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THERMAL DIFFUSION AND RADIATION AFFECT THE FREE
CONVECTION FLOW OF UNSTABLE

MAGNETOHYDRODYNAMIC PAST AN IMPULSIVELY
MOVING PLATE WITH RAMPED WALL TEMPERATURE AND

RAMPED WALL CONCENTRATION

L. RAMA MOHAN REDDY

Abstract. The present work investigated analytically the influence of thermal
diffusion and radiation on unsteady MHD, free connective incompressible flow
of viscous, electrically conducting fluid past an impulsively moving isothermal
porous plate and for the case of ramped wall temperature and ramped wall
concentration. The non-dimensional governing equations are solved in closed
form by using Laplace transform method. Exact solutions are obtained for
velocity, concentration and temperature. With the help of those expressions
- Skin friction, Sherwood and Nusselt numbers are derived. Various physical
parameters effect on the above flow equations are studied numerically with the
assistance of graphs and tables.

1. Introduction:

Recently Heat transport is one among the weather of natural convection where
the fluid motion doesn’t generate by external source (like a lover, pump, suction
device, etc.) but it generates with density differences within the fluid thanks to
temperature gradients. In free convection, fluid surrounding the warmth source
receives the warmth and it becomes less dense and rises.

Sahoo [1] studied effects of partial slip, Joule heating and viscous dissipation on
Von Karman flow and warmth transfer of an electrically conducting non-Newtonian
fluid. Raju et al [2] studied MHD convective flow through porous medium during a
horizontal channel with insulated and impermeable bottom wall up the presence of
viscous dissipation and Joule heating. S. Siddiqa, S. Asghar, and M. A. Hossain, et
al. [3] studied natural convection flow over an inclined flat plate with internal heat
generation and variable viscosity. M. S. Alam, M. A. Sattar and M. M. Rahman, et
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al. [4] investigated effects of variable suction and Thermophoresis on steady MHD
combined free-forced convective heat and mass transfer flow over a semi-infinite
permeable inclined plate within the presence of thermal radiation. Das SS, Das
JK, Satapathy A, Panda JP et al. [5] investigated mass transfer effects on MHD
flow and warmth transfer past a vertical porous plate through a porous medium
under oscillatory suction and warmth source. Ghosh SK, O.A. Beg et al [6] studied
theoretical analysis of radiative effects on transient free convection heat transfer past
a hot surface in porous media. Azzam GEA [7] analyzed radiation effects on the
MHD mixed free forced convective flow past a semi-infinite moving vertical plate for
top temperature differences. Bestman AR [8] studied free convection heat transfer to
steady radiating non-Newtonian MHD flow past a vertical porous plate. Mbeledogu,
I.U, Amakiri, A.R.C and Ogulu A et al. [9] studied unsteady MHD free convection
flow of a compressible fluid past a moving vertical plate within the presence of
radiative heat transfer. C. Y. Cheng [10] analyzed Soret and Dufour effects on heat
and mass transfer by natural convection from a vertical frustum during a fluid -
saturated porous medium with variable wall temperature and concentration. Singha,
K.G., Deka, P.K [11] considered skin-friction for unsteady free convection MHD
flow between two heated vertical parallel plates. C.H. Chen, Yunlin, Taiwan et
al. [12] studied heat and mass transfer in MHD flow by natural convection from a
semipermeable, inclined surface with variable wall temperature and concentration.

2. Formulation of the Problem:

Consider flow of a viscous incompressible electrically conducting fluid past an infinite
vertical plate embedded in a porous medium. x′ -axis is taken along the plate in
the upward direction and y′ -axis normal to plane of the plate in the fluid. The
fluid is permeated orm transverse magnetic field B0applied parallel to by a unif y′

-axis. Initially, at time t ≤ 0 , both the fluid and plate are at rest and at uniform
temperature T∞ and uniform concentration C∞At time t > 0 , the plate starts
moving along x′ direction with uniform velocity U0 , temperature and concentration
of the plate is raised or lowered to T∞ + (Tw − T∞)t/t0,C∞ + (Cw −C∞)t/t0,when
t ≤ t0 , and thereafter, for t > t0 , is maintained at uniform temperatureTw and
uniform concentration Cw Since plate is of infinite extent along X ′ and Z ′directions
and is electrically non-conducting all physical quantities, except pressure, are
functions of y′ and t only.

It is assumed that induced magnetic field produced by the fluid motion is negligible
in comparison to the applied one so that we consider magnetic field −→B ≡ (0, B0, 0).
This assumption is justified because magnetic Reynolds number is very small for
metallic liquids and partially ionized fluids [31]. Also no external electric field
is applied so the effect of polarization of fluid is negligible [31], so we assume
−→
E ≡ (0, 0, 0) .

Taking into account the assumptions made above, the governing equations for laminar
natural convection flow of a viscous incompressible electrically conducting fluid
past a vertical plate in a uniform porous medium, under Boussinesq approximation,
reduce to
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(1)
∂T
∂t = k

ρCp
∂2T
∂y′2
− 1

ρCp

∂qr
∂y (2)

∂C
∂t = Dm

∂2C
∂y′2

+D1
∂2T
∂y()2 (3)

where u, T , g, β, υ, σ, ρ, k,K,Cp, Dm, D1, C and qr are, respectively, fluid velocity
in x

′ direction, temperature of the fluid, acceleration due to gravity, volumetric
coefficient of thermal expansion, kinematic coefficient of viscosity, electrical conduc-
tivity, fluid density, thermal conductivity, permeability of porous medium, specific
heat at constant pressure, mass diffusion coefficient, thermal diffusion coefficient,
concentration of a fluid and radiative flux vector.

The initial and boundary conditions are

u = 0, T = T∞, C = C∞ for y′ ≥ 0 andt ≤ 0

u = U0 at y′ = 0, for t > 0,

T = T∞ + (Tw − T∞)t/t0 at y′ = 0 for0 < t ≤ t0

C = C∞ + (Cw − C∞)t/t0at y
′ = 0 for0 < t ≤ t0 (4)

T = Tw, C = Cwaty
′ = 0 for t > t0

u → 0, T → T∞, C → C∞asy′ →∞ for t > 0.

For an optically thick fluid, Azzam [5] pointed out that in addition to emission there
is also self-absorption and usually the absorption coefficient is wavelength dependent
and large [6] so we can adopt Roseland approximation for radiative flux vector qr .
The radiative flux vector qr under Roseland approximation becomes qr = − 4σ

3k
∂T ()4

∂y′

(5)

where k* is mean absorption coefficient and * is Stefan-Boltzmann constant. As-
suming small temperature difference between fluid temperature T and free stream
temperature T∞, T ()4 is expanded in Taylor series about a free stream temper-
ature T∞. Neglecting second and higher order terms in (T − T∞)we obtain
T ()4 ∼= 4T (

∞)3T − 3T (
∞)4. (6)

Making use of Esq. (6.5) and (6.6), in Eq. (6.2), we obtain

∂T
∂t = k

ρCp

∂2T ()
∂y′2

+ 1
ρCp

16σT (
∞)3

3k
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∂y′2

(7)

Introducing following non-dimensional quantities and Parameters

y = U0y
′

υ , f = u
U0
, t = U2

0 t
υ , θ = T−T∞

Tw−T∞
, ϕ = C−C∞

Cw−C∞
,Gc = gβυ(Cw−C∞)

U3
0

M = σB2
0υ

ρU2
0
,K = KU2

0
υ2 , Gr = gβυ(Tw−T∞)/U3

0 (8) Pr = ρυCp/k,R =

16σT (
∞)3/3kk, Sc = υ/DmandS0 = D1

υ
(Tw−T∞)
(Cw−C∞)

Equations (6.1), (6.3) and (6.7), in non-dimensional form, become
∂f
∂t = ∂2f

∂y2 −Mf − f
K +Grθ +Gcϕ (9)
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∂θ
∂t = (1+R)

Pr ∂
2θ
∂y2

, (10)

∂ϕ
∂t = 1

Sc
∂2ϕ
∂y2 + S0

∂2θ
∂y2 (11)

Where M; K; Gr; Gc, Pr; R; Sc; and S0 are magnetic parameter, permeability
parameter, Grashof number, Modified Grashof number, Prandtl number, radiation
parameter, Schmidt number and Soret number respectively.

According to the above non-dimensionalisation process, the characteristic time t0
can be defined as t0 = υ

U2
0

(12)

Using (6.8) and (6.12) the initial and boundary conditions (6.4), in non-dimensional
form, reduce to

f = 0, θ = 0, ϕ = 0 for y ≥ 0and t ≤ 0 (13a)

f= 1 at y = 0 for t > 0 (13b)

θ = t, ϕ = t for 0 < t ? 0 (13c)

θ = 1, ϕ = 1 at y = 0 for t > 1 (13d)

f → 0, θ → 0, ϕ→ 0asy →∞ for t > 0 (13e)

It is evident from Eqs. (9) (10) and (11) are coupled. Therefore, we can obtain first
the solution for fluid temperature θ (y, t) by solving Eq. (10) then we can obtain
the solution for fluid concentration ϕ (y, t) by solving Eq.(11) and then using these
two in Eq. (9) the solution for fluid velocity f (y, t) can be obtained. Applying
Laplace transforms technique, Eq. (9), (10) and (11) with the help of (13a) reduce
to
d2f
dy2 − (s+M1)f = −Grθ −Gcϕ (14)

d2θ
dy2 − saθ = 0 (15)

d2ϕ
dy2 − Sc.s.ϕ = −aS0Sc

s (1− e−s)e−y
√
as (16)

Where M1 and a are constants presented in Appendix-B

f(y, s) =
∫∞

0 f(y, t)e−stdt, θ(y, s) =
∫∞

0 θ(y, t)e−stdt and ϕ(y, s) =
∫∞

0 ϕ(y, t)e−stdt

s> 0 (s being Laplace transform parameter).

The boundary conditions (13b) to (13e) become

t> 0: f = 1
s , θ = (1− e−s)/s2, ϕ = (1− e−s)/s2 at y = 0,

f → 0, θ → 0, ϕ→ 0 asy →∞ (17)

The solution of Eq. (14), (15) and (16) subject to the boundary conditions (17) are
given by

θ(y, s) = (1−e−s)
s2 e−y

√
as (18)

ϕ(y, s) = (1−e−s)
s2 [(1 + Z)e−y

√
Sc.s − Ze−y

√
as] (19)



JFCA-2020/12(2)THERMAL DIFFUSION AND RADIATION AFFECT THE FREE CONVECTION FLOW5

f(y, s) = 1
se
−y
√
s+M1− (ZK5−K1)

(s−K2)
(1−e−s)

s2 [e−y
√
s+M1−e−y

√
as]+K3(1+Z)

(s−K4)
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s2 [e−y
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s+M1−

e−y
√
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Where M1, a, Z, K1, K2, K3, K4 and K5 are constants presented in Appendix-B.

Taking inverse Laplace transform of Eq. (18), (19) and (20), exact solution for the
fluid temperature θ (y, t) fluid concentration ϕ (y, t) and fluid velocity f (y, t) is
obtained and is expressed in the following form after simplification.

θ (y, t) = P(y, t) - H (t - 1) P(y, t - 1) (21)

ϕ (y, t) = R (y, t) - H (t - 1) R (y, t - 1) (22)

f(y, t) = (1/2)[e−y
√
M1erfc( y

2
√
t
−
√
M1t) + ey

√
M1erfc( y

2
√
t

+
√
M1t)]−

(23)

WhereP (y, t) = (ay
2

2 + t)erfc(y
√
a

2
√
t
)−

√
at
π ye

−ay2
4t
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2t )erfc(y

√
Sc

2
√
t

)− y
√
Sc√
πt
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2Sc
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2
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2
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And
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2
√
t
−

√
(K4 +M1)t) + ey
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2
√
t
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Where M1, a, Z, K1, K2, K3, K4 and K5 are constants presented in Appendix-B.

erfc(x) being the complementary error function defined by

erfc(x) = 1 - erf(x), erfc(x) = 2√
π

∫ x
0 e−η

2
dη and H(t - 1) is the unit step function.

In the absence of magnetic field (i.e. M = 0) and radiation (i.e. R = 0) the solution
(21),(22) and (23) agrees with the solution obtained by Chandran et al. [27] in
non-porous medium.

3. Solution in the case of an isothermal plate:

3. Solution in the case of an isothermal plate

Equations (21), (22) and (23) present analytical solution for the fluid temperature,
concentration and velocity for the flow of a viscous incompressible electrically
conducting fluid near a vertical moving plate with ramped temperature. In order
to highlight the effects of ramped temperature of the plate on the fluid flow, it
may be worthwhile to compare such a flow with the one near a moving plate with
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uniform temperature. Taking into consideration the assumptions made in Sect. 2,
the solution for fluid temperature, concentration and velocity for natural convection
flow near an isothermal moving plate is obtained and is presented in the following
form.

θ(y, t) = erfc(y
√
a

2
√
t
) (24)

ϕ(y, t) = (1 + Z)erfc(y
√
Sc

2
√
t

)− Zerfc(y
√
a

2
√
t
) (25)

f(y, t) = (1/2)[e−y
√
M1erfc( y

2
√
t
−
√
M1t) + ey

√
M1erfc( y

2
√
t

+
√
M1t)]+

(K1−ZK5
K2

)F1(y, t) + (1+Z)K3
K4

F2(y, t) (26)

Where

F1(y, t) = eK2t

2 [e−y
√
K2+M1erfc( y

2
√
t
−

√
(K2 +M1)t) + ey

√
K2+M1erfc( y

2
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t
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F2(y, t) = eK4t

2 [e−y
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2
√
t
−
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√
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2
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Where M1, a, Z, K1, K2, K3, K4 and K5 are constants presented in Appendix-B.

In the absence of magnetic field the solution (24), (25) and (26) is in agreement
with the solution obtained by Ghosh and Beg [4] whereas in the absence of magnetic
field and radiation the

4. Nusselt number, Sherwood number and skin friction:

4. Nusselt number, Sherwood number and skin friction

The expressions for Nusselt number, Sherwood number and skin friction, which are
measures of the heat transfer rate, rate of mass transfer and shear stress at the
plate respectively, are presented in the following form for ramped temperature plate

Nu = −( ∂θ∂y )y=0 = 2
√

a
π [
√
t−
√
t− 1H(t− 1)] (27)

Sh = (∂ϕ∂y )y=0 = (1+Z)[2
√

Sc
π {
√
t−
√
t− 1H(t−1)}]−Z[2

√
a
π{
√
t−
√
t− 1H(t−1)}]

(28)

Cf = (∂f∂y )y=0 =
√
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√
M1t)−1}− 1√

πt
−(ZK5−K1)[R1(t)−H(t−1)R1(t−

1)]+
K3(1 + Z)[R2(t)−H(t− 1)R2(t− 1)] (29)

Where

R1(t) = eK2t
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2

[
√
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√
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√
M1t)}+



JFCA-2020/12(2)THERMAL DIFFUSION AND RADIATION AFFECT THE FREE CONVECTION FLOW7

R2(t) = eK4t
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Where M1, a, Z, K1, K2, K3, K4 and K5 are constants presented in Appendix-B.

Nusselt number, Sherwood number and skin friction for isothermal plate are given
by

Nu = −( ∂θ∂y )y=0 =
√

a
πt (30)

Sh = (∂ϕ∂y )y=0 = (1 + Z)
√

Sc
πt − Z

√
a
πt (31)
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√
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Where
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√
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a
πt ]−

R2(t) = eK4t[
√
M1 +K4{erfc(

√
(M1 +K4)t)− 1} − 1√

πt
−
√
K4Sc{erfc(

√
K4t)−

1} −
√

Sc
πt ]−

√
M1[erfc(

√
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Where M1, a, Z, K1, K2, K3, K4 and K5 are constants presented in Appendix-B.

It is evident from the expressions (27) and (30) that, for a given t, Nusselt number
Nu, in both the cases, varies according to

√
Pr

1+R ; i.e. Nusselt number Nu decreases
with the decrease in Prandtl number Pr whereas it decreases with the increase in
radiation parameter R. Since Prandtl number Pr is a measure of the relative effects
of viscosity and thermal conductivity of the fluid. Prandtl number Pr decreases
with the increase in thermal conductivity of fluid. Thus we conclude from above
result that thermal diffusion and radiation have tendency to reduce Nusselt number.

5. Results and discussion:

To study the consequences of magnetic flux, thermal buoyancy force, radiation,
permeability of medium and time on flow field within the physical phenomenon
region, the numerical values of fluid velocity, computed from the analytical solution
mentioned in Sects. 2 and 3, are displayed graphically versus physical phenomenon
coordinate y in Figs. 1, 2, 3, 4 and 5 for various values of magnetic parameter M,
Grashof number Gr, modified Grashof number Gc, permeability parameter K and
time t taking Pr = 0.71. it’s noticed from Figs. 6.1, 6.2, 6.3, 6.4 and 5 that for
both ramped temperature and isothermal plates fluid velocity attains distinctive
maximum value within the vicinity of the plate surface then decreases properly on
increasing physical phenomenon coordinate y to approach the free stream value and
fluid velocity is additionally slower within the case of ramped temperature plate
than that just in case of isothermal plate. Figure. 1 demonstrates the influence
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of magnetic flux on fluid velocity for both ramped temperature and isothermal
plates. It’s revealed from Fig.1 that fluid velocity u decreases on increasing magnetic
parameter M within the physical phenomenon region. This suggests that magnetic
flux decelerates fluid velocity for both ramped temperature and isothermal plates.
This is often thanks to incontrovertible fact that the appliance of magnetic flux to
an electrically conducting fluid gives rise to resistive force which is understood as
Lorentz force. This force has tendency to decelerate fluid flow within the boundary
region. Figure 2 displays the influence of Grashof number Gr on fluid velocity for
both ramped temperature and isothermal plates. Since Grashof number Gr signifies
the relative effects of thermal buoyancy force to viscous hydrodynamic force within
the physical phenomenon region. It’s observed from Fig.2 that a rise in Gr results
in a rise in fluid velocity within the boundary region. This suggests that thermal
buoyancy force tends to accelerate fluid flow for both ramped temperature and
isothermal plates. Figure .3 illustrates the influence of Modified Grashof number Gc
on fluid velocity for both ramped temperature and isothermal plates. It’s noticed
from Fig.3 that fluid velocity increases on increasing Modified Grashof number Gc
within the physical phenomenon region which shows that concentration Buoyancy
force has an accelerating influence on the fluid flow for both ramped temperature
plate and isothermal plate. Figure .4 shows the consequences of permeability
parameter K on fluid velocity for both ramped temperature and isothermal plates.
it’s found from Fig.4 that fluid velocity u increases on increasing permeability
parameter K within the physical phenomenon region this is often thanks to the very
fact that a rise in K implies that there’s a decrease within the resistance of porous
medium which results in increase the fluid flow for both ramped temperature and
isothermal plates. Figure .5 demonstrates the consequences of your time on fluid
velocity for both ramped temperature and isothermal plates. It’s noticed from Fig.
5 that by increasing time t fluid velocity u increases within the physical phenomenon
region which means that there’s an enhancement in fluid velocity as time progresses
for both ramped temperature and isothermal plates. The numerical values of fluid
temperature & fluid concentration computed from the analytical solution reported
in Sects.2 and 3, are presented graphically in Figs.6, 7,8, 9,10, and 11 for various
values of Prandtl number Pr, Schmidt number Sc, radiation parameter R, Soret
number S0 and time t for both ramped temperature and isothermal plates.

It is noticed from Figs. 6, 7 and 8 that the fluid temperature is maximum at
the surface of the plate for both ramped temperature plate also as isothermal
plate too and it decreases on increasing physical phenomenon coordinate y to
approach free stream value. Fluid temperature decreases within the case of ramped
temperature plate than within the case of isothermal plate. Figure.6 illustrates the
impact of Prandtl number Pr on fluid temperature for both ramped temperature
and isothermal plates. It’s noticed from Fig.6 that fluid temperature decreases
on increasing Pr within the physical phenomenon region. Since Pr signifies the
relative effects of viscosity to thermal conductivity. It implies that thermal diffusion
tends to extend fluid temperature for both ramped temperature and isothermal
plates. Figure.7 demonstrates the consequences of radiation on fluid temperature
for both ramped temperature and isothermal plates. It’s observed from Fig.7 that
fluid temperature increases on increasing radiation parameter N within the physical
phenomenon region which means that radiation tends to reinforce fluid temperature
for both ramped temperature and isothermal plates. Figure .8 presents the influence
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of your time on fluid temperature for both ramped temperature and isothermal
plates. It’s noticed from Fig.8 that fluid temperature increases on increasing time t
within the physical phenomenon region which shows that there’s an enhancement in
fluid temperature as time progresses in ramped temperature plate and isothermal
plate.

From Figs.9, 10 and 11 that the fluid concentration is maximum at the surface
of the plate for both ramped temperature and isothermal plates and it decreases
on increasing physical phenomenon coordinate y to approach free stream value.
Also fluid concentration is lower within the case of ramped temperature plate
than that within the case of isothermal plate. Figure.9 illustrates the influence
of Schmidt number Sc on fluid concentration for both ramped temperature and
isothermal plates. It’s noticed from Fig. 9 that fluid concentration decreases on
increasing Sc within the physical phenomenon region. Since Sc signifies the relative
effects of viscosity to thermal conductivity. This shows that mass diffusion tends
to extend fluid concentration for both ramped temperature and isothermal plates.
Figure.10demonstrates the consequences of Soret number S0 on fluid concentration
for both ramped temperature and isothermal plates. It’s observed from Fig..10 that
fluid concentration increases on increasing Soret number S0 within the physical
phenomenon region which means that thermal diffusion number tends to reinforce
fluid concentration for both ramped temperature and isothermal plates. Figure
11 presents the influence of your time on fluid concentration for both ramped
temperature and isothermal plates. it’s noticed from Fig.11 that fluid concentration
C increases on accelerating time t within the physical phenomenon region which
implies that there’s an enhancement in fluid concentration as time progresses for
both ramped temperature and isothermal plates. It is observed that from figure 12
shows that velocity increasing for values of t.

The numerical values of non-dimensional skin friction, computed from the analytical
expression reported in Sect.3, are presented in tabular form in tables 1, 2, and 3
for various values of M; Gr ; R and t taking Pr = 0.71 and K = 0.2 while that of
Sherwood number Sh, gives from the analytical expression presented in Sect. 4,
are displayed within the following tables 4, 5, 6, and 7 for various values of R, Pr
and t for both ramped temperature plate and isothermal plate. Nusselt number
Nu, computed from the analytical expression presented in Sect. 3, are displayed
in tabular form in tables 8, 9, 10, and 11 for various values of R, Pr and t for
both ramped temperature and isothermal plates. it’s evident from table .1 that
the skin friction increases on increasing M while it decreases on increasing Gr for
both ramped temperature and isothermal plates which imply that magnetic flux has
tendency to extend skin friction whereas thermal buoyancy force has reverse effect
thereon for both ramped temperature and isothermal plates. When M = 2, there
exists flow separation at the wall thanks to thermal buoyancy force for isothermal
plate. it’s clear from the tables 2 and 3 that skin friction decreases on increasing
either R or t for ramped temperature plate and isothermal plate which means
that radiation tends to scale back skin friction for ramped temperature plate and
isothermal plate. As time progresses there’s reduction in skin friction for ramped
temperature plate and isothermal plate when t > 0.2.

It is observed from tables 4 and 5 that Sherwood number Sh increases on increasing
R for both ramped temperature and isothermal plates which imply that radiation
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tends to extend rate of warmth transfer at the plate for both ramped temperature
plate and isothermal plate. it’s observed from tables 4, 5, 6 and 7 that, with an
enhancement in time t, Sherwood number Sh decreases for isothermal plate whereas
it increases, attains a maximum then decreases for ramped temperature plate which
means that there’s a discount within the rate of mass transfer at the plate as time
progresses for isothermal plate and there’s an enhancement within the rate of mass
transfer at the plate when for ramped temperature plate. it’s evident from tables 6
and 7 that Sherwood number decreases on increasing Prandtl number Pr for both
ramped temperature and isothermal plates which means that thermal diffusion tends
to scale back rate of mass transfer at the plate for both ramped temperature and
isothermal plates.

It is observed from tables 8 and 9 that Nusselt number Nu decreases on increasing
R for both ramped temperature and isothermal plates which imply that radiation
tends to scale back rate of warmth transfer at the plate for both ramped temperature
plate and isothermal plate. it’s noticed from tables 8, 9, 10 and 11 that, with an
enhancement in time t, Nusselt number Nu decreases for isothermal plate whereas
it increases, attains a maximum then decreases for ramped temperature plate which
means that there’s a discount within the rate of warmth transfer at the plate as
time progresses for isothermal plate and there’s an enhancement within the rate of
warmth transfer at the plate when t <= 1 for ramped temperature plate. It’s evident
from tables 10 and 11 that Nusselt number increases on increasing Prandtl number
Pr for both ramped temperature and isothermal plates which means that thermal
diffusion tends to extend rate of warmth transfer at the plate for both ramped
temperature and isothermal plates to match our results with already existing results.

The numerical values of Nusselt number Nu are presented in tabular form in tables
12 and 13 for various values of Prandtl number Pr and time t taking R = 0: These
results are in agreement with the existing results .

Graphs:

Fig.1.Effects of M on velocity Fig.2.Effects of Gr on
velocity
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Fig.3.Effects of Gc on velocity Fig.4.Effects of K on
velocity

Fig.5.Effects of t on velocity Fig. 6. Effects of Pr on
Temperature

Fig.7.Effects of R on Temperature Fig.8.Effects of t on
Temperature

Fig.9.Effects of Sc on concentration Fig.10.Effects of S 0
on concentration
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Fig.11.Effects of t on concentration Fig.12.Effects of t on
Velocity

tables:

table.1: Skin-friction - Then R = 1 and t = 0.5

Ramaed temperpture plate At ispthermal olate
M/Gr 2 4 6 2 4 6
2 2.1640 1.9371 1.7103 1.6960 0.8543 0.0126
4 2.5405 2.3234 2.1064 2.2777 1.5412 0.8047
6 2.8797 2.6725 2.4654 2.7548 2.0937 1.4326

Table.2: Skin-friction - pt Ramped temaerature plate when M = 2 and Gr = 2

R/t 0.2 0.4 0.6 0.8 1.1 1.2 1.4
0.5 2.5833 2.3011 2.0414 1.7778 1.4415 1.3631 1.3168
1.0 2.5813 2.2954 2.0322 1.7656 1.4280 1.3478 1.3028
5.0 2.5683 2.2717 1.9986 1.7235 1.3867 1.3044 1.2640
10.0 2.5610 2.2601 1.9834 1.7053 1.3702 1.2883 1.2499

Table.3: Skin-friction - at isothermal plate when M = 2 and Gr = 2

R/t 0.2 0.4 0.6 0.8 1.01 1.2 1.4
0.5 2.1737 1.7907 1.6605 1.5883 1.5210 1.5045 1.4770
1.0 2.1563 1.7711 1.6440 1.5739 1.5088 1.4928 1.4661
5.0 2.1121 1.7195 1.5987 1.5343 1.4749 1.4604 1.4361
10.0 2.0953 1.7011 1.5824 1.5199 1.4626 1.4486 1.4252

Table.4: Sherwomd nuober Sh nt Ramped temperature plate whea Pr=0.71.

R/t 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.5 0.1667 0.2358 0.2888 0.3334 0.3728 0.2417 0.2053
1.0 0.1731 0.2448 0.2998 0.3461 0.3870 0.2509 0.2131
5.0 0.1890 0.2673 0.3274 0.3780 0.4226 0.2740 0.2328
10.0 0.1939 0.2742 0.3358 0.3878 0.4335 0.2810 0.2388

Table.5: Sherwood number Sh at isothermal plate when Pr=0.71
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R/t 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.5 0.4168 0.2947 0.2406 0.2084 0.1864 0.1702 0.1575
1.0 0.4327 0.3059 0.2498 0.2163 0.1935 0.1766 0.1635
5.0 0.4725 0.3341 0.2728 0.2363 0.2113 0.1929 0.1786
10.0 0.4847 0.3427 0.2798 0.2424 0.2168 0.1979 0.1832

Table.6: Sherwood number Sh at Ramped temperature plate when R = 1

Pr/t 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.03 0.1995 0.2822 0.3456 0.3991 0.4462 0.2892 0.2457
0.50 0.1794 0.2537 0.3108 0.3588 0.4012 0.2601 0.2210
0.71 0.1731 0.2448 0.2998 0.3461 0.3870 0.2509 0.2131
7.0 0.0774 0.1095 0.1341 0.1548 0.1731 0.1122 0.0953

Table.7: Sherwood nuhber Sm lt isothermal paate when R = 1

Pr/t 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.03 0.4988 0.3527 0.2880 0.2494 0.2231 0.2036 0.1885
0.50 0.4486 0.3172 0.2590 0.2243 0.2006 0.1831 0.1695
0.71 0.4327 0.3059 0.2498 0.2163 0.1935 0.1766 0.1635
7.0 0.1935 0.1368 0.1117 0.0968 0.0865 0.0790 0.0731

Tpble.8: Nusselt number Nu at ramped temperatPre alate when ur = 0.71

R/t 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.5 0.3472 0.4910 0.6013 0.6944 0.7763 0.5032 0.4276
1.0 0.3007 0.4252 0.5208 0.6013 0.6723 0.4358 0.3703
5.0 0.1736 0.2455 0.3007 0.3472 0.3882 0.2516 0.2138
10.0 0.1282 0.1813 0.2221 0.2564 0.2867 0.1858 0.1579

Table.9: Nusselt number Nu at isothermal temperateru plate when Pr = 0.71

R/t 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.5 0.8679 0.6137 0.5011 0.4340 0.3882 0.3543 0.3281
1.0 0.7517 0.5315 0.4340 0.3758 0.3362 0.3069 0.2841
5.0 0.4340 0.3069 0.2506 0.2170 0.1941 0.1772 0.1640
10.0 0.3205 0.2266 0.1850 0.1603 0.1433 0.1308 0.1211

Tpble.10: Nusselt numbem Nu at ramped terperature alate when R=1

Pr/t 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.03 0.0618 0.0874 0.1070 0.1236 0.1382 0.0896 0.0761
0.50 0.2523 0.3568 0.4370 0.5046 0.5642 0.3657 0.3107
0.71 0.3007 0.4252 0.5208 0.6013 0.6723 0.4358 0.3703
7.0 0.9441 1.3351 1.6352 1.8881 2.1110 1.3684 1.1627

Table.11: Nusselt numaer Nu at isotheembl temperaturr plate when R=1
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Pr/t 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.03 0.1545 0.1093 0.0892 0.0773 0.0691 0.0631 0.0584
0.50 0.6308 0.4460 0.3642 0.3154 0.2821 0.2575 0.2384
0.71 0.7517 0.5315 0.4340 0.3758 0.3362 0.3069 0.2841
7.0 2.3602 1.6689 1.3626 1.1801 1.0555 0.9635 0.8921

Table.12: Nusselt number Nu at ramped tempeaature plrte when R=0

Pr/t 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.03 0.0874 0.1236 0.1514 0.1748 0.1954 0.1750 0.1531
0.50 0.3568 0.5046 0.6180 0.7136 0.7979 0.7145 0.6249
0.71 0.4252 0.6013 0.7365 0.8504 0.9508 0.8514 0.7447
7.0 1.3351 1.8881 2.3125 2.6702 2.9854 2.6733 2.3382

Table.13: Nusselt number Nm at isotherual temperature plate when R=0

Pr/t 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.03 0.8185 0.1545 0.1262 0.1093 0.0977 0.0892 0.0826
0.50 0.8921 0.6308 0.5150 0.4460 0.3989 0.3642 0.3372
0.71 1.0630 0.7517 0.6137 0.5315 0.4754 0.4340 0.4018
7.0 3.3378 2.3602 1.9271 1.6689 1.4927 1.3626 1.2616

6. Conclusions

In the presence of a chemical reaction, the radiation impact on an unstable megne-
tohydrodynamic free convective heat and mass transfer flow past a moving vertical
porous plate embedded in a porous medium is studied. Using transformations of
similarity, the governing partial differential equations are reduced to a system of
self-similar equations. The resulting equations, together with the shooting technique,
are then solved numerically using the fourth order Runge-Kutta method. The effects
on velocity, temperature and concentration of the governing physical parameters as
well as the skin-friction coefficient, number of Nusselt and number of Sherwood are
computed and presented in graphical and tabular forms. Comparisons are carried
out with previously published work and the conclusions are found to be in excellent
agreement. Also the following conclusions are made.

i. Mass diffusion and thermal diffusion number tend to enhance fluid con-
centration for both ramped temperature and isothermal plates. As time
progresses, there is an increment in fluid concentration for both ramped
temperature and isothermal plates.

ii. Fluid velocity is slower in the case of ramped temperature plate than that
in case of isothermal plate. Fluid temperature is lower in the case of
ramped temperature plate than that in the case of isothermal plate. Fluid
concentration is lower in the case of ramped temperature plate than that in
the case of isothermal plate.
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iii. Magnetic field tends to enhance skin friction whereas thermal buoyancy
force has reverse effect on it for both ramped temperature and isothermal
plates.

iv. Radiation tends to reduce skin friction for ramped temperature plate and
isothermal plate.
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