσ (t)


τ(t)∫
t3

{
ψ (s)

p (s)

} 1
α

∆s


α

τ(t)∫
t3

ϕ (s)∆s.

If there exist a positive functions θ, λ ∈ C1
rd ([t0,∞)T ,R) such that

λ (t)

ξ (t, t1)
− λ∆ (t) ≤ 0, t ∈ [t2,∞)T , (10)

where

ξ (t, t1) := (p (t))
1
α

t∫
t1

{
1

p (s)

} 1
α

∆s

and

lim sup
t−→∞

t∫
t3

θσ (s) c (s)−
[
θ∆+
]α+1

(s)Tλα
2

(s) p (s)

(α+ 1)
α+1

θα (s) (Qλ
α)

α
(s)Tθα (s)

∆s = ∞, (11)
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where

c (t) :=
1

Tλα (t)

∞∫
t


∞∫
v

r (u)
λα (τ (u))

λα (u)
∆u

∆v.

Then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x on [t0,∞)T. We may assume
without loss of generality that there exists t1 ∈ [t0,∞)T such that x (t) > 0 and
x (τ (t)) > 0 for t ∈ [t1,∞)T. Suppose first that x satisfies (1) of lemma 3.1. Let

ω1 (t) := δ (t)
(p
(
x∆
)α

)∆
2

(t)

(p (x∆)
α
)∆ (t)

, t ∈ [t1,∞)T . (12)

Then ω1 (t) > 0 for t ∈ [t1,∞)T and

ω∆
1 (t) = δ∆ (t)

(p
(
x∆
)α

)∆
2

(t)

(p (x∆)
α
)∆ (t)

+ δσ (t)

{
(p
(
x∆
)α

)∆
2

(p (x∆)
α
)∆

}∆

(t) ,

which implies that

ω∆
1 (t) = δ∆ (t)

(p
(
x∆
)α

)∆
2

(t)

(p (x∆)
α
)∆ (t)

+δσ (t)
(p
(
x∆
)α

)∆
3

(t)

(p (x∆)
α
)∆σ (t)

−
δσ (t)

(
(p
(
x∆
)α

)∆
2

(t)
)2

(p (x∆)
α
)∆ (t) (p (x∆)

α
)∆σ (t)

.

(13)

Since
(p
(
x∆
)α

)∆ (t)

ϕ (t)
is a nondecreasing function, we have

(p
(
x∆
)α

)∆ (t)

(p (x∆)
α
)∆σ (t)

≥ ϕ (t)

ϕσ (t)
. (14)

From (12), (1) and the above inequality, we obtain

ω∆
1 (t) ≤ δ∆ (t)

δ (t)
ω1 (t)− δσ (t)

q (t) (p
(
x∆
)α

)∆
2

(t)

(p (x∆)
α
)∆σ (t)

− δσ (t) r (t)xα (τ (t))

(p (x∆)
α
)∆σ (t)

− Tδ (t)

δ (t)Tϕ (t)
ω2
1 (t)

≤ δ∆ (t)

δ (t)
ω1 (t)− q (t)Tδ (t)

(p
(
x∆
)α

)∆ (t)

(p (x∆)
α
)∆σ (t)

ω1 (t)−
δσ (t) r (t)xα (τ (t))

(p (x∆)
α
)∆σ (t)

− Tδ (t)

δ (t)Tϕ (t)
ω2
1 (t) .

Substituting (14) in (13), we find

ω∆
1 (t) ≤ δ∆ (t)

δ (t)
ω1 (t)− q (t)

Tδ (t)

Tϕ (t)
ω1 (t)−

δσ (t) r (t)xα (τ (t))

(p (x∆)
α
)∆σ (t)

− Tδ (t)

δ (t)Tϕ (t)
ω2
1 (t) .

(15)

In view of (6), (8) and the fact that
(p(x∆)

α
)∆(t)

ϕ(t) is a nonincreasing function, we

have

xα (τ (t))

(p (x∆)
α
)∆σ (t)

=
xα (τ (t))

(p (x∆)
α
)∆ (τ (t))

(p
(
x∆
)α

)∆ (τ (t))

(p (x∆)
α
)∆σ (t)

≥ 1

ψ (τ (t))ϕσ (t)


τ(t)∫
t3

{
ψ (s)

p (s)

} 1
α

∆s


α

τ(t)∫
t3

ϕ (s)∆s

= k (t, t3) . (16)
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Substituting (16) in (15), we get

ω∆
1 (t) ≤ −δσ (t) r (t) k (t, t3) +

{
δ∆ (t)

δ (t)
− q (t)

Tδ (t)

Tϕ (t)

}
ω1 (t)−

Tδ (t)

δ (t)Tϕ (t)
ω2
1 (t) .

Set

B (t) :=

{
δ∆ (t)

δ (t)
− q (t)

Tδ (t)

Tϕ (t)

}
, and A (t) :=

Tδ (t)

δ (t)Tϕ (t)
.

Using the inequality [5]

By −Ay2 ≤ B2

4A
, A > 0, B ∈ R, (17)

we get

ω∆
1 (t) ≤ −δσ (t) r (t) k (t, t3) +

1

4

{
δ∆ (t)

δ (t)
− q (t)

Tδ (t)

Tϕ (t)

}2
δ (t)Tϕ (t)

Tδ (t)
.

Integrating the above inequality from t4 to t, we obtain

t∫
t4

δσ (s) r (s) k (s, t3)−
1

4

{
δ∆ (s)

δ (s)
− q (s)

Tδ (s)

Tϕ (s)

}2
δ (s)Tϕ (s)

Tδ (s)
∆s ≤ ω1 (t4)−ω1 (t) ≤ ω1 (t4) ,

which contradicts (9).
Secondly suppose that x satisfies (2) of lemma 3.1. Let

ω2 (t) := θ (t)
p (t)

(
x∆
)α

(t)

xα (t)
, t ∈ [t1,∞)T . (18)

Then ω2 (t) > 0 for t ∈ [t1,∞)T and

ω∆
2 (t) = θ∆ (t)

p (t)
(
x∆
)α

(t)

xα (t)
+θσ (t)

(
p
(
x∆
)α)∆

(t)

xα (σ (t))
−θσ (t)

p (t)
(
x∆
)α

(t) (xα)
∆
(t)

xα (σ (t))xα (t)
.

(19)

Since x∆ (t) > 0 and (p
(
x∆
)α

)∆ (t) < 0, we obtain

x (t) ≥
t∫

t1

(
p (s)

(
x∆ (s)

)α) 1
α

{
1

p (s)

} 1
α

∆s

≥ x∆ (t) (p (t))
1
α

t∫
t1

{
1

p (s)

} 1
α

∆s = ξ (t, t1)x
∆ (t) . (20)

Thus, (x
λ

)∆
(t) =

x∆ (t)λ (t)− x (t)λ∆ (t)

λ (t)λσ (t)

≤ x (t)

λ (t)λσ (t)

{
λ (t)

ξ (t, t1)
− λ∆ (t)

}
≤ 0. (21)

Hence
x

λ
is a nonincreasing function on [t2,∞)T and so

x (t)

xσ (t)
≥ λ (t)

λσ (t)
,

x (τ (t))

x (t)
≥ λ (τ (t))

λ (t)
. (22)
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By Pötzsche’s chain rule [2, Theorem 1.90], we see that

(xα)
∆
(t) = αx∆ (t)

1∫
0

[hx (t) + (1− h)xσ (t)]
α−1

dh

≥ αQλ
α (t)x∆ (t)xα−1 (t) . (23)

Substituting (23) in (19), we have

ω∆
2 (t) ≤ θ∆ (t)

p (t)
(
x∆
)α

(t)

xα (t)
+ θσ (t)

(
p
(
x∆
)α)∆

(t)

xα (σ (t))

−αQλ
α (t) θσ (t)

p (t)
(
x∆
)α+1

(t)

xα (σ (t))x (t)
. (24)

On the other hand, by (1), we get

(p
(
x∆
)α

)∆
2

(s)− (p
(
x∆
)α

)∆
2

(t) +

s∫
t

r (u) (x (τ (u)))
α
∆u ≤ 0.

It follows from x∆ > 0 and (22) that

(p
(
x∆
)α

)∆
2

(s)− (p
(
x∆
)α

)∆
2

(t) + xα (t)

s∫
t

r (u)
λα (τ (u))

λα (u)
∆u ≤ 0.

When s tends to ∞ in the above inequality, we obtain

(p
(
x∆
)α

)∆
2

(t) ≥ xα (t)

∞∫
t

r (u)
λα (τ (u))

λα (u)
∆u.

Therefore,

−(p
(
x∆
)α

)∆ (s) + (p
(
x∆
)α

)∆ (t) + xα (t)

s∫
t


∞∫
v

r (u)
λα (τ (u))

λα (u)
∆u

∆v ≤ 0.

Then

(p
(
x∆
)α

)∆ (t) + xα (t)

∞∫
t


∞∫
v

r (u)
λα (τ (u))

λα (u)
∆u

∆v ≤ 0.

Thus, we get by (22) that

(p
(
x∆
)α

)∆ (t)

xα (σ (t))
≤ − xα (t)

xα (σ (t))

∞∫
t


∞∫
v

r (u)
λα (τ (u))

λα (u)
∆u

∆v

≤ −
{
λ (t)

λσ (t)

}α
∞∫
t


∞∫
v

r (u)
λα (τ (u))

λα (u)
∆u

∆v = −c (t) .(25)

Substituting (20), (22) and (25) in (24), we have

ω∆
2 (t) ≤ −θσ (t) c (t) + θ∆ (t)

p (t)
(
x∆
)α

(t)

xα (t)
− αQλ

α (t) θσ (t)
p (t)

(
x∆
)α+1

(t)

xα (σ (t))x (t)
.
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Thus,

ω∆
2 (t) ≤ −θσ (t) c (t) +

[
θ∆
]
+
(t)

θ (t)
ω2 (t)−

αQλ
α (t)Tθ (t)

θ
1
α (t) p

1
α (t)Tλα (t)

ω
1+ 1

α
2 (t) ,

Using the inequality [5]

By −Ay1+
1
β ≤ ββ

(β + 1)
β+1

Bβ+1

Aβ
, A > 0, B > 0 and β > 0,

which yields

ω∆
2 (t) ≤ −θσ (t) c (t) +

[
θ∆+
]α+1

(t)Tλα
2

(t) p (t)

(α+ 1)
α+1

θα (t) (Qλ
α)

α
(t)Tθα (t)

.

Integrating the last inequality from t3 to t, we have

t∫
t3

θσ (s) c (s)−
[
θ∆+
]α+1

(s)Tλα
2

(s) p (s)

(α+ 1)
α+1

θα (s) (Qλ
α)

α
(s)Tθα (s)

∆s ≤ ω2 (t3)− ω2 (t) ≤ ω2 (t3) ,

which contradicts (11). The proof is complete. �

Theorem 3.5. Let (2) holds and α ≥ 1. Assume that there exist a positive func-
tions η,m ∈ C1

rd ([t0,∞)T ,R) such that for all sufficiently large t1 ∈ [t0,∞)T , for
some t1 ∈ [t0,∞)T, t2 ∈ [t1,∞)T, t3 ∈ [t2,∞)T , and t4 ∈ [t3,∞)T such that

lim sup
t−→∞

t∫
t4

ησ (s) r (s)
mα (τ (s))

mα (σ (s))
− 1

4α
E2 (s)F (s, t3)∆s = ∞, (26)

and
m (t)

R (t, t3)
−m∆ (t) ≤ 0, t ∈ [t4,∞)T , (27)

where ϕ, ψ and R (t, t3) are defined as in Lemma 3.2, and

F (t, t3) :=
p (t)ϕ (t) η2 (t)Tmα (t)

(t− t3) ησ (t)Rα−1 (t, t3)


t∫

t3

ϕ (s)∆s


−1

,

E (t) :=
η∆ (t)

η (t)
− q (t)

Tη (t)

Tmα (t)
.

If there exist a positive functions θ, λ ∈ C1
rd ([t0,∞)T ,R) such that (11) holds. Then

(1) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1). Without loss of generality, we
may assume that there exists t1 ∈ [t0,∞)T such that x (t) > 0 and x (τ (t)) > 0 for
t ∈ [t1,∞)T. Suppose first that x satisfies (1) of lemma 3.1. Let

ω3 (t) := η (t)
(p
(
x∆
)α

)∆
2

(t)

xα (t)
, t ∈ [t1,∞)T . (28)

Then ω3 (t) > 0 for t ∈ [t1,∞)T, and

ω∆
3 (t) = η∆ (t)

(p
(
x∆
)α

)∆
2

(t)

xα (t)
+ησ (t)

(p
(
x∆
)α

)∆
3

(t)

xα (σ (t))
−ησ (t)

(p
(
x∆
)α

)∆
2

(t) (xα)
∆
(t)

xα (σ (t))xα (t)
.

(29)
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Substituting (1) in (29), we have

ω∆
3 (t) ≤ η∆ (t)

(p
(
x∆
)α

)∆
2

(t)

xα (t)
− ησ (t)

q (t) (p
(
x∆
)α

)∆
2

(t)

xα (σ (t))

−ησ (t) r (t) x
α (τ (t))

xα (σ (t))
− ησ (t)

(p
(
x∆
)α

)∆
2

(t) (xα)
∆
(t)

xα (σ (t))xα (t)
. (30)

By (8) and (27), we have( x
m

)∆
(t) ≤ x (t)

mσ (t)m (t)

{
m (t)

R (t, t3)
−m∆ (t)

}
≤ 0.

Then
x

m
is a nonincreasing function on t ∈ [t4,∞)T, and

x (t)

xσ (t)
≥ m (t)

mσ (t)
,

x (τ (t))

xσ (t)
≥ m (τ (t))

mσ (t)
. (31)

By Pötzsche’s chain rule, we have

(xα)
∆
(t) ≥ αx∆ (t)xα−1 (t) . (32)

By inequality (4), (6) , (8) and (32), we obtain

(xα)
∆
(t) ≥ αRα−1 (t, t3)

(
x∆ (t)

)α
≥ α

Rα−1 (t, t3)

ϕ (t) p (t)
(p
(
x∆
)α

)∆ (t)

t∫
t3

ϕ (s)∆s

≥ α (t− t3)
Rα−1 (t, t3)

ϕ (t) p (t)
(p
(
x∆
)α

)∆
2

(t)

t∫
t3

ϕ (s)∆s

≥ αη2 (t)Tmα (t)

ησ (t)F (t, t3)
(p
(
x∆
)α

)∆
2

(t) . (33)

Substituting (33) and (28) in (30), we get

ω∆
3 (t) ≤ η∆ (t)

η (t)
ω3 (t)−Tη (t)

q (t)xα (t)

xα (σ (t))
ω3 (t)−ησ (t) r (t)

xα (τ (t))

xα (σ (t))
−αTm

α (t)xα (t)ω2
3 (t)

F (t, t3)xα (σ (t))
.

(34)
With (31), we get

ω∆
3 (t) ≤ η∆ (t)

η (t)
ω3 (t)−

Tη (t)

Tmα (t)
q (t)ω3 (t)− ησ (t) r (t)

mα (τ (t))

mα (σ (t))
− α

F (t, t3)
ω2
3 (t)

≤ −ησ (t) r (t) m
α (τ (t))

mα (σ (t))
+ E (t)ω3 (t)−

α

F (t, t3)
ω2
3 (t) .

By inequality (17), we obtain

ω∆
3 (t) ≤ −ησ (t) r (t) m

α (τ (t))

mα (σ (t))
+

1

4α
E2 (t)F (t, t3) .

Integrating the latter inequality from t4 to t, we have

t∫
t4

ησ (s) r (s)
ma (τ (s))

mα (σ (s))
− 1

4α
E2 (s)F (s, t3)∆s ≤ ω3 (t4)− ω3 (t) ≤ ω3 (t4) ,
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which contradicts (26). The proof of Case (2) is the same as that of Case (2) in
Theorem 3.4, and so is omitted. This completes the proof. �

4. Example

As some application of the main results, we present the following example

Example 1. Consider a fourth-order half-linear delay dynamic equation(
3
√
x′
)(3)

(t) +
1

t

(
3
√
x′
)(2)

(t) + t−
7
3

3
√
x (t) = 0, t ∈ [0,∞)R . (35)

Here, α = 1
3 , p (t) = 1, r (t) = t−

7
3 , q (t) = 1\t and τ (t) = t. Set ϕ (t) = t − t1,

ψ (t) =
∫ t

t2
(s− t1) ds, λ (t) = t − t1, and δ (t) = θ (t) = 1. Then (2), (5) , and (7)

holds,

k (t, t3) ≥ ηt
4
3 , for t large enough,

r (t) k (t, t3)−
1

4
q2 (t) ≥ η

t
− 1

4t2
, for t large enough.

where η ∈ (0, 1). Thus, (9) holds, therefore, we have ξ (t, t1) = t − t1, then (10)
holds,

c (t) = 9
4 t

− 1
3 .

Thus, (11) holds. By Theorem 3.4, equation (35) is oscillatory.

5. conclusion

It’s clear that the form of problem (1) is more general than all the problems
considered in [8], [9] and [11].

In problem (1) we have considered (for example) a combination of terms of the

form x∆
4

, x∆.x∆
3

, x∆.x∆
2

.x∆
3

, x∆
2

.x∆, . . . and the function f is not precised,

but in [12] we found only the terms x∆
4

, x∆.x∆
3

and x∆
3

and the function is
q (.)xγ (τ (.)) .
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