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SHEHU TRANSFORM ADOMIAN DECOMPOSITION METHOD

FOR THE SOLUTION OF SYSTEMS OF INTEGER AND

FRACTIONAL ORDER DIFFERENTIAL EQUATIONS

B. M. YISA, A. T. TIAMIYU

Abstract. This paper is concerned with the solution of system of nonlinear
fractional and integer order ordinary and partial dierential equations. To
achieve that aim, a method of solution is proposed which is developed from an

integral transform and the well-known Adomian decomposition method. The
Shehu transform Adomian decomposition method (STADM) proposed leverage

on the unique advantage that Shehu transform, unlike Laplace transform, is

applicable to both constant and variable coecient problems. The nonlinearity
in all its forms is handled by developing corresponding Adomian polynomials,

while the fractional order derivatives are interpreted in Caputo sense. The

proposed method is applied to some problems from the literature and in most
cases gives the exact solutions. The results are equally presented in 3D graphs

for ease of visualization.

1. Literature Review

Most phenomena in nature are described by nonlinear dierential equations, ma-
jority of which defy analytical methods of solution. Scientists therefore came up
with a class of methods called semi analytical methods. This family of methods
produces exact solutions whenever such exist in closed form. In the event that the
problem lacks exact solution, the truncated series obtained through the methods
gives better numerical approximation than the most accurate numerical methods.
One of such methods is Adomian Decomposition Method (ADM) that was rst in-
troduced by an American mathematician Gorge Adomian ([1], [2]). The method has
been used to handle linear and nonlinear algebraic, dierential, integral, integro-
dierential, delay-dierential and partial dierential equations ([4],[18],[19]). The
modications of ADM have acquired a lot of remarkable results and have been
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applied to various kinds of higher order ordinary and partial dierential equations
and integral equations ([20], [21]). The method has been widely used for a class of
deterministic and stochastic problems in scientic research elds [21].
Integral transforms are commonly used to convert a function to another in expec-
tation to simplify computations. Integral transforms are used in solving ordinary
dierential equations (ODEs), partial dierential equations (PDEs), and fractional
dierential equations (FDEs), one of the well known integral transforms is the
Laplace transform. The limitations of this transform necessitated the development
of some new transforms such as Shehu transform, Sumudu transform and so on
([3],[14],[17]).
In spite of the tremendous advantages derived in the results obtained when physical
phenomena are modelled into integer order dierential equations, there still exist a
lot of real life situations that can hardly be eectively represented mathematically
except through fractional order dierential and integral equations. In recent years,
mathematicians have used the Adomian decomposition method with various inte-
gral transforms such as Laplace transform, Shehu transform, Samudu transform
and so on ([11],[12],[16]). For instance, [18] developed Shehu transform Adomian
decomposition method (STADM) algorithm and applied it to solve some linear
and nonlinear integral and integro-dierential problems. ([7],[8],[9],[13]) solved sys-
tem of fractional order dierential equations using Laplace Adomian decomposition
method (LDM) and modied Laplace Adomian decomposition method (MLDM).
The present work presents a method of solution that leveraged on the advantage
that Shehu transform is applicable to both constant and variable coecients dif-
ferential equations, unlike Laplace transform. Thus, Shehu transform is combined
with Adomian decomposition method for the solutions of systems of both integer
and fractional order partial and ordinary dierential equations.

2. Fractional calculus

The fractional calculus unies and generalizes the notions of classical calculus
([5],[6],[10],[16]). Fractional calculus is almost as old as calculus itself, and has
attracted the attention of researchers in the eld of mathematical physics, mathe-
matical biology and mathematical analysis because of the precision it brings when
physical problems are modelled with it. There are several denitions associated
with fractional calculus. The denitions adopted in this research are discussed in
the sequel.

2.1. The Riemann-Liouville Integral and Derivative. The Riemann-Liouville
integral of order ξ ≥ 0 for continuous function g on [a, b] is dened by

Jξg(t) =
1

Γ(ξ)

∫ t

0

(t− τ)ξ−1g(τ)dτ, ξ > 0, a < t < b, (1)

where Gamma function of ξ is

Γ(ξ) =

∫ ∞

0

e−ttξ−1dt. (2)

And the result in (1) can equivalently be written as

Jξtη =
Γ(η + 1)

Γ(η + ξ + 1)
tη+ξ. (3)
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The Riemann-Liouville fractional derivative is given as

Dξ
t g(t) =

1

Γ(n− ξ)

dn

dtn

∫ t

a

(t− τ)n−α−1f(τ)dτ (4)

where n is the smallest integer greater than or equal to ξ, Γ is the usual gamma
function, and a is a constant [5].

2.2. The Caputo Fractional Derivative. The Caputo fractional derivative op-
erator Dξ of order ξ is dened as follows:

Dξg(t) =
1

Γ(n− ξ)

∫ t

0

(t− τ)n−ξ−1g(n)(τ)dτ, ξ > 0 (5)

where r − 1 < ξ < r, r ∈ N and t > 0.
This can as well be written as

Dξtη =
Γ(η + 1)

Γ(η − ξ + 1)
tη−ξ. (6)

3. Brief Review of Adomian Decomposition Method

In this section, we shall look into a concise review of ADM because the method
is combined with the Shehu transform later in what follows.
Consider the initial value problem of the form

L(u) +R(u) +N(u) = f(x) (7)

with the initial conditions

u(k)(0) = ck k = 0, 1, 2, ..., n− 1 (8)

where L is the highest order linear operator, N is the nonlinear operator, R is the
remaining linear term and f(x) is the inhomogeneous source term.
ADM algorithm requires that L, as a dierential operator, has an inverse L−1 which
is its integral equivalence.
Therefore

L(u) = f(x)−R(u)−N(u) (9)

Applying L−1 to both sides of (2.9) gives

u(x) = L−1[f(x)]− L−1[R(u)]− L−1[N(u)] (10)

Let the series solution of u(x) be given as

u(x) =

n∑

i=o

ui(x) (11)

Then
n∑

i=o

ui(x) = L−1[f(x)]− L−1[R(

n∑

i=o

ui(x))]− L−1[

n∑

i=o

An(x))] (12)

Thus
u0(x) = Ψ0 + L−1[f(x)], (13)

where

Ψ0 = u(0) + xu
′
(0) +

x2

2!
u

′′
(0) + ... (14)

and
un+1(x) = −L−1[R(un)]− L−1[An(x)], (15)
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where An(x) are the Adomian polynomials derived for the nonlinear terms in the
IVP. The Adomian polynomials are obtained from the formula

An =
1

n!


dn

dλn
N

( n∑

i=0

λiui

)

λ=0

, n = 0, 1, 2, ... (16)

And the nal solution of the IVP is given as

u(x) =

∞∑

n=o

un(x) (17)

See ([1],[2],[15]).

4. Brief Review of Shehu Transform

This section will briey review the denition and the derivative of Shehu trans-
form.

4.1. Denition. The Shehu transform of function v(x) of exponential order is
dened over the set of functions

P =


v(x) : ∃N, ξ1, ξ2 > 0, v(x) < Nexp

 x
ξi


, if x ∈ (−1)i[0,∞)



(18)
by the integral

Sv(x) = V (s, u) =

∫ ∞

0

e−( s
u )xv(x)dx, (19)

Sv(x) = lim
α−→0

∫ α

0

e−( s
u )xv(x)dx, s > 0, u > 0 (20)

The integral in (19) converges provided that the limit of the integral exists and
diverges otherwise.
The inverse of Shehu transform is given by
S−1V (s, u) = v(x), x ≥ 0,
which can still be stated as

v(x) = S−1V (s, u) =
1

2πi

∫ α+i∞

α−i∞

1

u
exp(

s
u )x V (s, u)ds, (21)

where s and u are the Shehu transform variables, and α is a real constant and
integral in (21) is taken along s = α in the complex plane s = x+ iy.

4.2. Shehu Transform of Derivatives. The Shehu transform of derivatives of a
given function f(x) with Shehu transform F (s, u) is dened as

Sf ′
(x) = ( su )F (s, u)− f(0).

The nth order derivative is given as

Sf (n)(x) =

(
sn

un

)
F (s, u)−

n−1∑

i=0

(
s

u

)n−(i+1)

f (i)(0), (22)

where F (s, u) is the Shehu transform of the function f(x). (See [12] for additional
information).
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5. Statement of the Problem

In this chapter, the algorithm for Shehu transform Adomian decomposition
method is developed and applied to some integer order partial dierential equa-
tions.

6. Methodology: Shehu Transform Adomian Decomposition Method

Consider the nonlinear system of fractional dierential equations

Dαjuj(x) = Lj(u1, u2, u3, ..., ur) +Nj(u1, u2, u3, ..., ur) (23)

with associated initial conditions

u
(i)
j (0) = cji , j = 1, 2, 3, ..., n. i = 0, 1, 2, ..., n− 1 and ij−1≤α≤ij (24)

where Lj is the linear operator, Nj is the nonlinear operator andDα is the fractional
dierential operator.
To solve the system using Shehu transform Adomian decomposition method, we
rst apply Shehu transform to both sides . Thus we have,

SDαjuj(x) = SLj(u1, u2, u3, ..., ur)+ SNj(u1, u2, u3, ..., ur) (25)

Applying the Shehu transform derivative, we have

SDαjuj(x) =

(
s

v

)αj

Uj(s, v)−
n−1∑

k=0

(
s

v

)αj−(k+1)

u
(k)
j (0) (26)

Substituting equation (26) into (25), we have
(
s

v

)αj

Uj(s, v)−
n−1∑

k=0

(
s

v

)αj−(k+1)

u
(k)
j (0) = SLj(u1, u2, u3, ..., ur) (27)

+ SNj(u1, u2, u3, ..., ur)
which implies

(
s

v

)αj

Uj(s, v) =

n−1∑

k=0

(
s

v

)αj−(k+1)

u
(k)
j (0) + SLj(u1, u2, u3, ..., ur)

+ SNj(u1, u2, u3, ..., ur) (28)

Dividing through by

s
v

αj
, we have

Uj(s, v) =

(
v

s

)αj n−1∑

k=0

(
s

v

)αj−(k+1)

u
(k)
j (0) +

(
v

s

)αj

SLj(u1, u2, u3, ..., ur)

+

(
v

s

)αj

SNj(u1, u2, u3, ..., ur)
(29)

Applying the Adomian decomposition method to the system, we have

uj(x) =

∞∑

k=0

uj,k(x), j = 1, 2, 3, ..., n (30)

and the nonlinearity is decomposed as

Nj(u1, u2, u3, ..., ur) =
∞∑

k=0

Aj,k, j = 1, 2, 3, ..., n (31)
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where Aj,m are the Adomian polynomials dened by

Aj,m =
1

m!


dm

dλm
Nj

( m∑

k=0

λku1,k,
m∑

k=0

λku2,k,
m∑

k=0

λku3,k, ...,
m∑

k=0

λkur,k

)

λ=0

, (32)

m = 0, 1, 2, ...

Substituting equation (31) and (32) into equation (29), we have

∞∑

k=0

Uj,k(s, v) =

(
v

s

)αj n−1∑

k=0

(
s

v

)αj−(k+1)

u
(k)
j (0)

+

(
v

s

)αj

SLj(

∞∑

k=0

u1,k,

∞∑

k=0

u2,k,

∞∑

k=0

u3,k, ...,

∞∑

k=0

ur,k)

+

(
v

s

)αj

SNj(

∞∑

k=0

Aj,k) (33)

We now apply the linearity of Shehu transform and generate the recursive formula
for the system as follows

Uj,0(s, v) =

(
v

s

)αj n−1∑

k=0

(
s

v

)αj−(k+1)

u
(k)
j (0) (34)

Uj,1(s, v) =

(
v

s

)αj

SLj(u1,0, u2,0, u3,0, ..., ur,0)+
(
v

s

)αj

SNj(Aj,0) (35)

Uj,2(s, v) =

(
v

s

)αj

SLj(u1,1, u2,1, u3,1, ..., ur,1)+
(
v

s

)αj

SNj(Aj,1) (36)

and

Uj,k+1(s, v) =

(
v

s

)αj

SLj(u1,k, u2,k, u3,k, ..., ur,k)+
(
v

s

)αj

SNj(Aj,k) (37)

Taking the inverse Shehu transform of both sides of the system, we have

uj,0(x) = S−1

(
v

s

)αj n−1∑

k=0

(
s

v

)αj−(k+1)

u
(k)
j (0)


(38)

uj,1(x) = S−1

(
v

s

)αj

SLj(u1,0, u2,0, u3,0, ..., ur,0)

+ S−1

(
v

s

)αj

SNj(Aj,0)


(39)

uj,2(x) = S−1

(
v

s

)αj

SLj(u1,1, u2,1, u3,1, ..., ur,1)

+ S−1

(
v

s

)αj

SNj(Aj,1)

,

(40)

j = 1, 2, 3, ...n

and

uj,k+1(x) = S−1

(
v

s

)αj

SLj(u1,k, u2,k, u3,k, ..., ur,k)

+S−1

(
v

s

)αj

SNj(Aj,k)


(41)
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7. Numerical Examples on Integer Order Partial Differential
Equations

7.1. List of Problems. The algorithm is applied to some selected nonlinear partial
dierential equation. The problems considered here are sourced from [8] and are as
presented below:

Problem 1: Consider the system of nonlinear integer order PDE

ut − uxx − 2uux + (uv)x = 0, u(x, 0) = sinx

vt − vxx − 2vvx + (uv)x = 0, v(x, 0) = sinx

Problem 2: Consider the system of nonlinear integer order PDE

ut + (
1

2
(
1

2
u2 + v2) + v)x = 0, u(x, 0) =

2x

10

vt + (uv)x = 0, v(x, 0) = −110

100

Problem 3: Consider the system of nonlinear integer order PDE

ut + (v2)x = 1− 2t+ 2x, u(x, 0) = x

vt − vxxx + (uv)x = 1− 2x, v(x, 0) = −x

7.2. Solutions to the Listed Problems. Here, we present the complete solution
of problem 1, while the solutions to problems 2 and 3 are presented in abridged
forms.
Solution to Problem 1

ut − uxx − 2uux + (uv)x = 0 (42)

vt − vxx − 2vvx + (uv)x = 0 (43)

Taking the Shehu transform of both sides of (42) and (43) gives

Sut − S
{∂2u

∂x2

}
− S2uux+ S(uv)x = S0 (44)

Svt −
{∂2v

∂x2

}
− S2vvx+ S(uv)x = S0 (45)

which are the same as

S
{∂u

∂t

}
− S

{∂2u

∂x2

}
− S2uux+ S(uv)x = 0 (46)

S
{∂v

∂t

}
−
{∂2v

∂x2

}
− S2vvx+ S(uv)x = 0 (47)

But

S
{∂u

∂t

}
=

 s

u


U(x, (s, v))− u(x, 0) (48)

S
{∂v

∂t

}
=

 s

u


V (x, (s, v))− v(x, 0) (49)

Substituting equations (48) and (49) in (46) and (47) respectively, we have

s

u
U(x, (s, v))− u(s, v)− Suxx − S2uuxx − S2uux+ S(uv)x = 0 (50)

s

u
V (x, (s, v))− v(s, v)− Svxx − S2vvxx − S2vvx+ S(uv)x = 0 (51)
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Thus

U(x, (s, v)) =
u

s
u(x, 0) +

u

s
Suxx+

u

s
S2uux −

u

s
S(uv)x (52)

V (x, (s, v)) =
u

s
v(x, 0) +

u

s
Svxx+

u

s
S2vvx −

u

s
S(uv)x (53)

The series solutions are:
u(x, t) =

∞
n=0 un(x, t) and v(x, t) =

∞
n=0 vn(x, t).

And also let
uux =

∞
n=0 An, (uv)x =

∞
n=0 Bn and vvx =

∞
n=0 Cn

A0 = u0u0x, A1 = u0u1x + u1u0x, A2 = u0u2x + u1u1x + u2u0x

B0 = u0v0x + u0xv0
B1 = u0v1x + u1v0x + u1xv0x + u0xv1
B2 = u0v2x + u1v1x + u2v0x + u2xv2 + u0xv1

U(x, (s, u)) =
u

s
sinx+

u

s
(uxx) +

u

s
S
{
2

∞∑

n=0

An

}
− S

{ ∞∑

n=0

Bn

}
(54)

V (x, (s, u)) =
u

s
sinx+

u

s
(vxx) +

u

s
S
{
2

∞∑

n=0

Cn

}
− S

{ ∞∑

n=0

Bn

}
(55)

The initial approximations for u(x, t) and v(x, t) are obtained as:
U0(x, (s, v)) =

u
s sinx, V0(x, (s, v)) =

u
s sinx.

Taking the inverse Shehu transform of both sides, we have
u0(x, t) = sinx, v0(x, t) = sinx.
Also

Un+1(x, (s, v)) =
u

s
Sunxx+

u

s
S
{
2

∞∑

n=0

An

}
− u

s
S
{ ∞∑

n=0

Bn

}
(56)

Vn+1(x, (s, v)) =
u

s
Svnxx+

u

s
S
{
2

∞∑

n=0

Cn

}
− u

s
S
{ ∞∑

n=0

Bn

}
,

n = 0, 1, 2, ... (57)

When n = 0

U1(x, (s, v)) =
u

s
Su0xx+

u

s
S2A0 −

u

s
SB0

V1(x, (s, v)) =
u

s
Sv0xx+

u

s
S2C0 −

u

s
SB0

U1(x, (s, v)) =
u

s
S− sinx+ u

s
S2u0.u0x −

u

s
Su0v0x + u0xv0

U1(x, (s, v)) =
u

s
S− sinx+ u

s
S2(sinx)(cosx)

− u

s
Ssinx. cosx+ cosx. sinx

U1(x, (s, v)) =
u

s
S− sinx+ u

s
S2 sinx cosx − u

s
S2 sinx cosx

U1(x, (s, v)) = −u

s
Ssinx.
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Taking the inverse Shehu transform, we have

u1(x, t) = S−1
[
− u2

s2
sinx

]

u1(x, t) = −t sinx

V1(x, (s, v)) =
u

s
Sv0xx+

u

s
S2v0v0x −

u

s
Su0v0x + u0xv0

V1(x, (s, v)) =
u

s
S− sinx+ u

s
S2(sinx)(cosx)

− u

s
Ssinx.cosx+ cosx.sinx

V1(x, (s, v)) =
u

s
S− sinx+ u

s
S2 sinx cosx − u

s
S2 sinx cosx

V1(x, (s, v)) =
u

s
S− sinx

Taking the inverse Shehu transform

v1(x, t) = S−1
[
− u2

s2
sinx

]

u1(x, t) = −t sinx

When n = 1

U2(x, (s, v)) =
u

s
Su1xx+

u

s
S2A1 −

u

s
SB1

U2(x, (s, v)) =
u

s
St sinx+ u

s
S2(u0u1x + u1u0x)

− u

s
Su0v1x + v0u1x + u1v0x + u0xv1

U2(x, (s, v)) =
u

s
St sinx+ u

s
S2(u0u1x + u1u0x)

− u

s
Ssinx(− cosx) + (sinx)(− sinx)

+ (− sinx)(cosx) + (cosx)(− sinx)
U2(x, (s, v)) =

u

s
St sinx+ u

s
S2(sinx)(− cosx)

+ 2(− sinx)(cosx) − u

s
S4(− sinx cosx)

u2(x, (s, v)) =
u

s
St sinx

Taking the inverse Shehu transform gives

u2(x, t) = S−1[
u3

s3
Ssinx]

=
t2

2!
sinx

Similarly

V2(x, (s, v)) =
u

s
Sv1xx+

u

s
S2C1 −

u

s
SB1

V2(x, (s, v)) =
u

s
St sinx+ u

s
S2(v0v1x + v1v0x)

− u

s
Su0v1x + v0u1x + u1v0x + u0xv1
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V2(x, (s, v)) =
u

s
St sinx+ u

s
S2(sinx)(− cosx) + 2(− sinx)(cosx)

− u

s
S(sinx)(− cosx) + (sinx)(−cosx) + (cosx)(− sinx)

V2(x, (s, v)) =
u

s
St sinx+ u

s
S4(− sinx cosx)

− u

s
S4(− sinx cosx)

V2(x, (s, u)) =
u

s

[u2

s2
sinx

]

Taking the inverse Shehu transform of both sides

v2(x, t) = S−1
[u
s
(
u2

s2
sinx)

]

v2(x, t) =
t2

2
sinx

Following the same procedure for n = 2, we get

u3(x, t) = − t3

3!
sinx

v3(x, t) =
t3

3!
sinx.

Therefore, the series solutions of the system are

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + u4(x, t) + . . .

= sinx− t sinx+
t2

2!
sinx− t3

3!
sinx+

t4

4!
sinx+ . . .

= sinx


1− t+

t2

2!
− t3

3!
+

t4

4!
+ . . .



= e−t sinx

v(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + v4(x, t) + . . .

= sinx− t sinx+
t2

2!
sinx− t3

3!
+

t4

4!
sinx+ . . .

= sinx


1− t+

t2

2!
− t3

3!
+

t4

4!
+ . . .



= e−t sinx

Solution to Problem 2
Taking the Shehu transform of both sides of the system, we have

S
{∂u

∂t

}
+

1

4
S
{ ∂

∂x
u2

}
+

1

2
S
{ ∂

∂x
v2
}
+ S

{∂v

∂x

}
= 0

S
{∂v

∂t

}
+ S

{ ∂

∂x
(uv)

}
= 0

 s
v


U(x, (s, v))− u(x, 0) +

1

4
S
{ ∂

∂x
u2

}
+

1

2
S
{ ∂

∂x
v2
}
+ S

{∂v

∂x

}
= 0

 s
v


V (x, (s, v))− v(x, 0) + S

{ ∂

∂x
(uv)

}
= 0
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Applying the given initial conditions, and dividing through by ( sv ), we have

U(x, (s, v)) =
2x

10

v
s


− 1

4

v
s


S
{ ∂

∂x
u2

}
− 1

2

v
s


S
{ ∂

∂x
v2
}
− (

v

s
)S

{∂v

∂x

}

V (x, (s, v)) = −110

100

v
s


−
v
s


S
{ ∂

∂x
(uv)

}

The series solutions are
U(x, (s, v)) =

∞
n=0 Un(x, (s, v)), V (x, (s, v)) =

∞
n=0 Vn(x, (s, v))

and the nonlinearities are decomposed by Adomian method as
u2 =

∞
n=0 An, v

2 =
∞

n=0 Bn and uv =
∞

n=0 Cn.
We therefore obtained the nal pair of series solutions as:

u(x, t) =
2x

10

[
1− t

10
+
 t

10

2

−
 t

10

3

+ . . .
]

v(x, t) = −110

102

[
1− 2t

10
+

3t2

102
− 4t3

103
+ . . .

]
.

Solution to problem 3
The pair of series solutions to the problem are obtained through similar procedure
as presented in Problems 1 and 2 as:

u(x, t) = u0(x, t) + u1(x, t) + . . .

= x+ t+−t2 + 2xt− 2xt+ t2 − 4xt2 +
4t3

3
− 8xt3

3
v(x, t) = v0(x, t) + v1(x, t) + . . .

= −x+ x− 2xt+ 2xt− t3

3
+ xt2 − t4

2
+

sint3

3

8. Numerical Examples on Fractional Order Ordinary Differential
Equations

In this section, some problems from [13] are solved using the developed algorithm
(STADM)

8.1. List of Problems Solved Using STADM.

Problem 1: Consider the system of nonlinear fractional ODE

Dαy1(t) = y1(t) + [y2(t)]
2, 1 < α ≤ 2, y1(0) = 0, y′1(0) = 1 (58)

Dβy2(t) = y1(t) + 5y2(t), 2 < β ≤ 3, y2(0) = 0, y′2(0) = 1, y′′2 (0) = 1.
(59)

Problem 2: Consider the system of nonlinear fractional ODE

Dαy1(t) =
1

2
y1(t), y1(0) = 1,

Dβy2(t) = y2(t) + y21(t), y2(0) = 0, 0 < α,β ≥ 1.

Problem 3: Consider the system of nonlinear fractional ODE

Dαx(t) = t2 +
y2

4
, x(0) = 0, α = β =

1

2
.

Dβy(t) = t2 +
x2

4
, y(0) = 1.
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8.2. Solution to the listed problems. Solution to Problem I
We rst take Shehu transform of both sides of the system

SDαy1(t) = Sy1(t)+ Sy22(t)
SDβy2(t) = Sy1(t)+ 5Sy2(t).

 s
v

α

Y1(s, v)−
 s
v

α−1

y1(0)−
 s
v

α−2

y′1(0) =

Y1(s, v) + Sy22(t)
 s
v

β

Y2(s, v)−
 s
v

β−1

y2(0)−
 s
v

β−2

y′2(0)−
 s
v

β−3

y′′2 (0) =

Y1(s, v) + 5Y2(s, v)

Applying the initial conditions and dividing through by ( sv )
α and ( sv )

β respectively,
we have

Y1(s, v) = (
v

s
)2 + (

v

s
)αY1(s, v) + (

v

s
)αSy22(t).

Y2(s, v) = (
v

s
)2 + (

v

s
)3 + (

v

s
)βY1(s, v) + 5(

v

s
)βY2(s, v).

We have Y1 =
∞

n=0 Y1,n, Y2 =
∞

n=0 Y2,n and y22 =
∞

n=0 An where An is the set
Adomian polynomials.
Therefore,

y1 = t+
tα+1

Γ(α+ 2)
+

2!tα+2

Γ(α+ 3)
+

3!tα+3

Γ(α+ 4)
+

4!tα+4

4Γ(α+ 5)
+

t2α+1

Γ(2α+ 2)

+
2!t2α+2

Γ(2α+ 3)
+

3!t2α+3

Γ(2α+ 4)
+

4!t2α+4

4Γ(2α+ 5)

+
12Γ(β + 3)tα+β+2

Γ(β + 2)Γ(β + α+ 3)
+

6Γ(β + 4)tα+β+3

Γ(β + 2)Γ(β + α+ 4)

+
5Γ(β + 5)tα+β+4

Γ(β + 3)Γ(β + α+ 5)

y2 = t+
t2

2!
+

6tβ+1

Γ(β + 2)
+

5tβ+2

Γ(β + 3)
+

tα+β+1

Γ(α+ β + 2)

+
2!tα+β+2

Γ(α+ β + 3)
+

3!tα+β+3

Γ(α+ β + 4)

+
4!tα+β+4

4Γ(α+ β + 5)
+

30t2β+1

Γ(2β + 2)
+

25t2β+2

Γ(2β + 3)

Solution to Problem 2
Taking the Shehu transform of the system

SDαy1(t) =
1

2
Sy1(t)

SDβy2(t) = Sy2(t)+ Sy21(t).
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We have  s
v

α

Y1(s, v)−
 s
v

α−1

y1(0) =
1

2
Y1(s, v)

 s
v

β

Y2(s, v)−
 s
v

β−1

y2(0) = Y2(s, v) + Sy21(t)

Applying the initial conditions, re-arranging and dividing through by ( sv )
α and ( sv )

β

respectively, we have

Y1(s, v) =
v

s
+

1

2
(
v

s
)αY1(s, v)

Y2(s, v) = (
v

s
)β [Y2(s, v) + Sy21(t)]

Let Y =
∞

n=0 Yn and y21 =
∞

n=0 A1,n, we have
∞∑

n=0

Y1,n = (
v

s
) +

1

2
(
v

s
)α[

∞∑

n=0

A1,n]

∞∑

n=0

Y2,n = (
v

s
)β [

∞∑

n=0

Y2,n +
∞∑

n=0

A1,n]

Following the same procedure as in Problem 1, we arrived at the following solutions
for n = 0, 1, 2, ...

y1,0 = 1, y2,0 = 0.

y1,2 =
1

4

t2α

Γ(2α+ 1)
, y2,2 =

t2β

Γ(2β + 1)
+

tβ+α

Γ(β + α+ 1)
.

y1,3 =
1

8

t3α

Γ(3α+ 1)
, y2,3 =

t3β

Γ(3β + 1)
+

tα+2β

Γ(α+ 2β + 1)
+

Γ(2α+ 1)t2α+β

Γ2(α+ 1)Γ(2α+ β + 1)
.

Solution to Problem 3
The following results are obtained for the problem for n = 0, 1, 2, ... as follows

x0(t) =
2!tα+2

Γ(α+ 3)
, y0(t) = 1 +

2!tβ+2

Γ(β + 3)

x1 =
1

4

tα

Γ(α+ 1)
+

tα+β+2

Γ(α+ β + 3)
+

Γ(2α+ 5)tα+2β+4

Γ2(β + 3)Γ(α+ 2β + 5)
,

y1 =
Γ(2α+ 5)t2α+β+4

Γ2(α+ 1).Γ(2α+ β + 5)
.

Thus, the solutions of x(t) and y(t) are,

x(t) = x0(t) + x1(t) + . . .

=
tα

4
Γ(α+ 1) +

2!tα+2

Γ(α+ 3)
+

tα+β+2

Γ(α+ β + 3)
+

Γ(2α+ 5)tα+2β+4

Γ2(α+ 3)Γ(α+ 2β + 5)
+ . . .

y(t) = y0(t) + y1(t) + . . .

= 1 +
2!tβ+2

Γ(β + 3)
+

Γ(2α+ 5)t2α+β+4

Γ2(α+ 3)Γ(2α+ β + 5)
+ . . .
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9. Results

9.1. 3D Graphs for PDEs.

Figure 1. 3D Approximate solution to problem 1 by STADM

Problem 1: Comparison between STADM and the method in the literature
t  LADM y1(t) STADMy1(t) LADMy2(t) STADM y2(t)
0.00 0.000 0.00000 0.000 0.00000
0.10 0.100 0.10018 0.105 0.10503
0.20 0.201 0.20149 0.220 0.22041
0.30 0.305 0.30533 0.347 0.34714
0.40 0.413 0.41347 0.487 0.48688
0.50 0.528 0.52815 0.642 0.64215
0.60 0.653 0.65226 0.817 0.81635
0.70 0.791 0.78950 1.015 1.01393
0.80 0.949 0.94464 1.247 1.24056
0.90 1.130 1.12381 1.519 1.50328
1.00 1.316 1.33492 1.844 1.81086
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Figure 2. 3D Approximate solution to problem 2 by STADM

Figure 3. 3D Approximate solution to problem 3 by STADM

10. Discussion of Results and Summary

Six numerical examples have been presented for both system of nonlinear frac-
tional order ordinary dierential equations and system of nonlinear partial dier-
ential equations, three for each. The six problems are taken from the literature to
ascertain the reliability of this method. Problems 1, 2 and 3 under integer order
have been solved by [8] using Laplace Adomian decomposition method. The prob-
lems are solved using our proposed method, STADM, and the results produced are
the same. However for problem 3 under integer order, [8] used MLDM, but here, the
proposed method is applied directly but with more computational volume. How-
ever with the emergence of ”noise terms” from the rst and second iterations, we
arrived at almost the same results. For fractional order, the problems attempted
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9.2. 2D Graphs for Fractional ODEs.

y1 graph for problem 1 y2 graph for problem 1

y1 graph for problem 2 y2 graph for problem 2
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using our method were earlier solved by [13] using Laplace Adomian decomposition
method and modied Laplace Adomian decomposition method. Using the proposed
method, STADM, we were able to produce results that compete well with that in
the literature. Meanwhile, the results are depicted in 3D graphs for PDEs and
2D graphs for fractional ODEs. Therefore, STADM is a useful mathematical tool
for solving system of nonlinear fractional order ordinary dierential equations and
system of nonlinear partial dierential equations.
In conclusion, this paper developed a new approach to the solution of system of
nonlinear fractional order ordinary dierential equations as well as that of system
of nonlinear partial dierential equations. To achieve that, a Laplace-type integral
transform; Shehu Transform which has a unique advantage of being able to solve
both constant coecient as well as variable coecient problems was integrated into
the much celebrated Adomian Decomposition Method (ADM). The nonlinearities
encountered were handled seamlessly by the ADM. The new method developed was
subsequently applied to selected problems in the literature. The results obtained
compared well with those in the literature. In fact, the results are equally presented
in 3D graphs where applicable and in 2D graphs otherwise.

11. Conclusion

Shehu transform Adomian decomposition method has proven to be an eective
method of solution to nonlinear system of integer and fractional order dierential
eqautions. The method is therefore a useful mathematical tool for obtaining reli-
able solution of nonlinear systems of both integer and fractional order dierential
equations. In the future research, we shall extend the methods reported in this
paper to solutions of multi order fractional dierential equations.
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