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ASYMPTOTIC DISTRIBUTIONS OF ORDER STATISTICS AND

RECORD VALUES ARISING FROM SOME FAMILIES OF

EXTENDED DISTRIBUTION FUNCTIONS

H. M. BARAKAT

Abstract. In this review article the asymptotic behavior of the order statis-
tics and record values based on Marshall and Olkin, beta, gamma and Ku-

maraswamy -generated-distributions families is studied. In each case, the rela-
tion between the weak convergence of the base distribution and the generated
family is revealed. Moreover the relations between the limit types of the base
distribution and its generated family are found.

1. Introduction

Adding parameters to a well-established distribution (a base distribution func-
tion (df)) is an effective way to enlarge the behavior range of this distribution and
to obtain more flexible family of distributions to model various types of data. This
technique, has been tackled by many authors, among them are [14], [12], [13], [1]
and [11]. We now discuss some of these known extended distributions. In the se-
quel we consider FX(x) = P (X ≤ x) as a base df, with probability density function
(pdf) fx(x).

Marshall and Olkin [14] introduced a new way to expand df’s and applied it
to yield a two-parameter extension of the exponential df, which can serve as a
competitor to such commonly-used two-parameter distributions as the Weibull,
gamma and lognormal distributions. Marshal-Olkin’s way is summed in introducing
a parametrization operation for adding a parameter α > 0 to any base df FX . The
df of the extended family is defined by

MFX (x;α) =
FX(x)

α+ (1− α)FX(x)
. (1)

The pdf of the family 1 is given by

MFX (x;α) =
αfX(x)

[1− (1− α)(1− FX(x))]2
.
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Clearly, the Marshall and Olkin distribution includes the base distribution FX ,
as a special case, when α = 1. Moreover, it is stable in the sense that

MMFX
(.;α)

(x;β) = MFX (x;αβ),

or in other words, if the operation is applied twice, nothing new will be obtained
the second time around. It should be noted that not all the known operators for
adding a parameter satisfy the stability property, e.g., the exponentiation operator
Pα(F ) = Fα satisfies this property, while the Azzalini family, introduced in [5],
with pdf AFX (x;λ) = 2fX(x)FX(λx), where FX is symmetric and λ is any real
number, does not satisfy this property. Although, the family MFX

(x;α) does not
involve any special function, but it has a somewhat complicated form. To our
knowledge, the family MN(x;α), where N is the standard normal distribution, has

not yet studied.
Eugene et al. [12] defined the beta normal distribution. Following the work of

[12], Jones [13] proposed a new family of distributions motivated by order statistics.
Let Iu(a, b), a, b ≥ 0, be the incomplete beta ratio function (beta df). Then the
proposed new family of continuous df’s is given by

BFX
(x; a, b) = IFX(x)(a, b) =

1

β(a, b)

∫ FX(x)

0

ta−1(1− t)b−1dt, (2)

where β(., .) is the beta function. The pdf of this family is given by

BFX (x; a, b) =
1

β(a, b)
F a−1
X (x)(1− FX(x))b−1fX(x).

Of course BFX
(x; 1, 1) = fX(x). The basic exemplar of the family BFX

is the beta
distribution itself which arises immediately if FX is taken to be the uniform distri-
bution. The family BFX

will be most tractable when the base df FX has a simple
analytic form. Clearly,BFX (x; r, n−r+1), where r is an integer such that 1 ≤ r ≤ n,
is the df of the rth order statistic Xr:n of size n from the df FX . An alternative
motivation for this family comes through the inverse probability integral transfor-
mation η = F−1

X (Y ), where Y ∼ Ix(a, b) (beta df) which is immediately seen to

yield η ∼ BFX
. Thus, E(η) can be obtained using E(η) = E(F−1

X (Y )). We may look
at Jones’s family as a parametrization operation for adding two parameters a, b > 0
to any base df FX . Clearly, this operation, like all well-known parametrization op-
erations for adding two parameters, does not satisfy the stability property. To our
knowledge, the problem of finding stable parametrization operation for adding two
parameters, is still unsolved.

Alzaatreh [1] and Alzaatreh et al. [2] suggested and studied a new family of
distributions motivated by the upper record values. Let Γx(α, β) = (βαΓ(α))−1∫ x

0
tα−1e−t/βdt be the incomplete gamma ratio function (the gamma df). Then the

proposed new family of continuous df’s, with base df FX , is given by

GFX
(x;α, β) = Γ− log(1−FX(x))(α, β) =

1

βαΓ(α)

∫ − log(1−FX(x))

0

tα−1e−t/βdt. (3)

The pdf of this family is given by

gFX
(x;α, β) =

1

βαΓ(α)
(− log(1− FX(x)))α−1(1− FX(x))

1
β−1fX(x).
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Clearly, GFX
(x; 1, 1) = FX(x). When α = n and β = 1, the gamma family 3 is

the df of the nth upper record value arising from a sequence {Xi} of identically
independent random variables (rv’s) with the pdf fX(x) and df FX(x) (see [4]).
Moreover, if Y ∼ Γx(α, β), x ≥ 0, and η ∼ GFX (x;α, β), then η = F−1

X (1 − e−Y ).

Thus E(η) can be obtained by using the relation E(η) = E(F−1
X (1− e−Y )).

In 2011, Cordeiro and de Castro [11] have created a family of generalized distribu-
tions derived from the distribution initially proposed by Kumaraswamy. Honoring
this author, Cordeiro and de Castro [11] called this family of kum. For any base
FX df, the df of Kum family is defined by

KFX
(x; a, b) = 1− (1− F a

X(x))
b
, a, b > 0. (4)

The pdf of the expanded family 4 has a simple form

kFX (x; a, b) = abF a−1
X (1− F a

X(x))
b−1

fX(x).

The new family 4 has an advantage over the class of generalized beta distributions
2, since it does not involve any special function. Clearly, KFX

(x; 1, 1) = FX(x)
and with a = 1, the Kum family coincides with the beta family 2 generated by
the Iu(1, b) distribution. Furthermore, for b = 1 and a being an integer, 4 is the
distribution of the maximum of a random sample of size a from FX . It is worth
mentioning that the family 4 is relevant to the order statistics in an interesting way.
Namely, if X11, ..., X1m;X21, ..., X2m; ...;Xn1, ..., Xnm are i.i.d rv’s from the base df
FX , then η = min

1≤i≤n
max
1≤j≤n

{Xij} ∼ KFX
(x;n,m).

Actually, there are many reasons call us to expand a family of df’s, including for
example survival analysis (in this case we focus on the resulted survival and hazard
rate functions, etc) and data modeling (in this case we focus on obtaining a wide
range of the indices of skewness and kurtosis). Whatever the purpose for which the
base distribution was extended to a more flexible family, it is of a great benefit to
have mathematical relationships between the family and its base, which enable us
to deduce the different statistical properties for this family from the corresponding
properties of its base. Clearly, some of the most beneficial and important of those
statistical properties are the asymptotic behavior of the df’s of the different order
statistics (extreme, intermediate and central order statistics) and record values.
Actually, the knowledge of these asymptotic behaviors facilitate to use these flexible
families to build statistical models for many important random phenomena.

In this review and expository article, which is based on the works of [8], [7] and
[9], we study the weak convergence of general order statistics (extreme, interme-
diate and central order statistics) as well as lower and upper record values arising
from a given base df FX comparing with the weak convergence of those correspond-
ing statistics arising from the families MFX

(x;α), BFX
(x; a, b), GFX

(x;α, β) and
KFX (x; a, b).

2. Asymptotic distribution of extreme order statistics

A df F (x) is said to belong to the domain of maximal (minimal) attraction
of a non degenerate df H(x) (G(x)) denoted by F (x) ∈ Dmax(H(x)) (F (x) ∈
Dmin(G(x)) if there exist normalizing constants an > 0 and bn (cn > 0 and dn)
such that P (Xn:n ≤ anx + bn) −→ H(x) (P (X1:n ≤ cnx + dn) −→ G(x)) for all
continuity points of H(x) (G(x)). Sometimes, we use the notation F (anx + bn) ∈
Dmax(H(x)) (F (cnx + dn) ∈ Dmin(G(x))) when our attention is focused on some



EJMAA-2015/3(1) ORDER STATISTICS AND RECORD VALUES 183

specific normalizing constants an > 0 and bn (cn > 0 and dn). It is well known,
(see [3], Pages 210-213), that H(x) is only one of the types:

(i) H1(x;α) = e−x−α

, x, α > 0.
(ii) H2(x;α) = e−(−x)α , x ≤ 0, α > 0.

(iii) H3(x) = e−e−x

, −∞ < x < ∞.
Moreover, G(x) is related to H(x) by G(x) = 1−H(−x).
Lemma 1. (See [3], Page 218).
(i) F (anx+ bn) ∈ Dmax(H(x)) if and only if n(1− F (anx+ bn)) −→ − logH(x),
as n → ∞.
(ii) F (cnx + dn) ∈ Dmin(G(x)) if and only if nF (cnx + dn) −→ − log(1 − G(x)),
as n → ∞.
Theorem 1. For any base df F and suitable normalizing constants an, cn > 0,
bn, dn, we have:
Part I.MF (.;α), KF (.; a, b),BF (.; a, b) ∈ Dmax(H) (Dmin(G)) if and only if F ∈
Dmax(H) (Dmin(G)).
Part II. F (anx+ bn) ∈ Dmax(H) (or F (cnx+dn) ∈ Dmin(G)), implies GF (anx+
bn; a) /∈ Dmax(H

′) (or GF (cnx+ dn; a) /∈ Dmax(G
′)), for any non-degenerate limit

H ′ (or G′).
Remark 1. Theorem 1, Part I, shows that the asymptotic behavior of the extreme
order statistics based on Kumaraswamy and beta-generated-distributions families
are the same.
Example 1. If F is an exponential(σ) df, it can be shown that F (anx + bn) ∈
Dmax(H3(x)) and F (cnx) ∈ Dmin(G2(x; 1)), where (an, cn) = ( 1σ ,

1
nσ ) and bn =

1
σ log n. An application of Theorem 1 thus yields KF (aφ(n;b)x + bφ(n;b); a, b) ∈
Dmax(H3((bx − b log a))) and KF (cφ(n;a)x; a, b) ∈ Dmin(G2(b

1
ax; a)). Note that

(cf., Example 2.1 of [7]) BF (aφ(n;b)x+ bφ(n;b); a, b) ∈ Dmax(H3((bx+ log bβ(a, b))))

and BF (cφ(n;a)x; a, b) ∈ Dmin(G2((aβ(a, b))
− 1

ax; a)). Moreover, MF (anx+bn;α) ∈
Dmax(H3(x− logα)).

3. Asymptotic distribution of intermediate and central order
statistics

The limit theory of the order statistic Xr:n, with variable rank (i.e., min(r, n−
r) → ∞, as n → ∞) was studied by many authors, such as [15], [10] and [16]. When√
n
(
r
n − λ

)
→ 0, as n → ∞, 0 < λ < 1, a df F is said to belong to the domain of

normal λ−attraction of a non degenerate df Φ, denoted by F ∈ Dλ(Φ), if there exist
normalizing constants an > 0 and bn such that P (Xr:n ≤ anx + bn) −→ Φ(x) for
all continuity points of Φ(x) (when we have specific normalizing constants an > 0
and bn, the notation F (anx+bn) ∈ Dλ(Φ) may be used). Smirnov [15] showed that
F (anx+ bn) ∈ Dλ(Φ) if and only if

√
n
F (anx+ bn)− λ

Cλ
→ N−1

(Φ(x)), as n → ∞,

where Cλ =
√

λ(1− λ) and N is the standard df. Moreover, the df Φ has only one
of the types
(i) Φ1(x;α) = N(cxα), x, c, α > 0.
(ii) Φ2(x;α) = N(−c(−x)α), x ≤ 0, c, α > 0.
(iii) Φ3(x;α) = N(−c1(−x)α), x ≤ 0, Φ3(x;α) = N(c2x

α), x > 0, where
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c1, c2, α > 0.
(iv) Φ4(x) =

1
2 , −1 ≤ x ≤ 1.

When the variable rank r is such that r
n → 0, as n → ∞, a df F is said to belong

to the domain of attraction of a possible non degenerate lower intermediate limit df
Ψ, denoted by F ∈ Dr(Ψ), if there exist normalizing constants an > 0 and bn such
that P (Xr:n ≤ anx+ bn) −→ Ψ(x) for all continuity points of Ψ(x) (again, we use
the notation F (anx+ bn) ∈ Dr(Ψ), when our attention is focused on some specific
normalizing constants an > 0 and bn). An intermediate rank r = rn is said to satisfy
Chibisov’s condition if limn→∞(

√
rn+zn(ν)−

√
rn) =

θνℓ
2 , for any sequence of integer

values {zn(ν)}, for which zn(ν)

n1− θ
2
→ ν, as n → ∞, where 0 < θ < 1, ℓ > 0 and ν is

any real number. It is easy to show that Chibisov’s condition implies the condition
rn
nθ → ℓ2. Moreover, the latter condition implies Chibisov’s condition, see [6], which
means that the class of intermediate rank sequences, which satisfies the Chibisov
condition is a very wide class. Chibisov [10] has proved that F (anx+ bn) ∈ Dr(Ψ)
if and only if

√
n
F (anx+ bn)−R√

R
=

nF (anx+ bn)− r√
r

−→ N−1
(Ψ(x)), as n → ∞,

where R = r
n . Moreover, the df Ψ has only one of the types

(i) Ψ1(x;α) = N(α log x), x, α > 0.
(ii) Ψ2(x;α) = N(−α log(−x)), x ≤ 0, α > 0.
(iii) Ψ3(x) = N(x).

 (5)

Theorem 2. Let Yr:n and Xr:n be the rth order statistics based on F and
MF (x;α), respectively, where

r
n → λ ∈ [0, 1] and min(r, n − r) → ∞, as n → ∞.

Then the weak convergence of the df P (Yr:n ≤ anx+bn) to a non-degenerate distri-
bution implies that the df P (Xr:n ≤ anx+ bn), for all 0 < α ̸= 1, does not converge
to any non-degenerate limit df and vice versa.
Theorem 3. For any df F, and 0 < λ < 1, we have:
Part I. BF ∈ Dλ∗(Φ) if and only if F ∈ Dλ(Φ), where λ∗ = Iλ(a, b). More

specifically, let A = λa− 1
2 (1−λ)b−

1
2

β(a,b)Cλ∗ . Then, we have

(1) F ∈ Dλ(Φi(x;α)) if and only if BF ∈ Dλ∗(Φi(A
1
αx;α)), i = 1, 2, 3.

(2) F ∈ Dλ(Φ4(x)) if and only if BF ∈ Dλ∗(Φ4(x)).

In the above four cases the normalizing constants for the base df F and the family
BF are the same.
Part II. GF ∈ Dλ∗(Φ) if and only if F ∈ Dλ(Φ), where λ∗ = Γλ̂(a) and

λ̂ = − log(1− λ). More specifically, let ζ = Cλλ̂
a−1

C∗
λΓ(a)

. Then, we have

(1) F ∈ Dλ(Φi(x;α)) if and only if GF ∈ Dλ∗(Φi(ζ
1
αx;α)), i = 1, 2, 3.

(2) F ∈ Dλ(Φ4(x)) if and only if GF ∈ Dλ∗(Φ4(x)).

Part III. KF ∈ Dλ̃(Φ) if and only if F ∈ Dλ(Φ), where λ̃ = 1− (1− λa)b. More

specifically, let η = abCλλ
a−1(1−λa)b−1

Cλ̃
. Then, we have

(1) F ∈ Dλ(Φi(x;α)) if and only if KF ∈ Dλ̃(Φi(η
1
αx;α)), i = 1, 2, 3.

(2) F ∈ Dλ(Φ4(x)) if and only if KF ∈ Dλ̃(Φ4(x)).

In all the cases of Parts I-III, the normalizing constants for the base df F and the
families BF , GF and KF are the same.
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Example 2. While, the family BF (x; a, b) is difficult to deal with except for these
well behaved choices for F, but Theorem 3 enables us to reveal the asymptotic
behavior of the sample quantiles arising from BF (x; a, b) even if F has not a simple
analytic form such as the normal df. For example, consider the sample median and
set 1

2 = Iλ(a, b). It is well known (see, [15]) that N(anx) ∈ Dλ(N(x)), where an =√
2πλ(1−λ)

n . Theretofore, Theorem 3 implies that BN(anx; a, b) ∈ D 1
2
(N(Ax)),

where A = 2λa− 1
2 (1−λ)b−

1
2

β(a,b) . As special case when a = b = 2, we get λ = 1
2 , an =

√
π
2n

and A = 0.75. Moreover, for every 0 < λ̄ < 1, Theorem 3 implies that

(1) GN(Anx; a) ∈ Dλ̄(N(x)), where An = Cλ̄Γ(a)
(− log(1−λ))a−1

√
2π
n and λ is deter-

mined from the relation λ̄ = Γλ(a).

(2) KN(Bnx; a, b) ∈ Dλ̄(N(x), where Bn = Cλ̄

ab[1−(1−λ̄
1
b )]

a−1
a (1−λ̄)

b−1
b

√
2π
n .

Theorem 4. Let r ∼ ℓ2nθ, 0 < θ < 1, be a Chibisov rank sequence.
Part I. Let 0 < a < (1 − θ)−1. Furthermore, let r∗ = nR∗ be another Chibisov
rank sequence, where R∗ = IR(a, b) and R = r

n . Then with the same normalizing

constants F ∈ Dr(Ψ) implies BF ∈ Dr∗(Ψ), only if a = 1. In this case R∗ =
1− (1−R)b ∼ bR, i.e., r∗ ∼ br. More specifically, we have

(1) BF (x; 1, b) ∈ Dr∗(Ψi(x;α
√
b)) if F ∈ Dr(Ψi(x;α)), i = 1, 2.

(2) BF (x; 1, b) ∈ Dr∗(Ψ3(
√
bx)) if F ∈ Dr(Ψ3(x)).

Let R = r
n and for suitable normalizing constants an > 0 and bn, let F (anx+ bn) ∈

Dr(Ψ). Then
Part II. GF (anx+ bn; a) /∈ Dŕ(Ψ(x)), for any Chibisov rank sequence ŕ.
Part III. KF (anx + bn; a, b) ∈ Dr∗(Ψ(x)), where r∗ = nR∗, R∗ = 1 − (1 − Ra)b

and 0 < a < (1−θ)−1, only if a = 1 (in this case we have R∗ = 1− (1−Ra)b ∼ bR).
More specifically,

(1) KF (anx+ bn; 1, b) ∈ Dr∗(Ψi(x;α
√
b)) if F (anx+ bn) ∈ Dr(Ψi(x;α)), i =

1, 2.
(2) KF (anx+ bn; 1, b) ∈ Dr∗(Ψ3(

√
bx)) if F (anx+ bn) ∈ Dr(Ψ3(x)).

Example 3. Consider the Chibisov rank sequence r = [
√
n], where ℓ2 = 1 and

θ = 1
2 . It is well known (see,[10]) that N ∈ Dr(N). Theretofore, an application of

Theorem 4 yields BN(x; 1, b) = 1 − Nb
(−x) ∈ Dr∗(N), for every Chibisov rank

sequence r∗ ∼ κ2nρ, where κ =
√
b and ρ = 1

2 . On the other hand, we have

R∗ = 1 − (1 − R)b ∼ bR, where R = r
n and R∗ = r∗

n , then r∗ is a Chibisov rank
sequence if and only if r is a Chibisov rank sequence. Thus, an application of

Theorem 4 yields that KN(x; 1, b) = 1−Nb
(−x) ∈ Dr∗(N), for any Chibisov rank

sequence r∗.

4. Asymptotic distribution of record values

An observationXj will be called an upper record value ifXj > Xi for every i < j.
An analogous definition deals with lower record values. By convention X1 is an
upper as well as lower record value. The upper and lower record value sequences
{Rn} and {Ln} can be defined by Rn = XNn and Ln = XMn , respectively, where
Nn = min{j : j > Nn−1, Xj > XNn−1 , n > 1}, and Mn = min{j : j > Mn−1, Xj <
XMn−1 , n > 1} (note that N1 = M1 = 1) are the upper and lower record time
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sequences, respectively. A df F is said to belong to the domain of upper (lower)
record value attraction of a non degenerate df Ψ (Ψ∗) and write F ∈ Durec(Ψ) (F ∈
Dlrec(Ψ

∗)) if there exist normalizing constants an > 0 and bn (cn > 0 and dn)
such that P (Rn ≤ anx + bn) −→ Ψ(x) (P (Ln ≤ cnx + dn) −→ Ψ∗(x)), for all
continuity points of Ψ(x) (Ψ∗(x)) (again, when our attention is focused on some
specific normalizing constants an > 0 and bn (cn > 0 and dn) we use the notation
F (anx+ bn) ∈ Durec(Ψ) (F (cnx+dn) ∈ Dlrec(Ψ

∗)). It is well known that Ψ(x) has
only one of the types 5. Moreover, Ψ∗(x) = 1−Ψ(−x), see [3].
Lemma 2. (c.f. [3]). Let Un:F (x) = − log(1 − F (x)) and Vn:F (x) = − logF (x).
Then

(1) F (anx+ bn) ∈ Durec(Ψ(x)) if and only if Un:F (anx+bn)−n√
n

−→ N−1
(Ψ(x)).

(2) F (cnx+ dn) ∈ Dlrec(Ψ
∗(x)) if and only if Vn:F (cnx+dn)−n√

n
−→ N−1

(Ψ∗(x)).

Theorem 5. For any df F, we have:

(1) MF (anx+bn;α) ∈ Durec(Ψ) (MF (cnx+dn;α) ∈ Dlrec(Ψ
⋆)), for all α > 0,

if and only if F (anx+ bn) ∈ Durec(Ψ) (F (cnx+ dn) ∈ Dlrec(Ψ
⋆)).

(2) F (anx+bn) ∈ Durec(Ψi(x)) implies BF (anx+bn; a, b) ∈ Durec(Ψi(x)), i =
1, 2, 3, only if b = 1
and
F (cnx+dn) ∈ Dlrec(Ψ

∗
i (x)) implies BF (cnx+dn; a, b) ∈ Dlrec(Ψ

∗
i (x)), i =

1, 2, 3, only if a = 1.
(3) F (anx+ bn) ∈ Durec(Ψ(x)) implies GF (anx+ bn; a) ∈ Durec(Ψ(x)).
(4) F (cnx + dn) ∈ Dlrec(Ψ

∗(x)) implies GF ((c[na ]
x + d[na ]

)) ∈ Dlrec(Ψ
∗(x)).

More specifically, F (cnx+dn) ∈ Dlrec(Ψ
∗
i (x;α)) impliesGF ((c[na ]

x+d[na ]
)) ∈

Dlrec(Ψ
∗
i (x;

√
aα)), i = 1, 2, and F (cnx + dn) ∈ Dlrec(Ψ

∗
3(x)) implies

GF ((c[na ]
x+ d[na ]

)) ∈ Dlrec(Ψ
∗
3(
√
ax)).

(5) F (anx+ bn) ∈ Durec(Ψ(x)) implies KF (anx+ bn; a, b) ∈ Durec(Ψ(x)), only
if b = 1.

(6) F (cnx+dn) ∈ Dlrec(Ψ
∗(x)) implies KF (cnx+dn; a, b) ∈ Dlrec(Ψ

∗(x)), only
if a = 1.

Example 4.

(1) It is well known that (see, [4]) the Weibull df W (x) = (1 − e−xc

) ∈
Durec(Ψ3), c, x > 0, with an = (n +

√
n)

1
c − n

1
c and bn = n

1
c (note that

Ψ3 = N). Therefore, in view of Theorem 5, it follows that MW (anx +
bn;α) (i.e., the Marshall-Olkin extended Weibull distribution), GW (anx+
bn; a),W

a(anx+ bn) ∈ Durec(N).

(2) It is well known that (see, [4]), the Logistic df L(x) = ( ex

1+ex ) ∈ Durec(N),

with an = log(en+
√
n − 1)− log(en − 1) and bn = log(en − 1). Therefore, in

view of Theorem 5, we get GL(anx+ bn; a), L
a(anx+ bn) ∈ Durec(N).

(3) It is well known that (see, [4]) the standard normal df N ∈ Durec(N), with

an = (n+
√
n)2

2 + log(n+
√
n)− n2

2 − log n and bn = n2

2 log n. Therefore, in

view of Theorem 5, we get GN(anx+ bn; a),N
a
(anx+ bn) ∈ Durec(N).

(4) It is well known that (see, [4]) the df F(x;α) = (1 − e−
α2

4 (log x)2) ∈
Durec(Ψ1(x;α)), α > 0, 1 < x < ∞, with an = e

2
α

√
n and bn = 0. There-

fore, in view of Theorem 5, we get GF(anx + bn; a, α),F
a
(anx + bn;α) ∈

Durec(Ψ1(x;α)).
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(5) It is well known that (see, [4]) the df L(x;α, δ) = (1 − e−
α2

4 (log(δ−x))2) ∈
Durec(Ψ2(x;α)), δ − 1 ≤ x < δ < ∞, with an = e

2
α

√
n and bn = δ. There-

fore, in view of Theorem 5, we get GL(anx + bn; a),L
a
(anx + bn;α, δ) ∈

Durec(Ψ2(x;α)).
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