
Electronic Journal of Mathematical Analysis and Applications

Vol. 1(2) July 2013, pp. 212-229.

ISSN: 2090-792X (online)

http://ejmaa.3owl.com/

————————————————————————————————

ON A NONLOCAL PROBLEM FOR PARTIAL STOCHASTIC

FUNCTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN

HILBERT SPACES

ZUOMAO YAN, HONGWU ZHANG

Abstract. This paper is concerned with the existence of mild solutions for a
class of stochastic functional integro-differential equations with nonlocal con-
ditions in the α-norm. The linear part of the equations is assumed to generate
an analytic resolvent operator, and the nonlinear part satisfies some Lipschitz

conditions with respect to the α-norm. By using Schaefer’s fixed point theo-
rem, we establish a existence result, which generalizes the recent conclusions
on this issue. In the end, an example is given to illustrate the theory.

1. Introduction

In this paper, we shall consider the existence of mild solutions for the following
stochastic functional integro-differential equations with nonlocal conditions

dx(t) = A

[
x(t) +

∫ t

0

f(t− s)x(s)ds

]
dt

+F

(
t, x(σ1(t)), . . . , x(σn(t)),

∫ t

0

h(t, s, x(σn+1(s)))ds

)
w(t), t ∈ J, (1)

x(0) + g(x) = x0, (2)

where J = [0, b], the state x(·) takes values in a separable real Hilbert space H with
inner product (·, ·) and norm ∥ · ∥, A is the infinitesimal generator of a compact,
analytic resolvent operator R(t), t > 0 on H, and f(t), t ∈ J is a bounded linear
operator. Let K be another separable Hilbert space with inner product (·, ·)K and
norm ∥ · ∥K . Suppose {w(t) : t ≥ 0} is a given K-valued Brownian motion or
Wiener process with a finite trace nuclear covariance operator Q > 0 defined on
a complete probability space (Ω,F , P ) equipped with a normal filtration {Ft}t≥0,
which is generated by the Wiener process w. We are also employing the same
notation ∥ · ∥ for the norm L(K;H), where L(K;H) denotes the space of all
bounded linear operators from K into H. The functions F, h, g, σi(i = 1, . . . , n+1),
are continuous functions and will be specified later.
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Stochastic differential equations are playing an increasingly important role in
applications to finance, numerical analysis, physics, and biology. This is due to
the fact that most problems in a real life situation to which mathematical models
are applicable are basically stochastic rather than deterministic. Recently, much
attention has been paid to existence, uniqueness and stability for stochastic dif-
ferential and integro-differential equations in the infinite dimensions case, see the
monographs [10],[16],[23], the papers [4],[22],[26],[27],[31] and the references therein.
Some classes of stochastic evolution equations have been considered by Taniguchi
et al. [28], El-Borai et al. [13], Bao and Zhou [5], Govindan [15], Ren and Chen
[25], Chang et al. [9] and the references therein.

The study of abstract nonlocal semilinear initial value problems was initiated
by Byszewski [6],[8]. Subsequently, many authors are devoted to the study of
nonlocal Cauchy problems because it is demonstrated that the nonlocal problems
have better effects in applications than the classical Cauchy problems, we refer
the reader to [1],[7],[11],[14],[20],[21],[24],[30] and the references contained therein.
Very recently, several papers have appeared on the nonlocal problem of existence
of solutions for semilinear stochastic differential equations and integro-differential
equations in Hilbert spaces. For example, Balasubramaniam and Ntouyas [2] in-
vestigated global existence of solutions for a semilinear stochastic delay evolution
equation with nonlocal conditions. Keck and McKibben [19] showed the global
existence and convergence properties of mild solutions to a class of abstract semi-
linear functional stochastic integro-differential equations. In paper [3], the authors
discussed the existence of mild and strong solutions of semilinear neutral functional
differential evolution equations with nonlocal conditions by using fractional power
of operators and Sadovskii fixed point theorem. The purpose of this paper is that we
continue the study of these authors. We get the existence results for mild solutions
of problem (1)-(2) with α-norm as in [14] when the nonlocal item g is only depends
upon the continuous properties. Our results are based on the Banach contraction
principle and Schaefer’s fixed point theorem combined with theories of analytic re-
solvent operators. The nonlocal Cauchy problems for nonlinear integro-differential
equations with resolvent operators considered here serve as an abstract formulation
of partial integro-differential equations which arise in various applications such as
viscoelasticity, heat equations and many other physical phenomena [17],[18],[21].

This paper will be organized as follows. In Section 2, we will briefly recall some
basic definitions and preliminary facts to be used in the following sections. Section
3 is devoted to the existence of mild solutions of problem (1)-(2). Finally, a concrete
example is presented in Section 4 to show the application of our main results.

2. Preliminaries

Let (Ω,F , P ;F)(F = {Ft}t≥0) be a complete filtered probability space satis-
fying that F0 contains all P -null sets of F . An H-valued random variable is an
F-measurable function x(t) : Ω → H and the collection of random variables
S = {x(t, w) : Ω → H|t ∈ J} is called a stochastic process. Generally, we just
write x(t) instead of x(t, w) and x(t) : J → H in the space of S. Let {ei}∞i=1 be
a complete orthonormal basis of K. Suppose that {w(t) : t ≥ 0} is a cylindrical
K-valued Wiener process with a finite trace nuclear covariance operator Q ≥ 0,
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denote Tr(Q) =
∑∞

i=1 λi = λ < ∞, which satisfies that Qei = λiei. So, actu-

ally, w(t) =
∑∞

i=1

√
λiwi(t)ei, where {wi(t)}∞i=1 are mutually independent one-

dimensional standard Wiener processes. We assume that Ft = σ{w(s) : 0 ≤ s ≤ t}
is the σ-algebra generated by w and Fb = F .

Let L(K;H) denote the space of all bounded linear operators from K into H.
For h1, h2 ∈ L(K;H), we define (h1, h2) =Tr(h1Qh

∗
2) where h∗2 is the adjoint of

the operator h2 and Q is the nuclear operator associated with the Wiener process,
where Q ∈ Ln

n(K), the space of positive nuclear operator in K. For ψ ∈ L(K;H)
we define

∥ ψ ∥2Q= Tr(ψQψ∗) =
∞∑

n=1

∥
√
λnψen ∥2 .

If ∥ ψ ∥Q< ∞, then ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K;H)
denote the space of all Q-Hilbert-Schmidt operators ψ. The completion LQ(K;H)
of L(K;H) with respect to the topology induced by the norm ∥ · ∥Q where ∥ ψ ∥2Q=
(ψ,ψ) is a Hilbert space with the above norm topology. For more details, we refer
the reader to Da Prato and Zabczyk [10].

Now, we give knowledge on the resolvent operator which appeared in Grimmer
and Pritchard [18].
Definition 2.1. A family of bounded linear operator R(t) ∈ L(H) for t ∈ J is
called a resolvent operator for

dx(t)

dt
= A

[
x(t) +

∫ t

0

f(t− s)x(s)ds

]
(3)

if
(a) R(0) = I, the identity operator on H.
(b) For each x ∈ H,R(t)x is continuous for t ∈ J.
(c) R(t) ∈ L(Y ), t ∈ J, where Y is the Banach space formed from D(S) endowed
with the graph norm. For y ∈ Y,R(·)y ∈ C1(J,H) ∩ C(J, Y ) and

d

dt
R(t)y = A

[
R(t)y+

∫ t

0

f(t−s)R(s)yds
]
= R(t)Ay+

∫ t

0

R(t−s)Af(s)yds, t ∈ J.

Let 0 ∈ ρ(A), then it is possible to define the fractional power Aα, for 0 < α ≤ 1, as
a closed linear operator on its domain D(Aα). Furthermore, the subspace D(Aα)
is dense in H and the expression ∥ x ∥α=∥ Aαx ∥, x ∈ D(Aα), defines a norm on
D(Aα) which will be denoted by Hα.
Lemma 2.1([18]). Under the above conditions, we have:
(1) Aα : Hα → H, then Hα is a Banach space for 0 ≤ α ≤ 1.
(2) If the resolvent operator of A is compact then Hα → Hβ is continuous and
compact for 0 < β ≤ α.
(3) For every 0 < α ≤ 1, there exists a constant Mα > 0 such that

∥ AαR(t) ∥≤ Mα

tα
, 0 < t ≤ b.

Let L2(Ω,Ft,H) denote the Hilbert space of all Ft-measurable square integrable
random variables with values in H. Let LF

2 (J,H) be the Hilbert space of all square
integrable and Ft-measurable processes with values in H. Let C(J) be the Banach
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space C(J,Hα) and C denote the Banach space C(J, L2(Ω,F ,H)) the family of all
Ft-measurable, C(J)-valued random variables x with the norm

∥ x ∥C= sup
0≤t≤b

(E ∥ x(t) ∥2α)
1
2 .

Let L0
2(Ω, C)denote the family of all F0-measurable, C-valued random variables x(0).

Definition 2.2. A stochastic process x ∈ C is called a mild solution of (1)-(2) if
(i) x0, g(x) ∈ L0

2(Ω, C);
(ii) x0 + g(x) = x0;
(iii) x(t) ∈ H has càdlàg paths on t ∈ J a.s., and it satisfies the following integral
equation:

x(t) = R(t)[x0 − g(x)] +

∫ t

0

R(t− s)

×F
(
s, x(σ1(s)), . . . , x(σn(s)),

∫ s

0

h(s, τ, x(σn+1(τ)))dτ

)
dw(s), t ∈ J.(4)

Lemma 2.2 ( Schaefer’s fixed point theorem [12]). Let X be a normed linear space.
Let Q : X → X be a completely continuous operator, so that , it is continuous and
the image of any bounded set is contained in a compact set and let

ζ(Q) = {x ∈ X : x = λQx for some 0 < λ < 1}

that ζ(Q) is unbounded or Q has a fixed point.
For some α ∈ (0, 1), we assume the following hypotheses:
(H1) A is the infinitesimal generator of a compact, analytic resolvent operator
R(t), t ≥ 0 in the Hilbert space H and there exists constant M such that

∥ R(t) ∥2≤M, t ∈ J.

(H2) The function F : J×Hn+1
α → L(K;H) is continuous and there exist constants

l
(1)
F > 0, l1 > 0, such that for all xi, yi ∈ Hα, i = 1, . . . , n+ 1, we have

∥ F (t, x1, x2, . . . , xn+1)− F (t, y1, y2, . . . , yn+1) ∥2≤ l
(1)
F

[ n+1∑
i=1

∥ xi − yi ∥2α
]
,

and

l1 = max
t∈J

∥ F (t, 0, . . . , 0) ∥2 .

(H3) The function F : J×Hn+1
α → L(K;Hα) is continuous and there exist constants

l
(2)
F > 0, l2 > 0, such that for all xi, yi ∈ Hα, i = 1, . . . , n+ 1, we have

∥ F (t, x1, x2, . . . , xn+1)− F (t, y1, y2, . . . , yn+1) ∥2α≤ l
(2)
F

[ n+1∑
i=1

∥ xi − yi ∥2α
]
,

and

l2 = max
t∈J

∥ F (t, 0, . . . , 0) ∥2α .

(H4) There exists a positive number β with α ≤ β ≤ 1 such that F : J ×Hn+1
α →
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L(K;Hβ) is continuous and there exist constants l
(3)
F > 0, l3 > 0, such that for all

xi, yi ∈ Hα, i = 1, . . . , n+ 1, we have

∥ F (t, x1, x2, . . . , xn+1)− F (t, y1, y2, . . . , yn+1) ∥2β≤ l
(3)
F

[ n+1∑
i=1

∥ xi − yi ∥2α
]
,

and

l3 = max
t∈J

∥ F (t, 0, . . . , 0) ∥2β .

(H5) The function h : J × J × Hα → Hα is continuous and there exist constants

lh > 0, l
(1)
h > 0, such that for all x, y ∈ Hα,

∥ h(t, s, x)− h(t, s, y) ∥2α≤ lh ∥ x− y ∥2α,

and

l
(1)
h = max

0≤s≤t≤b
∥ h(t, s, 0) ∥2α .

(H6) σi : J → J, i = 1, . . . , n + 1, are continuous functions such that σi(t) ≤ t, i =
1, . . . , n+ 1.
(H7) The function g(·) : C → Hα is continuous and there exists a δ ∈ (0, b) such
that g(ϕ) = g(ψ) for any ϕ, ψ ∈ C with ϕ = ψ on [δ, b].
(H8) There is a constant c > 0 such that

0 ≤ lim sup
∥ϕ∥C→∞

E ∥ g(ϕ) ∥2α
∥ ϕ ∥2C

≤ c, ϕ ∈ C.

3. Main results

Theorem 3.1. Let x(0) ∈ L0
2(Ω, C). If the assumptions (H1), (H2) and (H5)-(H8)

hold and

16Mce
16l

(1)
F

M2
αTr(Q)(n+4lhb2)b1−2α

1−2α < 1, (5)

then the nonlocal Cauchy problem (1)-(2) has a mild solution on J.
Proof. Let l0 > 0 be a constant chosen such that

γ := sup
t∈J

{
M2

αl
(1)
F Tr(Q)(n+ lhb

2)

∫ t

0

e−l0(t−s)(t− s)−2αds

}
< 1,

and we introduce in the space C the equivalent norm defined as

∥ ϕ ∥V := sup
t∈J

(e−l0tE ∥ ϕ(t) ∥2α)
1
2 .

Then, it is easy to see that V := (C, ∥ · ∥V ) is a Banach space. Fix v ∈ C and for
t ∈ J, ϕ ∈ V, we now define an operator

(Pvϕ)(t) = R(t)(t)[x0 − g(v)] +

∫ t

0

R(t− s)

×F
(
s, ϕ(σ1(s)), ..., ϕ(σn(s)),

∫ s

0

h(s, τ, ϕ(σn+1(τ)))dτ

)
dw(s). (6)
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Since R(·)(x0 − g(v)) ∈ C, it follows, from (H2),(H5) and (H6), that (Pvϕ)(t) ∈ V
for all ϕ ∈ V. Let ϕ, ψ ∈ V, we have

e−l0tE ∥ (Pvϕ)(t)− (Pvψ)(t) ∥2α

≤ e−l0tE

wwww∫ t

0

R(t− s)

[
F

(
s, ϕ(σ1(s)), ..., ϕ(σn(s)),

∫ s

0

h(s, τ, ϕ(σn+1(τ)))dτ

)
− F

(
s, ψ(σ1(s)), ..., ψ(σn(s)),

∫ s

0

h(s, τ, ψ(σn+1(τ)))dτ

)]
dw(s)

wwww2

α

≤M2
αl

(1)
F Tr(Q)

∫ t

0

e−l0t(t− s)−2αE

[
∥ ϕ(σ1(s))− ψ(σ1(s)) ∥2α

+ · · ·+ ∥ ϕ(σn(s))− ψ(σn(s)) ∥2α

+ b

∫ s

0

∥ h(s, τ, ϕ(σn+1(τ)))− h(s, τ, ψ(σn+1(τ))) ∥2α dτ
]
ds

≤M2
αl

(1)
F Tr(Q)

∫ t

0

e−l0t(t− s)−2α

[
el0σ1(s) sup

s∈J
e−l0sE ∥ ϕ(s)− ψ(s) ∥2α

+ · · ·+ el0σn(s) sup
s∈J

e−l0sE ∥ ϕ(s)− ψ(s) ∥2α

+ lhbE

∫ s

0

∥ ϕ(σn+1(τ))− ψ(σn+1(τ)) ∥2α dτ
]
ds

≤M2
αl

(1)
F Tr(Q)

∫ t

0

e−l0t(t− s)−2α

[
nel0s sup

s∈J
e−l0sE ∥ ϕ(s)− ψ(s) ∥2α

+ lhb
2el0σn+1(s) sup

s∈J
e−l0sE ∥ ϕ(s)− ψ(s) ∥2α

]
ds

≤M2
αl

(1)
F Tr(Q)

∫ t

0

e−l0(t−s)(t− s)−2α

[
n sup

s∈J
e−l0sE ∥ ϕ(s)− ψ(s) ∥2α

+ lhb
2 sup
s∈J

e−l0sE ∥ ϕ(s)− ψ(s) ∥2α
]
ds

≤M2
αl

(1)
F Tr(Q)(n+ lhb

2)

∫ t

0

e−l0(t−s)(t− s)−2αds ∥ ϕ− ψ ∥2V

≤ γ ∥ ϕ− ψ ∥2V , t ∈ J,

which implies that

e−l0tE ∥ (Pvϕ)(t)− (Pvψ)(t) ∥2α≤ γ ∥ ϕ− ψ ∥2V , t ∈ J.

Thus

∥ Pvϕ− Pvψ ∥2V ≤ γ ∥ ϕ− ψ ∥2V , ϕ, ψ ∈ V.

Therefore, Pv is a strict contraction. By the Banach contraction principle we con-
clude that Pv has a unique fixed point ϕv ∈ V and Eq. (6) has a unique mild
solution on [0, b]. Set

ṽ(t) :=

{
v(t) if t ∈ (δ, b],
v(δ) if t ∈ [0, δ].
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From (6), we have

ϕṽ(t) = R(t)[x0 − g(ṽ)] +

∫ t

0

R(t− s)

×F
(
s, ϕṽ(σ1(s)), ..., ϕṽ(σn(s)),

∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
ds. (7)

Consider the map Ψ : Cδ = C([δ, b], L2(Ω,F ,H)) → Cδ defined by

(Ψv)(t) = ϕṽ(t), t ∈ [δ, b]. (8)

We shall show that Ψ satisfies in all conditions of Lemma 2.2. The proof will be
given in several steps.

Step 1. The set G = {v ∈ Cδ : λ ∈ (0, 1), v = λΨ(v)} is bounded.
Indeed, let λ ∈ (0, 1) and let v ∈ Cδ be a possible solution of v = λΨ(v) for some

0 < λ < 1. This implies, by (7) and (8), that for each t ∈ (0, b] we have

v(t) = λϕṽ(t) = λR(t)[x0 − g(ṽ)] + λ

∫ t

0

R(t− s)

×F
(
s, ϕṽ(σ1(s)), ..., ϕṽ(σn(s)),

∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
dw(s). (9)

From conditions (H8) and (5), we conclude that there exist positive constants ϵ and
γ∗ such that, for all ∥ ϕ ∥C> γ∗,

E ∥ g(ϕ) ∥2α≤ (c+ ϵ) ∥ ϕ ∥2C , 16M(c+ ϵ)e
16l

(1)
F

M2
αTr(Q)(n+4lhb)b1−2α

1−2α < 1. (10)

Let
G1 = {ϕ :∥ ϕ ∥C≤ γ∗}, G2 = {ϕ :∥ ϕ ∥C> γ∗},
C1 = max{∥ Eg(ϕ) ∥2α, ϕ ∈ G1}.

Thus,

E ∥ g(ϕ) ∥2α≤ C1 + (c+ ϵ) ∥ ϕ ∥2C . (11)

By (H2), (H5), (H6) and (11), from (9) we have for each t ∈ (0, b], ∥ v(t) ∥α≤∥
ϕṽ(t) ∥α and

E ∥ ϕṽ(t) ∥2α ≤ 4E ∥ R(t)[x0 − g(ṽ)] ∥2α +4E

wwww∫ t

0

R(t− s)

× F

(
s, ϕṽ(σ1(s)), ..., ϕṽ(σn(s)),

∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
dw(s)

wwww2

α

≤ 4ME[∥ x0 + g(ṽ) ∥2α] + 4M2
αbTr(Q)

∫ t

0

(t− s)−2α

× E

wwwwF(s, ϕṽ(σ1(s)), ..., ϕṽ(σn(s)), ∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)wwww2

ds

≤ 16ME[∥ x0 ∥2α + ∥ g(ṽ) ∥2α] + 16M2
αTr(Q)

∫ t

0

(t− s)−2α

× E

[wwwwF(s, ϕṽ(σ1(s)), . . . , ϕṽ(σn(s)),∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
− F (s, 0, ..., 0)

wwww2

+ ∥ F (s, 0, . . . , 0) ∥2
]
ds
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≤ 16M [E ∥ x0 ∥2α +E ∥ g(ṽ) ∥2α] + 16M2
αTr(Q)

∫ t

0

(t− s)−2α

×
{
l
(1)
F

[
sup

s∈(0,b]

E ∥ ϕṽ(s) ∥2α + · · ·+ sup
s∈(0,b]

E ∥ ϕṽ(s) ∥2α

+ 4bE

∫ s

0

[∥ h(s, τ, ϕṽ(σn+1(τ)))− h(s, τ, 0) ∥2α + ∥ h(s, τ, 0) ∥2α]dτ
]
+ l1

}
ds

≤ 16M [E ∥ x0 ∥2α +C1 + (c+ ϵ) ∥ ṽ ∥2C ] + 16M2
αTr(Q)

∫ t

0

(t− s)−2α

×
{
l
(1)
F

[
n sup

s∈(0,b]

E ∥ ϕṽ(s) ∥2α +4b2(lh sup
s∈(0,b]

E ∥ ϕṽ(s) ∥2α +l
(1)
h )

]
+ l1

}
ds

≤M∗ + 16M(c+ ϵ) ∥ ṽ ∥2C

+ 16l
(1)
F M2

αTr(Q)(n+ 4lhb
2)

∫ t

0

(t− s)−2α sup
s∈(0,b]

E ∥ ϕṽ(s) ∥2α ds,

where M∗ = 16M [E ∥ x0 ∥α +C1] +
16M2

αTr(Q)b1−2α(4b2l
(1)
F l

(1)
h +l1)

1−2α . Using the Gron-
wall’s inequality, we get

sup
s∈(0,b]

E ∥ ϕṽ(t) ∥2α ≤ [M∗ + 16M(c+ ϵ) ∥ ṽ ∥2C ]eη,

where η =
16l

(1)
F M2

αTr(Q)(n+4lhb
2)b1−2α

1−2α , and the previous inequality holds. Conse-
quently,

∥ v ∥2C ≤ [M∗ + 16M(c+ ϵ) ∥ ṽ ∥2C ]eη,
therefore we have

∥ v ∥2C≤
M∗eη

1− 16M(c+ ϵ)eη
<∞.

Thus the proof of boundedness of the set G is complete.
Step 2. Ψ maps bounded sets into equicontinuous sets of Cδ.
For each constant r > 0, let

v ∈ Cr(δ) :=

{
ϕ ∈ Cδ : sup

δ≤t≤b
E ∥ ϕ(t) ∥2α≤ r

}
.

Then Cr(δ) is a bounded closed convex set in Cδ. Let v ∈ Cr(δ), δ ≤ t1 < t2 ≤ b,
and ε > 0 be small. Note that

E

wwwwF(s, ϕṽ(σ1(s)), . . . , ϕṽ(σn(s)), ∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)wwww2

≤ 4E

[wwwwF(s, ϕṽ(σ1(s)), ..., ϕṽ(σn(s)), ∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
− F (s, 0, . . . , 0)

wwww2

+ ∥ F (s, 0, . . . , 0) ∥2
]

≤ 4l
(1)
F E

[
∥ ϕṽ(σ1(s)) ∥2α + · · ·+ ∥ ϕṽ(σn(s)) ∥2α

+

wwww∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

wwww2

α

]
+ 4l1
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≤ 4l
(1)
F

[
sup

s∈[δ,b]

E ∥ ϕṽ(s) ∥2α + · · ·+ sup
s∈[δ,b]

E ∥ ϕṽ(s) ∥2α

+ 4bE

∫ s

0

[∥ h(s, τ, ϕṽ(σn+1(τ)))− h(s, τ, 0) ∥2α + ∥ h(s, τ, 0) ∥2α]dτ
]
+ 4l1

≤ 4l
(1)
F

[
n sup

s∈[δ,b]

E ∥ ϕṽ(s) ∥2α +4b2[lh sup
s∈[δ,b]

E ∥ ϕṽ(s) ∥2α +l
(1)
h ]

]
+ 4l1

≤ 4l
(1)
F

[
(n+ 4lhb

2) sup
s∈[δ,b]

E ∥ ϕṽ(s) ∥2α +4b2l
(1)
h

]
+ 4l1

≤ 4l
(1)
F [(n+ 4lhb

2)r + 4b2l
(1)
h ] + 4l1 :=M∗∗.

We have

E ∥ Ψv(t2)−Ψv(t1) ∥2α

≤ 16E ∥ [R(t2)−R(t1)][x0 − g(ṽ)] ∥2α +16E

wwww∫ t1−ε

0

[R(t2 − s)−R(t1 − s)]

× F

(
s, ϕṽ(σ1(s)), . . . , ϕṽ(σn(s)),

∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
ds

wwww2

α

+ 16E

wwww∫ t1

t1−ε

[R(t2 − s)−R(t1 − s)]

× F

(
s, ϕṽ(σ1(s)), . . . , ϕṽ(σn(s)),

∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
ds

wwww2

α

+ 16E

wwww∫ t2

t1

R(t2 − s)

× F

(
s, ϕṽ(σ1(s)), . . . , ϕṽ(σn(s)),

∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
ds

wwww2

α

≤ 16E ∥ [R(t2)−R(t1)][x0 − g(ṽ)] ∥2α

+ 16M∗∗Tr(Q)

(∫ t1−ε

0

∥ Aα[R(t2 − s)−R(t1 − s)] ∥2 ds

+

∫ t1

t1−ε

∥ Aα[R(t2 − s)−R(t1 − s)] ∥2 ds+
∫ t2

t1

∥ AαR(t2 − s) ∥2 ds
)

≤ 16E ∥ [R(t2)−R(t1)][x0 − g(ṽ)] ∥2α

+ 16M∗∗Tr(Q)

(∫ t1−ε

0

∥ Aα[R(t2 − s)−R(t1 − s)] ∥2 ds

+
M2

α

1− 2α
[(t2 − t1)

1−2α − (t2 − t1 − ε)1−2α + ε1−2α]

+
M2

α

1− 2α
(t2 − t1)

1−2α

)
.

The right-hand side of the above inequality tends to zero as t2 − t1 → 0, with ε is
sufficiently small, since R(t) is strongly continuous and the compactness of R(t) for
t > 0 implies R(t),AαR(t) the continuity in the uniform operator topology. Thus
Ψ maps Cr(δ) into an equicontinuous family of functions.

Step 3. The set W (t) = {Ψ(v)(t) : v ∈ Cr(δ)} is relatively compact in H.
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Let δ < t ≤ s ≤ b be fixed and ε a real number satisfying 0 < ε < t. For
v ∈ Cr(δ), we define

(Ψεv)(t) = R(t)[x0 − g(ṽ)] +

∫ t−ε

0

R(t− s)

× F

(
s, ϕṽ(σ1(s)), ..., ϕṽ(σn(s)),

∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
dw(s).

Since the compactness of R(t) for t > 0, we deduce that the set Uε(t) = {(Ψεv)(t) :
v ∈ Cr(δ)} is relatively compact in H for every ε, 0 < ε < t. Also, for every
v ∈ Cr(δ), we have

E ∥ (Ψv)(t)− (Ψεv)(t) ∥2α

≤ E

wwww∫ t

t−ε

R(t− s)

× F

(
s, ϕṽ(σ1(s)), . . . , ϕṽ(σn(s)),

∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
ds

wwww2

α

≤M2
α

∫ t

t−ε

(t− s)−2αM∗∗ds ≤ M2
αM

∗∗

1− 2α
ε1−2α.

Therefore, letting ε→ 0, we can see that there are relative compact sets arbitrarily
close to the set W (t) = {(Ψv) : v ∈ Cr(δ)}, and W (t) is a relatively compact in H.
It is easy to see that Ψ(Cr(δ)) is uniformly bounded. Since we have shown Ψ(Cr(δ))
is equicontinuous collection, by the Arzelá-Ascoli theorem it suffices to show that
Ψ maps Cr(δ) into a relatively compact set in H.

Step 4. Ψ : Cδ → Cδ is continuous.
From (6) and (H2),(H5), we deduce that for v1, v2 ∈ Cr(δ), t ∈ [0, b],

E ∥ ϕṽ1(t)− ϕṽ2(t) ∥2α

≤ 4E ∥ R(t)[g(ṽ1)− g(ṽ2)] ∥2α +4E

wwww∫ t

0

R(t− s)

×
[
F

(
s, ϕṽ1(σ1(s)), ..., ϕṽ1(σn(s)),

∫ s

0

h(s, τ, ϕṽ1(σn+1(τ)))dτ

)
− F

(
s, ϕṽ2(σ1(s)), ..., ϕṽ2(σn(s)),

∫ s

0

h(s, τ, ϕṽ2(σn+1(τ)))dτ

)]
dw(s)

wwww2

α

≤ 4ME ∥ g(ṽ1)− g(ṽ2) ∥2α +4l
(1)
F M2

αTr(Q)

∫ t

0

(t− s)−2α

× E

[
∥ ϕṽ1(σ1(s))− ϕṽ2

(σ1(s)) ∥2α + · · ·+ ∥ ϕṽ1
(σn(s))− ϕṽ2

(σn(s)) ∥2α

+ b

∫ s

0

∥ h(s, τ, ϕṽ1(σn+1(τ)))− h(s, τ, ϕṽ2(σn+1(τ))) ∥2α dτ
]
ds

≤ 4ME ∥ g(ṽ1)− g(ṽ2) ∥2α +4l
(1)
F M2

αTr(Q)

∫ t

0

(t− s)−2α

×
[

sup
s∈[0,b]

E ∥ ϕṽ1(s)− ϕṽ2(s) ∥2α + · · ·+ sup
s∈[0,b]

E ∥ ϕṽ1(s)− ϕṽ2(s) ∥2α
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+ lhbE

∫ s

0

∥ ϕṽ1(σn+1(τ))− ϕṽ2(σn+1(τ)) ∥2α dτ
]
ds

≤ 4ME ∥ g(ṽ1)− g(ṽ2) ∥2α +4l
(1)
F M2

αTr(Q)

∫ t

0

(t− s)−2α

×
[
n sup

s∈[0,b]

E ∥ ϕṽ1(s)− ϕṽ2(s) ∥2α +lhb
2 sup
s∈[0,b]

E ∥ ϕṽ1(s)− ϕṽ2(s) ∥2α
]
ds

≤ 4ME ∥ g(ṽ1)− g(ṽ2) ∥2α

+ 4l
(1)
F M2

αTr(Q)(n+ lhb
2)

∫ t

0

(t− s)−2α sup
t∈[0,b]

E ∥ ϕṽ1(s)− ϕṽ2(s) ∥2α ds.

Using again the Gronwall’s inequality, we have that, for t, v1, v2 as above,

sup
t∈[0,b]

E ∥ ϕṽ1(t)− ϕṽ2(t) ∥2α≤ 4Me
4l

(1)
F

M2
αTr(Q)(n+lhb2)b1−2α

1−2α E ∥ g(ṽ1)− g(ṽ2) ∥2α,

for all t ∈ [0, b], which implies that

∥ Ψv1 −Ψv2 ∥C≤ 4Me
4l

(1)
F

M2
αTr(Q)(n+lhb2)b1−2α

1−2α E ∥ g(ṽ1)− g(ṽ2) ∥2α,

for all t ∈ [δ, b], v1, v2 ∈ Cr(δ). Therefore, Ψ is continuous.
These arguments enable us to conclude that Ψ is completely continuous. We

can now apply Lemma 2.2 to conclude that Ψ has at least fixed point ṽ∗ ∈ Cδ. Let
x = ϕṽ∗ . Then, we have

x(t) = R(t)[x0 − g(ṽ∗)] +

∫ t

0

R(t− s)

×F
(
s, x(σ1(s)), ..., x(σn(s)),

∫ s

0

h(s, τ, x(σn+1(τ)))dτ

)
ds. (12)

Note that x = ϕṽ∗ = (P ṽ∗)(t) = ṽ∗, t ∈ [δ, b]. By (H7), we obtain

g(x) = g(ṽ∗).

This implies, combined with (12), that x(t) is a mild solution of the problem (1)-(2)
and the proof of Theorem 3.1 is complete.
Theorem 3.2. Let x(0) ∈ L0

2(Ω, C). If the assumptions (H1), (H3) and (H5)-(H8)
hold and

16Mce16l
(2)
F MTr(Q)(n+4lhb

2) < 1, (13)

then the nonlocal Cauchy problem (1)-(2) has a mild solution on J.
Proof. Let l0 > 0 be a constant chosen such that

γ1 := sup
t∈J

{
Ml

(2)
F Tr(Q)(n+ lhb

2)

∫ t

0

e−l0(t−s)ds

}
< 1,

and V, Pv, ṽ as in Theorem 3.1. Therefore, Pv has a unique fixed point and Eq. (6)
has a unique solution ϕv ∈ V . Define the operator Ψ : Cδ → Cδ as (8). In order to
apply Lemma 2.2, we first give the set G is priori bound. In fact, by (H3), (H5)
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(H6) and (11), from (9 ) we have for each t ∈ (0, b],

E ∥ ϕṽ(t) ∥2α

≤ 4E ∥ R(t)[x0 − g(ṽ)] ∥2α +4E

wwww∫ t

0

R(t− s)

× F

(
s, ϕṽ(σ1(s)), ..., ϕṽ(σn(s)),

∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
dw(s)

wwww2

α

≤ 4ME[∥ x0 + g(ṽ) ∥2α] + 4MTr(Q)

×
∫ t

0

E

wwwwF(s, ϕṽ(σ1(s)), . . . , ϕṽ(σn(s)),∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)wwww2

α

ds

≤ 16ME[∥ x0 ∥2α + ∥ g(ṽ) ∥2α] + 16MTr(Q)

×
∫ t

0

E

[wwwwF(s, ϕṽ(σ1(s)), . . . , ϕṽ(σn(s)), ∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
− F (s, 0, . . . , 0)

wwww2

α

+ ∥ F (s, 0, . . . , 0) ∥2α
]
ds

≤ 16M [E ∥ x0 ∥2α +E ∥ g(ṽ) ∥2α]

+ 16MTr(Q)

∫ t

0

{
l
(2)
F

[
sup

s∈(0,b]

E ∥ ϕṽ(s) ∥2α + · · ·+ sup
s∈(0,b]

E ∥ ϕṽ(s) ∥2α

+ 4bE

∫ s

0

[∥ h(s, τ, ϕṽ(σn+1(τ)))− h(s, τ, 0) ∥α + ∥ h(s, τ, 0) ∥2α]dτ
]
+ l2

}
ds

≤ 16M [E ∥ x0 ∥2α +C1 + (c+ ϵ) ∥ ṽ ∥2C ] + 16MTr(Q)

×
∫ t

0

{
l
(2)
F

[
n sup

s∈(0,b]

E ∥ ϕṽ(s) ∥2α +4b2(lh sup
s∈(0,b]

E ∥ ϕṽ(s) ∥2α +l
(1)
h )

]
+ l2

}
ds

≤M∗
1 + 16M(c+ ϵ) ∥ ṽ ∥C +16l

(2)
F MTr(Q)(n+ 4lhb

2)

×
∫ t

0

sup
s∈(0,b]

E ∥ ϕṽ(s) ∥2α ds,

whereM∗
1 = 16M [E ∥ x0 ∥α +C1]+16MTr(Q)[4b2l

(2)
F l

(1)
h +l2]. Using the Gronwall’s

inequality, we get

sup
s∈(0,b]

E ∥ ϕṽ(t) ∥2α ≤ [M∗
1 + 16M(c+ ϵ) ∥ ṽ ∥C ]eη1 ,

where η1 = 16l
(2)
F MTr(Q)(n+ 4lhb

2). Consequently,

∥ v ∥2C ≤ [M∗
1 + 16M(c+ ϵ) ∥ ṽ ∥C ]eη1 .

Since 16M(c+ ϵ)eη1 < 1, we have

∥ v ∥2C≤
M∗

1 e
η1

1− 16M(c+ ϵ)eη1
<∞.

Thus the proof of boundedness of the set G is complete. The proofs of the other
steps are similar to those in Theorem 3.1. Therefore we omit the details.
Theorem 3.3. Let x(0) ∈ L0

2(Ω, C). If the assumptions (H1), (H4) and (H5)-(H8)
hold and

16Mce16l
(3)
F ∥Aα−β∥MTr(Q)(n+4lhb

2) < 1, (14)
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then the nonlocal Cauchy problem (1)-(2) has a mild solution on J.
Proof. Let l0 > 0 be a constant chosen such that

γ2 := sup
t∈J

{
Ml

(3)
F ∥ Aα−β ∥ Tr(Q)(n+ lhb

2)

∫ t

0

e−l0(t−s)ds

}
< 1,

and V, Pv, ṽ as in Theorem 3.1. Therefore, Pv has a unique fixed point and Eq. (6)
has a unique solution ϕv ∈ V . Just as in the proof of Theorem 3.2, we only show
that the set G is priori bound. In fact, by (H4), (H5), (H6) and (11), from (9) we
have for each t ∈ (0, b],

E ∥ ϕṽ(t) ∥2α

≤ 4E ∥ R(t)[x0 − g(ṽ)] ∥2α +4E

wwww∫ t

0

Aα−βR(t− s)

×AβF

(
s, ϕṽ(σ1(s)), ..., ϕṽ(σn(s)),

∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
dw(s)

wwww2

≤ 4ME[∥ x0 + g(ṽ) ∥α] + 4 ∥ Aα−β ∥MTr(Q)

×
∫ t

0

E

wwwwF(s, ϕṽ(σ1(s)), ..., ϕṽ(σn(s)), ∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)wwww
β

ds

≤ 16ME[∥ x0 ∥2α + ∥ g(ṽ) ∥2α] + 16 ∥ Aα−β ∥MTr(Q)

×
∫ t

0

E

[wwwwF(s, ϕṽ(σ1(s)), ..., ϕṽ(σn(s)), ∫ s

0

h(s, τ, ϕṽ(σn+1(τ)))dτ

)
− F (s, 0, ..., 0)

wwww2

β

+ ∥ F (s, 0, ..., 0) ∥2β
]
ds

≤ 16M [E ∥ x0 ∥2α +E ∥ g(ṽ) ∥2α] + 16 ∥ Aα−β ∥MTr(Q)

×
∫ t

0

{
l
(3)
F

[
sup

s∈(0,b]

E ∥ ϕṽ(s) ∥2α + · · ·+ sup
s∈(0,b]

E ∥ ϕṽ(s) ∥2α

+ 4bE

∫ s

0

[∥ h(s, τ, ϕṽ(σn+1(τ)))− h(s, τ, 0) ∥2α + ∥ h(s, τ, 0) ∥2α]dτ
]
+ l3

}
ds

≤ 16M [E ∥ x0 ∥2α +C1 + (c+ ϵ) ∥ ṽ ∥C ] + 4 ∥ Aα−β ∥MTr(Q)

×
∫ t

0

{
l
(3)
F

[
n sup

s∈(0,b]

E ∥ ϕṽ(s) ∥2α +4b2(lh sup
s∈(0,b]

E ∥ ϕṽ(s) ∥2α +l
(1)
h )

]
+ l3

}
ds

≤M∗
2 + 16M(c+ ϵ) ∥ ṽ ∥C +16l

(3)
F ∥ Aα−β ∥MTr(Q)(n+ 4lhb

2)

×
∫ t

0

sup
s∈(0,b]

E ∥ ϕṽ(s) ∥2α ds,

where M∗
2 = 16M [E ∥ x0 ∥α +C1] + 16 ∥ Aα−β ∥ MTr(Q)[4b2l

(3)
F l

(1)
h + l3]. Using

the Gronwall’s inequality, we get

sup
s∈(0,b]

E ∥ ϕṽ(t) ∥2α ≤ [M∗
2 + 16M(c+ ϵ) ∥ ṽ ∥C ]eη2 ,

where η2 = 16l
(3)
F ∥ Aα−β ∥MTr(Q)(n+ 4lhb

2). Consequently,

∥ v ∥C ≤ [M∗
2 + 16M(c+ ϵ) ∥ ṽ ∥C ]eη2 .
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Since 16M(c+ ϵ)eη2 < 1, we have

∥ v ∥C≤
M∗

2 e
η2

1− 16M(c+ ϵ)eη2
<∞.

Thus the proof of boundedness of the set G is complete.
Remark 3.1. (H7)-(H8) are satisfied if there exist constants b1, b2, such that

∥ g(ϕ) ∥α≤ b1 + b2 ∥ ϕ ∥C , ϕ ∈ C (15)

or there exist constants c1, c2, µ ∈ [0, 1), such that

∥ g(ϕ) ∥α≤ c1 + c2 ∥ ϕ ∥µC , ϕ ∈ C. (16)

4. Application

As an application, we consider the stochastic partial integrodifferential equation
of the following form

dz(t, x) =
∂2

∂x2

[
z(t, x) +

∫ t

0

b(t− s)z(t, x)ds

]
dt

+

[
f1

(
t, x,

∫ π

0

z(sin t, x)dx,

∫ t

0

f2(t, s, z(sin s, x))ds

)]
w(t), (17)

0 ≤ t ≤ 1, 0 ≤ x ≤ π,

z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ 1, (18)

z(0, x) +

p∑
i=0

∫ π

0

k(x, y)z
1
3 (ti, y)dy = z0(x), 0 ≤ x ≤ π, (19)

where w(t) denotes a one-dimensional standard Wiener process, and there exists a
constant K1 such that |b(t − s)| ≤ K1 and p is a positive integer, 0 < t0 < t1 <
· · · < tp < 1, z0(x) ∈ L2([0, π]) is F0 -measurable and satisfies E ∥ z0 ∥2<∞.

Let H = L2([0, π]) with the norm ∥ · ∥ . Define the operator A : D(A) ⊂ H → H
given by Au = u′′ with

D(A) := H2
0 ([0, π]) = {u ∈ X : u′′ ∈ X,u(0) = u(π) = 0}.

Then A generates a strongly continuous semigroup that is analytic, and resolvent
operator R(t) can be extracted from this analytic semigroup(see [18]). Furthermore,
A has a discrete spectrum; the eigenvalues are −n2, n ∈ N, with the corresponding

normalized eigenvectors zn(x) =
√

2
π sin(nx). Then the following properties hold:

(i) If u ∈ D(A), then

Au =
∞∑

n=1

n2⟨u, zn⟩zn,

(ii) For each u ∈ H,

A− 1
2u =

∞∑
n=1

1

n
⟨u, zn⟩zn.

(iii)The operator A
1
2 is given by

A
1
2u =

∞∑
n=1

n⟨u, zn⟩zn
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on the space D(A
1
2 ) = {u(·) ∈ H,

∞∑
n=1

n⟨u, zn⟩zn ∈ H} and ∥ A− 1
2 ∥= 1.

Lemma 4.1([29]). If m ∈ D(A
1
2 ), then m is absolutely continuous, m′ ∈ H and

∥ m′ ∥=∥ A 1
2m ∥.

Let H 1
2
:= (D(A

1
2 ), ∥ · ∥ 1

2
), where ∥ · ∥ 1

2
:=∥ A 1

2x ∥ for each x ∈ D(A
1
2 ).

We assume that the following conditions hold:
(a) The function k(x, y) is measurable and

η∗ =

(∫ π

0

∫ π

0

k2(x, y)dxdy

)1/2

<∞.

Moreover, for each y ∈ [0, π] the function x 7→ ∂
∂tk(x, y) is measurable, k(0, y) =

k(π, y) = 0,

η0 =

(∫ π

0

∫ π

0

(
∂

∂x
k2(x, y)

)2

dxdy

)1/2

<∞,

and there is a nonnegative function Θ ∈ L1(0, 1) such that | ∂
∂xk(x, y)| ≤ Θ(t) for

all (x, y) ∈ [0, 1]× [0, 1].
(b) The function f1 : [0, 1] × [0, π] × R × R → R is continuous and there exists

l
(1)
f1

> 0 such that

|f1(t, x, x1, y1, )− f1(t, x, x2, y2)| ≤ l
(1)
f1

[|x1 − x2|+ |y1 − y2|],

for all t ∈ [0, 1], xi, yi ∈ R, i = 1, 2.

(c) The function f2 : [0, 1] × [0, 1] × R → R is continuous and there exists l
(1)
f2

> 0
such that

|f2(t, s, y1)− f2(t, s, y2)| ≤ l
(1)
f2

|y1 − y2|,
for all (t, s) ∈ [0, 1]× [0, 1], yi ∈ R, i = 1, 2.

Let C denote the Banach space C([0, 1], L2(Ω,F ,H)) the family of all Ft-measurable,
C([0, 1])-valued random variables x with the norm

∥ x ∥C= sup
0≤t≤1

(E ∥ x(t) ∥21
2
)

1
2 .

Here we choose α = 1
2 . We can define respectively F : [0, 1] × H 1

2
× H 1

2
→

L(K;H), h : [0, 1]× [0, 1]×H 1
2
→ H 1

2
and g : C → H 1

2
by

F

(
t, z(σ(t)),

∫ t

0

h(t, s, z(σ(s)))ds

)
(x)

= f1

(
t, x,

∫ π

0

z(sin t, x)dx,

∫ t

0

f2(t, s, z(sin s, x))ds

)
,

h(t, s, z(σ(s)))(x) = f2(t, s, z(sin s, x)),

and

g(z)(·) =
p∑

i=0

K0z
1
3 (ti)(·), z ∈ C,

where K0 : H 1
2
→ H is defined by

(K0ξ0)(x) =

∫ π

0

k(x, y)ξ0(y)dy, ξ0 ∈ H 1
2
.
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Let σ(t) = sin t. Then Eq. (17)-(19) takes the abstract form (1)-(2). Moreover, for
zi, z̃i ∈ H 1

2
, i = 1, 2 and x ∈ [0, π], we have

∥ F (t, z1, z̃1)− F (t, z2, z̃2) ∥2

=

[(∫ π

0

∣∣∣∣f1(t, x, ∫ π

0

z1(sin t, x)dx,

∫ t

0

f2

(
t, s, z1(sin s, x))ds

)
− f1

(
t, x,

∫ π

0

z2(sin t, x)dx,

∫ t

0

f2(t, s, z2(sin s, x))ds

)∣∣∣∣2dx) 1
2
]2

≤
[
l
(1)
f1

((∫ π

0

(∫ π

0

z1(sin t, x)dx−
∫ π

0

z2(sin t, x)dx

)2

dx

) 1
2

+ l
(1)
f2

(∫ π

0

(∫ t

0

(z1(sin s, x)− z2(sin s, x))ds

)2

dx

) 1
2
)]2

≤ [l
(1)
f1

(π ∥ A− 1
2 ∥∥ A 1

2 (z1 − z2) ∥ +l
(1)
f2

∥ A− 1
2 ∥∥ A 1

2 (z1 − z2) ∥)]2

= [l
(1)
f1

(π + l
(1)
f2

)]2 ∥ z1 − z2 ∥21
2
.

This implies that F satisfies assumption (H2) and h satisfies assumption (H5).
Now, if z ∈ C, then

⟨g(z), zn⟩ =
1

n

√
2

n

⟨ p∑
i=0

∫ π

0

k(x, y)z
1
3 (ti, y)dy, cos(nx)

⟩
.

This shows that g take values in C in terms of properties (i) and (iii). Moreover,
by Lemma 4.1, we have

E ∥ g(z) ∥21
2
= E ∥ A 1

2 g(z)(·) ∥2= E ∥ g(z)′(·) ∥2

≤ E

wwww p∑
i=0

(K0z
1
3 (ti))

′(·)
wwww2

≤ p2
p∑

i=0

E ∥ (K0z
1
3 (ti))

′(·) ∥2

≤ p2
p∑

i=0

η20E ∥ z 1
3 (ti)) ∥2≤ p2η20

p∑
i=0

E[∥ A− 1
2 ∥∥ A 1

2 z
1
3 (ti) ∥]2

≤ p2η20

p∑
i=0

E ∥ z 1
3 (ti) ∥21

2
≤ p3η20 ∥ z 1

3 ∥2C ,

which verifies that g satisfies (H7)-(H8) with c = 0. Moreover, all the other con-
ditions stated in Theorem 3.1 are satisfied. Hence, the nonlocal Cauchy problem
(17)-(19) admits a mild solution on [0, 1].

Next we add the following assumptions:
(d) The function f1 : [0, 1] × [0, π] × R × R → R is continuous, f1(·, 0, ·, ·) =
f1(·, π, ·, ·) = 0, and it satisfies the differentiable with respect to the second argu-

ment and there exists l
(2)
f1

> 0 such that∣∣∣∣ ∂∂xf1(t, x, x1, y1)− ∂

∂x
f1(t, x, x2, y2)

∣∣∣∣ ≤ l
(2)
f1

[|x1 − x2|+ |y1 − y2|],

for all t ∈ [0, 1], xi, yi ∈ R, i = 1, 2.
Here we choose α = β = 1

2 . We can define F : [0, 1] × H 1
2
× H 1

2
→ L(K;H 1

2
),

and similar computation of g shows that F is a function from [0, 1]×H 1
2
×H 1

2
into
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L(K;H 1
2
). Moreover, for zi, z̃i ∈ H 1

2
, i = 1, 2 and x ∈ [0, π], we have

∥ F (t, z1, z̃1)− F (t, z2, z̃2) ∥21
2

=

[(∫ π

0

∣∣∣∣ ∂∂xf1
(
t, x,

∫ π

0

z1(sin t, x)dx,

∫ t

0

f2(t, s, z1(sin s, x))ds

)
− ∂

∂x
f1

(
t, x,

∫ π

0

z2(sin t, x)dx,

∫ t

0

f2(t, s, z2(sin s, x))ds

)∣∣∣∣2dx) 1
2
]2

≤
[
l
(2)
f1

((∫ π

0

(∫ π

0

z1(sin t, x)dx−
∫ π

0

z2(sin t, x)dx

)2

dx

) 1
2

+ l
(1)
f2

(∫ π

0

(∫ t

0

(z1(sin s, x)− z2(sin s, x))ds

)2

dx

) 1
2
)]2

≤ [l
(2)
f1

(π ∥ A− 1
2 ∥∥ A 1

2 (z1 − z2) ∥ +l
(1)
f2

∥ A− 1
2 ∥∥ A 1

2 (z1 − z2) ∥)]2

= [l
(2)
f1

(π + l
(1)
f2

)]2 ∥ z1 − z2 ∥21
2
.

Hence F satisfies assumption (H4). By Theorem 3.3, the nonlocal Cauchy problem
(17)-(19) admits a mild solution on [0, 1] under the above assumptions.
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