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NECESSARY CONDITIONS FOR BACKWARD DOUBLY

STOCHASTIC CONTROL SYSTEM

WEIFENG WANG, BIN LIU

Abstract. We consider the necessary conditions for backward doubly sto-
chastic control system, via the second-order Taylor expansion we have ob-
tained. All the results are got under no restriction on the convexity of control
domain and the diffusion coefficient does not contain the control variable.

1. Introduction

Optimal control problem is an important subject of control science, and the
study of necessary conditions for optimal control is also very hot today, such as
[1], [3], [4], [8], [9], [12]. For the optimal control problems of backward doubly
stochastic differential equations (BDSDEs), it is worth mentioning Pardoux and
Peng [7], Peng and Wu [2], Zhang and Shi [13]. In 1994, Pardoux and Peng [7] first
studied the backward doubly stochastic differential equations with the coefficients
being random, and proved the existence and uniqueness result of BDSDEs. In 2010,
Peng and Wu [2] discussed the optimal control problems for BDSDEs, under the
assumptions that the control domain is convex. In the same year, Zhang and Shi
[13] considered the maximum principle for fully coupled forward-backward doubly
stochastic control system, in which the diffusion coefficient does not contain the
control variable.

Motivated by the above mentioning, we are also interested in the optimal control
problem of BDSDEs. In another paper (see [11]), we have considered the second-
order Taylor expansion of the cost functional for backward doubly stochastic control
system, in which the diffusion coefficient contain the control variable, but we could
not get the necessary conditions. Via the second-order Taylor expansion, we study
the necessary conditions by duality relation in the further, under no restriction on
the convexity of control domain and control variable is not allowed in the diffusion
coefficient. We do not assume the monotonic conditions introduced in [13], which
are essential for their results. And we do not think their method can be used in
our paper.
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The rest of this paper is organized as follows. Section 2 begins with a general
formulation of the stochastic optimal control problem for BDSDEs. In section 3,
we study the variational equation and second-order Taylor expansion for the cost
functional. Some necessary conditions for an optimal control are considered in
section 4.

For the sake of simplicity, we only consider the one-dimensional case.

2. Preliminaries

Let T > 0 and (Ω,F, P ) be a completed probability space. {W (t) : 0 ≤ t ≤ T}
and {B(t) : 0 ≤ t ≤ T} are two mutually independent standard Brownian motion
processes with values both in R . Let N denote the class of P -null sets of F. For
every t ∈ [0, T ], we define Ft = FW

t ∨ FB
t,T , where FW

t = N ∨ σ{W (r)−W (0) : 0 ≤
r ≤ t}, FB

t,T = N ∨ σ{B(r)−B(t) : t ≤ r ≤ T}.
Let M2([0, T ];Rn) denote the set of all classes of (dt × dP a.e. equal) Ft-

measurable stochastic processes {φ(t) : t ∈ [0, T ]} which satisfy E
∫ T

0
|φ(t)|2dt <

+∞, where E denotes the expectation on (Ω,F, P ). And S2([0, T ];Rk) denotes
the set of all classes of Ft-measurable stochastic processes {φ(t) : t ∈ [0, T ]} which
satisfy E(sup0≤t≤T |φ(t)|2) < +∞.

For given φ(t), ψ(t) ∈ M2([0, T ];Rn), we can define the forward Itô’s integral∫ ·
0
φ(s)dW (s) and the backward Itô’s integral

∫ T

· ψ(s)dB(s). They are both in

M2([0, T ];Rn) (see [6], [10] for details).
Let U be a nonempty subset of R, and (U, d) is a separable metric space. Define

U [0, T ] =

{
u : (ω, t) ∈ Ω× [0, T ] → U | u is Ft-adapted, E

∫ T

0

|u(t)|2dt < +∞

}
.

We consider the following backward doubly stochastic control system:{
−dy(t) = f(t, y(t), z(t), u(t))dt+ g(t, y(t), z(t))dB(t)− z(t)dW (t),

y(T ) = η,
(1)

with the cost functional

J(u(·)) = E

{∫ T

0

l(t, y(t), z(t), u(t))dt+Φ(y(0))

}
. (2)

We assume that the following conditions hold.
(H1) f, l : [0, T ]×R×R×R → R and g : [0, T ]×R×R → R are twice continuous

and continuously differentiable with respect to y, z. Φ : R → R is twice continuous
and continuously differentiable with respect to y.

(H2) All the derivatives are bounded.
(H3) The maps f , g, l and Φ are measurable, and there exist constants c > 0

, 0 < σ < 1 and a modulus of continuity ω : [0,∞) → [0,∞) such that for
φ(t, y, z, u) = f(t, y, z, u), l(t, y, z, u), we have

|φ(t, y1, z1, u1)− φ(t, y2, z2, u2)|2 ≤ c(|y1 − y2|2 + |z1 − z2|2) + ω(d(u1, u2)),

|g(t, y1, z1)− g(t, y2, z2)|2 ≤ c|y1 − y2|2 + σ|z1 − z2|2,
|Φ(y1)− Φ(y2)| ≤ c|y1 − y2|, ∀t ∈ [0, T ], y1, z1, y2, z2 ∈ R, u1, u2 ∈ U [0, T ],

|φ(t, 0, 0, u)| ≤ c, |Φ(0)| ≤ c, ∀(t, u) ∈ [0, T ]× U [0, T ].

(3)



262 WEIFENG WANG, BIN LIU EJMAA-2013/1(2)

(H4) There exist a constant c > 0 and a modulus of continuity ω : [0,∞) →
[0,∞) such that for φ(t, y, z, u) = f(t, y, z, u), g(t, y, z), l(t, y, z, u), Φ(y), we have

|φy(t, y1, z1, u1)− φy(t, y2, z2, u2)|2 ≤ c(|y1 − y2|2 + |z1 − z2|2) + ω(d(u1, u2)),

|φz(t, y1, z1, u1)− φz(t, y2, z2, u2)|2 ≤ c(|y1 − y2|2 + |z1 − z2|2) + ω(d(u1, u2)),

|φyy(t, y1, z1, u1)− φyy(t, y2, z2, u2)|2 ≤ c(|y1 − y2|2 + |z1 − z2|2) + ω(d(u1, u2)),

|φzz(t, y1, z1, u1)− φzz(t, y2, z2, u2)|2 ≤ c(|y1 − y2|2 + |z1 − z2|2) + ω(d(u1, u2)),

∀t ∈ [0, T ], y1, z1, y2, z2 ∈ R, u1, u2 ∈ U [0, T ],

(4)
note that for function g we can see it as d(u1, u2) = 0 in (4).

Given a u(·) ∈ U [0, T ], by Theorem 1.1 in [7], there exists a unique pair

(y(·), z(·)) = (y(·, u(·)), z(·, u(·))) ∈ S2([0, T ];R)×M2([0, T ];R), (5)

which solves the state equation (1). Thus, we can see that the cost functional
J(u(·)) is uniquely determined by the control variable u(·).

Then our optimal control problem can be stated as follows:
Problem (P) Find a u∗(·) ∈ U [0, T ] such that

J(u∗(·)) = inf
u(·)∈U [0,T ]

J(u(·)). (6)

Any u∗(·) ∈ U [0, T ] satisfying the above identity is called an optimal control, and
the corresponding state (y∗(·), z∗(·)) = (y(·, u∗(·)), z(·, u∗(·))) is called an optimal
trajectory; (y∗(·), z∗(·), u∗(·)) is called an optimal triple.

We will need the following extension of the well-known Itô’s formula.
Lemma 1 (Pardoux and Peng [7]) Let α ∈ S2([0, T ];Rk), β ∈ M2([0, T ];Rk),

γ ∈ M2([0, T ];Rk×d), δ ∈ M2([0, T ];Rk×m) be such that (in this lemma, {W (t) :
0 ≤ t ≤ T} and {B(t) : 0 ≤ t ≤ T} value respectively in Rm and in Rd):

αt = α0 +

∫ t

0

βsds+

∫ t

0

γsdBs +

∫ t

0

δsdWs, 0 ≤ t ≤ T.

Then

|αt|2 = |α0|2 + 2

∫ t

0

(αs, βs)ds+ 2

∫ t

0

(αs, γsdBs) + 2

∫ t

0

(αs, δsdWs)

−
∫ t

0

||γs||2ds+
∫ t

0

||δs||2ds,

E|αt|2 = E|α0|2 + 2E

∫ t

0

(αs, βs)ds− E

∫ t

0

||γs||2ds+ E

∫ t

0

||δs||2ds.

3. Variational equation and second-order Taylor expansion

Suppose (y∗(·), z∗(·), u∗(·)) is a solution to the optimal control problem (P).
First, we introduce the spike variation with respect to u∗(·) as follows:

uε(t) =

{
v(t), τ ≤ t ≤ τ + ε,

u∗(t), otherwise,
(7)

where ε > 0 is sufficiently small, v(·) ∈ U [0, T ] is an Ft-measurable random variable,
and supω∈Ω |v(ω)| < +∞, 0 ≤ t ≤ T .

Suppose (yε(·), zε(·)) is the trajectory of (1) corresponding to uε(·).
Then we have the following lemma.
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Lemma 2 Let ξε(t) = yε(t)− y∗(t), ηε(t) = zε(t)− z∗(t). Then

E|ξε(t)|2 ≤ Cε, E

∫ T

t

|ηε(s)|2ds ≤ Cε, (8)

where C is a positive constant independent of ε.
Proof. From the state equation (1), it is easy to know that

ξε(t) =

∫ T

t

[f(s, yε(s), zε(s), uε(s))− f(s, y∗(s), z∗(s), u∗(s))]ds

+

∫ T

t

[g(s, yε(s), zε(s))− g(s, y∗(s), z∗(s))]dB(s)

−
∫ T

t

(zε(s)− z∗(s))dW (s).

By Lemma 1, we have

|ξε(t)|2 = |ξε(T )|2 + 2

∫ T

t

ξε(s)[f(s, yε(s), zε(s), uε(s))− f(s, y∗(s), z∗(s), u∗(s))]ds

+2

∫ T

t

ξε(s)[g(s, yε(s), zε(s))− g(s, y∗(s), z∗(s))]dB(s)

−2

∫ T

t

ξε(s)(zε(s)− z∗(s))dW (s)−
∫ T

t

|zε(s)− z∗(s)|2ds

+

∫ T

t

|g(s, yε(s), zε(s))− g(s, y∗(s), z∗(s))|2ds.

Hence from the assumptions (H1)− (H3), it follows that

E|ξε(t)|2 + E

∫ T

t

|ηε(s)|2ds

≤ CE

∫ T

t

[|ξε(s)|2 + |ξε(s)||ηε(s)|+ ω(d(uε(s), u∗(s)))|ξε(s)|]ds

+σE

∫ T

t

|ηε(s)|2ds+ E

∫ T

t

ω(d(uε(s), u∗(s)))ds.

From the definition and properties of a modulus of continuity (refer to pages 227
and 234 in [5]), for any ε > 0, there exists a positive constant Kε such that

ω(d(uε(s), u∗(s))) ≤ ε+ d(uε(s), u∗(s))Kε, ∀s ∈ [t, T ].

Thus, combining with the definition of uε(t), we have

E

∫ T

t

ω(d(uε(s), u∗(s)))ds = E

∫ τ+ε

τ

ω(d(uε(s), u∗(s)))ds

≤ ε(ε+ E sup
s∈[τ,τ+ε]

d(uε(s), u∗(s))Kε).

By Young’s inequality, there exists a constant M > 0 such that

E|ξε(t)|2 + (1− σ − C1

M
)E

∫ T

t

|ηε(s)|2ds

≤ (C + C1M + C2)E

∫ T

t

|ξε(s)|2ds

+C2E

∫ T

t

ω2(d(uε(s), u∗(s)))ds+ ε(ε+ E sup
s∈[τ,τ+ε]

d(uε(s), u∗(s))Kε)
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≤ CE

∫ T

t

|ξε(s)|2ds+ C3ε.

We can choose someM to make sure that (1−σ−C1

M ) > 0. By Gronwall’s inequality,
we obtain (8) (where C,C1, C2, C3 are positive constants, which may be different
at different places throughout this paper).

Let
φ∗(·) = φ(·, y∗(·), z∗(·), u∗(·)), φε(·) = φ(·, yε(·), zε(·), uε(·)),

where φ denotes one of f , g, l, fy, fz, gy, gz, ly, lz, fyy, fzz, gyy, gzz, lyy, lzz.
(Note that the function g does not contain u(·), so the corresponding φ∗(·) and
φε(·) should be in the absence of u(·).)

Now we introduce the variational equation:
−dx1(t) = [f∗y (t)x1(t) + f∗z (t)r1(t) + f(uε(t))− f(u∗(t))]dt

+[g∗y(t)x1(t) + g∗z(t)r1(t)]dB(t)− r1(t)dW (t),

x1(T ) = 0,

(9)

where f(uε(t)) denotes f(t, y∗(t), z∗(t), uε(t)), and others are defined in the same
way.

From the conditions (H1) − (H3), it is easy to know that there exists a unique
adapted solution (x1(t), r1(t)) ∈ R× R, 0 ≤ t ≤ T satisfying (9).

Lemma 3 Let (x1(t), r1(t)) be the solution of the variational equation (9), then
we have

E|x1(t)|2 ≤ Cε, E

∫ T

t

|r1(s)|2ds ≤ Cε. (10)

Note that |g∗z(t)| ≤ σ for ∀t ∈ [0, T ], then by Lemma 1 and Young’s inequality,
(10) can be easily work out.

Lemma 4 We assume (H1)− (H4) hold. Then we have

E|yε(t)− y∗(t)− x1(t)|2 ≤ Cε2, (11)

E

∫ T

t

|zε(s)− z∗(s)− r1(s)|2ds ≤ Cε2. (12)

Proof. From equations (1) and (9) , it follows that

yε(t)− y∗(t)− x1(t)

=

∫ T

t

[f(s, yε(s), zε(s), uε(s))− f(s, y∗(s), z∗(s), u∗(s))− f∗yx1(s)− f∗z r1(s)

−(f(uε(s))− f(u∗(s)))]ds+

∫ T

t

[g(s, yε(s), zε(s))− g(s, y∗(s), z∗(s))

−g∗yx1(s)− g∗zr1(s)]dB(s)−
∫ T

t

(zε(s)− z∗(s)− r1(s))dW (s).

By Lemma 1, we have

E|yε(t)− y∗(t)− x1(t)|2 + E

∫ T

t

|zε(s)− z∗(s)− r1(s)|2ds

= 2E

∫ T

t

[f(s, yε(s), zε(s), uε(s))− f(s, y∗(s), z∗(s), u∗(s))

−f∗yx1(s)− f∗z r1(s)− (f(uε(s))− f(u∗(s)))](yε(s)− y∗(s)− x1(s))ds

+E

∫ T

t

|g(s, yε(s), zε(s))− g(s, y∗(s), z∗(s))− g∗yx1(s)− g∗zr1(s)|2ds
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= 2E

∫ T

t

[f∗y (y
ε(s)− y∗(s)− x1(s)) + f∗z (z

ε(s)− z∗(s)− r1(s))

+(fy(s, y
∗(s), zε(s), uε(s))− f∗y )(y

ε(s)− y∗(s))
+(fz(u

ε(s))− f∗z )(z
ε(s)− z∗(s))](yε(s)− y∗(s)− x1(s))ds

+2E

∫ T

t

[O(|yε(s)− y∗(s)|2) +O(|yε(s)− y∗(s)||zε(s)− z∗(s)|)

+O(|zε(s)− z∗(s)|2)](yε(s)− y∗(s)− x1(s))ds

+E

∫ T

t

|g∗y(yε(s)− y∗(s)− x1(s)) + g∗z(z
ε(s)− z∗(s)− r1(s))

+(gy(s, y
∗(s), zε(s))− g∗y)(y

ε(s)− y∗(s))

+O(|yε(s)− y∗(s)|2) +O(|yε(s)− y∗(s)||zε(s)− z∗(s)|)
+O(|zε(s)− z∗(s)|2)|2ds.

From Cauchy-Schwarz inequality and Lemma 2, it follows

E

∫ T

t

(fy(s, y
∗(s), zε(s), uε(s))− f∗y (s))

2(yε(s)− y∗(s))2ds

≤ 2E

∫ T

t

(fy(s, y
∗(s), zε(s), uε(s))− fy(s, y

∗(s), z∗(s), uε(s)))2(yε(s)− y∗(s))2ds

+2E

∫ T

t

(fy(u
ε(s))− fy(u

∗(s)))2(yε(s)− y∗(s))2ds

= 2E

∫ T

t

(fyz)
2(zε(s)− z∗(s))2(yε(s)− y∗(s))2ds

+2E

∫ τ+ε

τ

(fy(u
ε(s))− fy(u

∗(s)))2(yε(s)− y∗(s))2ds

≤ C[E

∫ T

t

(zε(s)− z∗(s))4ds]
1
2 [E

∫ T

t

(yε(s)− y∗(s))4ds]
1
2

+Cε sup
s∈[t,T ]

E|yε(s)− y∗(s)|2.

From equation (1) and the above conditions, we know that processes yε(t)− y∗(t)
and zε(t) − z∗(t) are Ornstein-Uhlenbeck process, so they are also Gauss process.

Moreover, their expectation are O(ε
1
2 ) and variance are O(ε), so we have

E

∫ T

t

(yε(s)− y∗(s))4ds ≤ CεE

∫ T

t

(yε(s)− y∗(s))2ds ≤ Cε2,

and

E

∫ T

t

(zε(s)− z∗(s))4ds ≤ CεE

∫ T

t

(zε(s)− z∗(s))2ds ≤ Cε2.

Thus,

E

∫ T

t

(fy(s, y
∗(s), zε(s), uε(s))− f∗y )

2(yε(s)− y∗(s))2ds ≤ Cε2.

Using Hölder’s inequality,

E

∫ T

t

(fz(u
ε(s))− f∗z (s))

2(zε(s)− z∗(s))2ds

= E

∫ τ+ε

τ

(fz(u
ε(s))− f∗z (s))

2(zε(s)− z∗(s))2ds
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≤ CE

∫ τ+ε

τ

(zε(s)− z∗(s))2ds

≤ C[E

∫ τ+ε

τ

1pds]
1
p [E

∫ τ+ε

τ

(zε(s)− z∗(s))2qds]
1
q ,

where q ∈ N+, p > 1 and 1
p + 1

q = 1. Similarly, we can obtain

E

∫ τ+ε

τ

(zε(s)− z∗(s))2qds ≤ Cεq.

So we get

E

∫ T

t

(fz(u
ε(s))− f∗z (s))

2(zε(s)− z∗(s))2ds ≤ Cε1+
1
p ,

with

E

∫ T

t

(gy(s, y
∗(s), zε(s))− g∗y(s))

2(yε(s)− y∗(s))2ds ≤ Cε2.

Let p → 1, we can get ε1+
1
p → ε2. Although the order could not reach 2, it

is enough for us to get the second-order Taylor expansion. We can choose some p
small enough, and we will give some analysis later. For convenience, here we denote
it by 2.
By Young’s inequality and Lemma 2, we deduce

E|yε(t)− y∗(t)− x1(t)|2 + αE

∫ T

t

|zε(s)− z∗(s)− r1(s)|2ds

≤ CE

∫ T

t

|yε(s)− y∗(s)− x1(s)|2ds+ Cε2.

We can make sure that α > 0, then by Gronwall’s inequality, we obtain the results
(Note that the real order should be 1 + 1

p ).

Let (x2(t), r2(t)) be the solution of the following stochastic differential equation:
−dx2(t) = [f∗yx2(t) + f∗z r2(t) +

1
2 (f

∗
yyx

2
1(t) + 2f∗yzx1(t)r1(t) + f∗zzr

2
1(t))]dt

+[g∗yx2(t) + g∗zr2(t) +
1
2 (g

∗
yyx

2
1(t) + 2g∗yzx1(t)r1(t) + g∗zzr

2
1(t))]dB(t)

−r2(t)dW (t),

x2(T ) = 0.

(13)
Lemma 5 We assume (H1)− (H4) hold. Then we have

E|x2(t)|2 ≤ Cε2, E

∫ T

t

|r2(s)|2ds ≤ Cε2. (14)

Lemma 6 We assume (H1)− (H4) hold. Then we have

E|yε(t)− y∗(t)− x1(t)− x2(t)|2 ≤ Cε3, (15)

E

∫ T

t

|zε(s)− z∗(s)− r1(s)− r2(s)|2ds ≤ Cε3. (16)

The above two Lemmas can be similarly proved. Now we give an elementary
lemma which will be used below, and its proof is very simple and straightforward.
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Lemma 7 Let g ∈ C2(Rn). Then for any x, x̄ ∈ Rn,

g(x) = g(x̄) + ⟨gx(x̄), x− x̄⟩+
∫ 1

0

⟨θgxx(θx̄+ (1− θ)x)(x− x̄, x− x̄)⟩dθ.

Now we give the second-order Taylor expansion of the cost functional along the
optimal control u∗(·).

Theorem 8 Let (H1)− (H4) hold. Then the following Taylor expansion holds
for the cost functional (2):

J(uε(·)) = J(u∗(·)) + EΦy(y
∗(0))(x1(0) + x2(0)) +

1

2
EΦyy(y

∗(0))x21(0)

+E

∫ T

0

{l(uε(t))− l(u∗(t)) + l∗y(t)(x1(t) + x2(t)) + l∗z(t)(r1(t) + r2(t))

+
1

2
l∗yy(t)x

2
1(t) + l∗yz(t)x1(t)r1(t) +

1

2
l∗zz(t)r

2
1(t)}dt+ o(ε). (17)

Proof. By the definition of J(u(·)) and Lemma 7, we have

J(uε(·))− J(u∗(·))

= E(Φ(yε(0))− Φ(y∗(0))) + E

∫ T

0

(lε(t)− l∗(t))dt

= EΦy(y
∗(0))(yε(0)− y∗(0))

+E

∫ 1

0

θΦyy(θy
∗(0) + (1− θ)yε(0))(yε(0)− y∗(0))2dθ

+E

∫ T

0

{l(uε(t))− l(u∗(t)) + ly(t, y
∗(t), zε(t), uε(t))(yε(t)− y∗(t))

+

∫ 1

0

θlyy(t, θy
∗(t) + (1− θ)yε(t), zε(t), uε(t))(yε(t)− y∗(t))2dθ

+lz(t, y
∗(t), z∗(t), uε(t))(zε(t)− z∗(t))

+

∫ 1

0

θlzz(t, y
∗(t), θz∗(t) + (1− θ)zε(t), uε(t))(zε(t)− z∗(t))2dθ}dt.

Let

I1 = E

∫ T

0

{l(uε(t))− l(u∗(t)) + ly(t, y
∗(t), zε(t), uε(t))(yε(t)− y∗(t))

+

∫ 1

0

θlyy(t, θy
∗(t) + (1− θ)yε(t), zε(t), uε(t))(yε(t)− y∗(t))2dθ}dt,

I2 = E

∫ T

0

{lz(t, y∗(t), z∗(t), uε(t))(zε(t)− z∗(t))

+

∫ 1

0

θlzz(t, y
∗(t), θz∗(t) + (1− θ)zε(t), uε(t))(zε(t)− z∗(t))2dθ}dt,

I3 = EΦy(y
∗(0))(yε(0)− y∗(0))

+E

∫ 1

0

θΦyy(θy
∗(0) + (1− θ)yε(0))(yε(0)− y∗(0))2dθ.

In the further, via some equivalent transformations, we obtain

I1 = E

∫ T

0

{l(uε(t))− l(u∗(t)) + ly(t, y
∗(t), zε(t), u∗(t))(x1(t) + x2(t))

+ly(t, y
∗(t), zε(t), u∗(t))(yε(t)− y∗(t)− x1(t)− x2(t))
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+(ly(t, y
∗(t), zε(t), uε(t))− ly(t, y

∗(t), zε(t), u∗(t)))(yε(t)− y∗(t))

+

∫ 1

0

θ[lyy(t, θy
∗(t) + (1− θ)yε(t), zε(t), uε(t))

−lyy(t, y∗(t), zε(t), uε(t))](yε(t)− y∗(t))2dθ +
1

2
lyy(t, y

∗(t), zε(t), u∗(t))x21(t)

+
1

2
lyy(t, y

∗(t), zε(t), u∗(t))(yε(t)− y∗(t)− x1(t))(y
ε(t)− y∗(t) + x1(t))

+
1

2
(lyy(t, y

∗(t), zε(t), uε(t))− lyy(t, y
∗(t), zε(t), u∗(t)))(yε(t)− y∗(t))2}dt,

I2 = E

∫ T

0

{lz(t, y∗(t), z∗(t), u∗(t))(r1(t) + r2(t))

+lz(t, y
∗(t), z∗(t), u∗(t))(zε(t)− z∗(t)− r1(t)− r2(t))

+(lz(t, y
∗(t), z∗(t), uε(t))− lz(t, y

∗(t), z∗(t), u∗(t)))(zε(t)− z∗(t))

+

∫ 1

0

θ[lzz(t, y
∗(t), θz∗(t) + (1− θ)zε(t), uε(t))

−lzz(t, y∗(t), z∗(t), uε(t))](zε(t)− z∗(t))2dθ +
1

2
lzz(t, y

∗(t), z∗(t), u∗(t))r21(t)

+
1

2
lzz(t, y

∗(t), z∗(t), u∗(t))(zε(t)− z∗(t)− r1(t))(z
ε(t)− z∗(t) + r1(t))

+
1

2
(lzz(t, y

∗(t), z∗(t), uε(t))− lzz(t, y
∗(t), z∗, u∗(t)))(zε(t)− z∗(t))2}dt,

I3 = EΦy(y
∗(0))(x1(0) + x2(0)) + EΦy(y

∗(0))(yε(0)− y∗(0)− x1(0)− x2(0))

+E

∫ 1

0

θ[Φyy(θy
∗(0) + (1− θ)yε(0))− Φyy(y

∗(0))](yε(0)− y∗(0))2dθ

+
1

2
EΦyy(y

∗(0))(yε(0)− y∗(0)− x1(0))(y
ε(0)− y∗(0) + x1(0))

+
1

2
EΦyy(y

∗(0))x21(0).

From the conditions (H1)− (H4) and all the above lemmas , we can show that

I1 = E

∫ T

0

{l(uε(t))− l(u∗(t)) + ly(t, y
∗(t), zε(t), u∗(t))(x1(t) + x2(t))

+
1

2
lyy(t, y

∗(t), zε(t), u∗(t))x21(t)}dt+O(ε
3
2 )

+O(E|zε(t)− z∗(t)− r1(t)||zε(t)− z∗(t) + r1(t)|)

+εO(E

∫ T

0

|zε(t)− z∗(t)|dt) + C(1− θ)O(E|yε(t)− y∗(t)|3)

+εO(E|yε(t)− y∗(t)|2)

= E

∫ T

0

{l(uε(t))− l(u∗(t)) + ly(t, y
∗(t), zε(t), u∗(t))(x1(t) + x2(t))

+
1

2
lyy(t, y

∗(t), zε(t), u∗(t))x21(t)}dt+ o(ε)

= E

∫ T

0

{l(uε(t))− l(u∗(t)) + l∗y(t)(x1(t) + x2(t)) +
1

2
l∗yyx

2
1(t)

+(ly(t, y
∗(t), zε(t), u∗(t))− l∗y(t))(x1(t) + x2(t))

+
1

2
(lyy(t, y

∗(t), zε(t), u∗(t))− l∗yy)x
2
1(t)}dt+ o(ε).
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By Lemma 2-5, it is easy to get

E

∫ T

0

(ly(t, y
∗(t), zε(t), u∗(t))− l∗y(t))(x1(t) + x2(t))dt

= E

∫ T

0

l∗yz(t)(z
ε(t)− z∗(t))(x1(t) + x2(t))dt+ o(ε)

= E

∫ T

0

l∗yz(t)(z
ε(t)− z∗(t)− r1(t))(x1(t) + x2(t))

+l∗yz(t)x1(t)r1(t) + l∗yz(t)x2(t)r1(t)dt+ o(ε)

= E

∫ T

0

l∗yz(t)x1(t)r1(t)dt+ o(ε),

and by condition (H4), Lemma 2 and Lemma 3, we have

E

∫ T

0

1

2
(lyy(t, y

∗(t), zε(t), u∗(t))− l∗yy)x
2
1(t)dt = o(ε).

Combining the above three identities, it follows that

I1 = E

∫ T

0

[l(uε(t))−l(u∗(t))+l∗y(t)(x1(t)+x2(t))+l∗yz(t)x1(t)r1(t)+
1

2
l∗yyx

2
1(t)]dt+o(ε).

Similarly,

I2 = E

∫ T

0

[l∗z(t)(r1(t) + r2(t)) +
1

2
l∗zz(t)r

2
1(t)]dt+ o(ε),

I3 = EΦy(y
∗(0))(x1(0) + x2(0)) +

1

2
EΦyy(y

∗(0))x21(0) + o(ε).

Hence, our conclusion follows.
Remark 9 Recall Lemma 4, the real order is only (1 + 1

p ). From the above

proof, we know that the real order in Taylor expansion is a little smaller then 3
2 .

So we can choose some p to make sure that the order of ε in (17) is o(ε).

4. Some necessary conditions

In this section, we want to derive the necessary conditions by duality relation.
From Theorem 8, we can conclude that a necessary condition for a given optimal

triple (y∗(·), z∗(·), u∗(·)) is the following inequality:

0 ≤ J(uε(·))− J(u∗(·))
= EΦy(y

∗(0))(x1(0) + x2(0)) +
1

2
EΦyy(y

∗(0))x21(0)

+E

∫ T

0

{l(uε(t))− l(u∗(t)) + l∗y(t)(x1(t) + x2(t)) + l∗z(t)·

(r1(t) + r2(t)) +
1

2
l∗yy(t)x

2
1(t) + l∗yz(t)x1(t)r1(t)

+
1

2
l∗zz(t)r

2
1(t)}dt+ o(ε), ∀v(·) ∈ U [0, T ], ∀ε > 0. (18)

As the usual method for Pontryagin’s maximum principle, we have to get rid of
x1(·), r1(·), x2(·), r2(·), and then pass to the limit. To this end, we need some
duality analysis.
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First, we introduce the following adjoint equation with respect to the variational
equation (9) using the dual technique:

dp(t) = (f∗y p(t) + g∗yq(t) + l∗y(t))dt

+(f∗z p(t) + g∗zq(t) + l∗z(t))dW (t)− q(t)dB(t),

p(0) = Φy(y
∗(0)),

(19)

where (p(t), q(t)) ∈ R× R. From the conditions (H1)− (H3) and the Theorem 1.1
in [7], we conclude that (19) has a unique solution (p(t), q(t)), 0 ≤ t ≤ T .

Using Itô’s formula to p(t)x1(t), it follows that

E

∫ T

0

d(p(t)x1(t))

= E(p(T )x1(T ))− E(p(0)x1(0))

= E

∫ T

0

[(f∗y p(t) + g∗yq(t) + l∗y(t))x1(t)

−(f∗yx1(t) + f∗z r1(t) + f(uε(t))− f(u∗(t)))p(t)
+(f∗z p(t) + g∗zq(t) + l∗z(t))r1(t)− (g∗yx1(t) + g∗zr1(t))q(t)]dt

= E

∫ T

0

[l∗yx1(t) + l∗zr1(t)− (f(uε(t))− f(u∗(t)))p(t)]dt

= −EΦy(y
∗(0))x1(0). (20)

Similarly,

E

∫ T

0

d(p(t)x2(t)) = E(p(T )x2(T ))− E(p(0)x2(0))

= E

∫ T

0

[(f∗y p(t) + g∗yq(t) + l∗y)x2(t)− (f∗yx2(t) + f∗z r2(t)

+
1

2
(f∗yyx

2
1(t) + 2f∗yzx1(t)r1(t) + f∗zzr

2
1(t)))p(t)

+(f∗z p(t) + g∗zq(t) + lz(t, y
∗(t), z∗(t), u∗(t)))r2(t)

−(g∗yx2(t) + g∗zr2(t) +
1

2
(g∗yyx

2
1(t) + 2g∗yzx1(t)r1(t) + g∗zzr

2
1(t)))q(t)]dt

= E

∫ T

0

[l∗yx2(t) + l∗zr2(t)−
1

2
(f∗yyx

2
1(t) + 2f∗yzx1(t)r1(t) + f∗zzr

2
1(t))p(t)

−1

2
(g∗yyx

2
1(t) + 2g∗yzx1(t)r1(t) + g∗zzr

2
1(t))q(t)]dt

= −EΦy(y
∗(0))x2(0)).

Thus,

EΦy(y
∗(0))(x1(0) + x2(0))

= −E
∫ T

0

[l∗y(t)(x1(t) + x2(t)) + l∗z(t)(r1(t) + r2(t))

−(f(uε(t))− f(u∗(t)))p(t)

−1

2
(f∗yyx

2
1(t) + 2f∗yzx1(t)r1(t) + f∗zzr

2
1(t))p(t)

−1

2
(g∗yyx

2
1(t) + 2g∗yzx1(t)r1(t) + g∗zzr

2
1(t))q(t)]dt.

We define the Hamilton function as

H(t, y, z, u, p, q) = f(t, y, z, u)p+ g(t, y, z)q + l(t, y, z, u), (21)
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where H : [0, T ]×R×R×R×R×R → R. On one hand, let (y, z, u) = (y∗, z∗, u∗)
in (21),

1

2
(H∗

yyx
2
1(t) + 2H∗

yzx1(t)r1(t) +H∗
zzr

2
1(t))

=
1

2
(f∗yyp(t)x

2
1(t) + g∗yyq(t)x

2
1(t) + l∗yy(t)x

2
1(t))

+(f∗yzp(t)x1(t)r1(t) + g∗yzq(t)x1(t)r1(t) + l∗yz(t)x1(t)r1(t))

+
1

2
(f∗zzp(t)r

2
1(t)) + g∗zzq(t)r

2
1(t) + l∗zz(t)r

2
1(t)).

On the other hand, from (20) we can get

E

∫ T

0

[H(uε(t))−H(u∗(t))]dt

= E

∫ T

0

[l∗yx1(t) + l∗zr1(t) + l(uε(t))− l(u∗(t))]dt+ EΦy(y
∗(0))x1(0).

So (18) can be rewritten as

0 ≤ 1

2
EΦyy(y

∗(0))x21(0) + E

∫ T

0

[H(uε(t))−H(u∗(t))

+
1

2
(Hyyx

2
1(t) + 2Hyzx1(t)r1(t) +Hzzr

2
1(t))]dt+ o(ε). (22)

In the further, from the variational equation (9), we have
dx21(t) = [−2f∗y (t)x

2
1(t)− 2f∗z (t)x1(t)r1(t)− 2(f(uε(t))− f(u∗(t)))x1(t)

+r21(t)− (g∗y(t)x1(t) + g∗z(t)r1(t))
2]dt

−[2g∗y(t)x
2
1(t) + 2g∗z(t)x1(t)r1(t)]dB(t) + 2x1(t)r1(t)dW (t),

x21(T ) = 0.

(23)

And we also attempt to derive the adjoint equation corresponding to (23), we get
dP (t) = [2f∗y (t)P (t) + g∗2y (t)P (t)− 2g∗y(t)Q(t) +Hyy(t)]dt

+[f∗z (t)P (t) + g∗yg
∗
zP (t)− g∗zQ(t) +Hyz(t)]dW (t) +Q(t)dB(t),

P (0) = Φyy(y
∗(0)).

(24)
Now using Itô’s formula to P (t)x21(t), it follows

E

∫ T

0

d(P (t)x21(t)) = −EΦyy(y
∗(0))x21(0)

= E

∫ T

0

[(−2f∗y (t)x
2
1(t)− 2f∗z (t)x1(t)r1(t)− 2(f(uε(t))− f(u∗(t)))x1(t)

+r21(t)− (g∗y(t)x1(t) + g∗z(t)r1(t))
2)P (t) + (2f∗y (t)P (t) + g∗2y (t)P (t)

−2g∗y(t)Q(t) +Hyy(t))x
2
1(t) + 2(f∗z (t)P (t) + g∗y(t)g

∗
z(t)P (t)− g∗z(t)Q(t)

+Hyz(t))x1(t)r1(t) + (2g∗y(t)x
2
1(t) + 2g∗z(t)x1(t)r1(t))Q(t)]dt

= E

∫ T

0

[(1− g∗2z (t))P (t)r21(t) +Hyy(t)x
2
1(t) + 2Hyz(t)x1(t)r1(t)]dt+ o(ε).(25)

Thus, (22) can be changed into

0 ≤ E

∫ T

0

[H(uε(t))−H(u∗(t)) +
1

2
(Hzz − (1− g∗2z (t))P (t))r21(t)]dt+ o(ε). (26)
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So we have obtained three necessary conditions for an optimal control, i.e. (18),
(22) and (26). (18) is too complicated and not convenient for using. By duality
relation, we turn it into (22). Now, (22) is simpler, but still there is one term
outside the integral. We could not pass to limit, so we change it to (26). We find
that we can not get rid of r1(t) completely. So the necessary conditions (22) or (26)
is not very perfect. Compared to the forward stochastic differential equation, a
solution to a backward stochastic differential equation is a pair such as (y(·), z(·)),
not only a stochastic process y(·). This is the reason that r1(·) and r2(·) appear in
the above. And this causes some difficulty to our problem. We may overcome it
and try to derive the Pontryagin’s maximum principle in future.
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