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EFFICIENCY IMPROVEMENT OF FRACTIONAL EULER

METHOD BY A NEW MEMORY SELECTION METHOD

L. W. SOMATHILAKE

Abstract. Fractional operators are not local operators and hence solutions
of time fractional order model at a particular time (say t1) depends on the
past (t ∈ [0, t1)) values of the solution called memory. As a result of that,
numerical integration of time fractional differential equations (FDEs) on large
time intervals or finer meshes are time consuming processes. Reducing the
computational cost of time integration of time FDEs is a challenge and the
aim of this paper is to improve the efficiencies of the fractional Euler method.
Two established memory selection methods applying for numerical schemes
of FDEs are the short (fixed) memory method (SMM) and the full memory
method (FMM). In SMM computational cost is less but computational error
is higher due to cut off the tail of the memory at each time step. The com-
putational error of FMM is less but the computational cost is higher. In the
proposed method, the number of memory points in the past are chosen such a
way that linearly decreasing along the tail of the memory (hereinafter, say Lin-

early Decreasing Memory Method (LDMM) for the proposed method). This
paper considers fractional Euler numerical scheme with three memory selec-
tion methods FMM, LDMM, and SMM, (denoted by FEM-FM, FEM-LDM,
and FEM-SM respectively), and compares these numerical schemes by simu-
lating some FDEs whose analytical solutions are known. It is observed that
the experimental order of convergence (EOC) of FEM-FM and FEM-LDM are
almost the same. Also, the computational cost of FEM-LDM is less than that
of FEM-FM, and FEM-LDM is more accurate than that of FEM-SM. There-
fore, the proposed method is more suitable than the short memory method
for numerical integration of fractional differential equations. Also, FEM-LDM
is more suitable than FEM-FM for long-time integrations and integrations

on finer meshes as the computational cost of FEM-LDM is less than that of
FEM-FM.

1. Introduction

Fractional calculus and fractional differential equations have been popularizing
as its powerful applications in various areas. A large number of mathematical
models based on fractional differential equations have been developed in various
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areas such as mechanics ([1], [2], [8]), chemistry ([3], engineering ([4], [5], [6], [9]),
medicine ([10], [11], [7]), biology [12], physics ([13], [14]) control theory [2], fi-
nance [15] etc.

1.1. Fractional derivatives. There is no accepted unique definition for fractional
derivative. Different definitions for fractional derivatives. Riemann–Liouville defi-
nition and Caputo definitions are the popular definitions.

Definition 1.1 (Riemann–Liouville integral). [2] The Riemann–Liouville frac-
tional integral of order α ≥ 0 of a function u(t) is defined as

Jαu(t) =







1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds, α > 0,

u(t), α = 0.

Fractional order integral satisfies following properties

(1) JαJβu(t) = Jα+βu(t),
(2) JαJβu(t) = JβJαu(t).

(3) Jαtγ =
Γ(γ + 1)

Γ(γ + α+ a)
tγ+α.

Definition 1.2 (Riemann–Liouville derivative). [2] The Riemann– Liouville de-
rivative of order γ, R

a D
γ
t u(t), is defined as R

a D
γ
t u(t) = DnJ (n−γ)u(t). Where n is

the smallest integer greater than γ. That is

R
a D

γ
t u(t) =



















1

Γ(n− γ)

dn

dtn

∫ t

a

(t− τ)n−γ−1u(τ)dτ , n− 1 ≤ γ < n,

dnu(t)

dtn
, γ = n ∈ N,

(1)

where, Γ(z) (z ∈ C) denotes the Euler Gamma function defined by Γ(z) =
∫∞

0 xz−1e−xdx,
γ is the order of the derivative, a is the initial value of function u.

Definition 1.3 (Caputo fractional derivative). [2] The Caputo fractional deriv-
ative operator of order γ > 0, C

a D
γ
t u(t), is defined as C

a D
γ
t u(t) = J (n−γ)Dγu(t).

That is

C
a D

γ
t u(t) =



















1

Γ(n− γ)

∫ t

a

(t− τ)n−γ−1 d
nu(τ)

dτn
dτ , n− 1 < γ < n,

dnu(t)

dtn
, γ = n ∈ N.

(2)

Fractional derivatives do not have convenient physical meanings as integer order
derivatives. However, some geometric and physical interpretations of Riemann-
Liouville and Caputo fractional derivatives are reported in [16].

In most of the physical processes, the next state depends not only on the current
state but also on its past states starting from the initial time. This behavior is
known as the non-local behavior of the physical systems. Fractional differential
operators are non-local. That is those operators taken into account the fact that
the next state of a system not only depends on its current state but also on its
past states starting from the initial time. In ordinary differential operators, it is
considered that the next state of a system depends only on states in a neighborhood
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of the present state. In other words, fractional differential operators are non-local
while ordinary differential operators are local. When modelling real-world processes
considering this non-local property is very important as this property bring the
models closer to reality. Therefore, fractional differential equations models are
more realistic than ordinary differential equations models. However, the non-local
property of fractional differential operators causes to increase in the complexity and
computation cost of numerical integration of FDEs.

In the literature, several analytical techniques to solve fractional differential
equations are reported. Some of such analytical techniques are Laplace trans-
form [17, 18, 19, 9], Fourier transform [18, 9], Mellin transform [9, 20] etc. These
techniques are limited to solve linear FDEs with constant coefficients only and do
not work for non-linear FODEs. Therefore, numerical techniques play an important
role in finding approximate solutions of non-linear FODEs.

There are several numerical methods for solving fractional differential equa-
tions. Some of those methods are Fractional Euler method [21], Fractional Adams
method [21], Block by Block method [22, 23], Predictor-Corrector method [4, 24]
etc.

In [25] predictor-corrector method has been implemented for multi-term frac-
tional differential equations. In [26] a detailed error analysis for a fractional Adams
method with graded meshes has been done. In [27] an efficient numerical scheme
for fractional differential equations considering finite difference formula for Caputo
fractional differential operator is proposed. In that method number of memory
points in the past are chosen randomly and exponentially decreasing along the tail
of the memory.

This paper investigates the efficiencies and computation cost of the fractional
Euler method when the memory points of the tail are chosen in such a way that
linearly decreasing along the tail of the memory. In numerical simulations of frac-
tional differential equations, initial conditions are required. The physical interpre-
tations of the initial conditions are required to take measurements of the initial
states of the physical real-world problems. In the case of using Riemann-Liouville
fractional derivatives in numerical simulations, fractional order initial conditions
are required. But making measurements of such terms is practically impossible
because physical interpretations of fractional derivatives are not well defined. But,
in the use of Caputo derivatives integer-order derivatives of initial states are suf-
ficient. Therefore, the Caputo derivative is convenient in numerical simulations of
fractional differential equations.

The computational cost of integrating FDEs is very high due to the non-local
behaviour of the fractional order derivative operator. Therefore, reducing the com-
putational cost of integration of FDEs is the main challenge. If all the memory
points in the past are taken into account (full memory method (FMM)) in the nu-
merical integration of FDEs, then the computational cost is high in integration on
large time intervals or finer meshes. Short memory principle is one of the estab-
lished technique which uses to reduce the computational cost of integrating FDEs.
In the short memory method (SMM) only a fixed memory length in the recent past
is taken into account in calculations and the rest of the memory points in the past
(tail of the memory) are ignored. However, in this method, the computational error
becomes higher when the short memory length becomes shorter. This paper aims
to reduce the computational cost of the fractional Euler method by choosing a part



4 L. W. SOMATHILAKE JFCA-2021/12(2)

of the memory points in the past in such a way that linearly decreasing along the
tail of the memory. Hereupon we call this method ”linearly decreasing memory
method (LDMM)”. In this paper three numerical schemes based on fractional Eu-
ler methods using FMM, SMM and LDMM are introduced. These three numerical
schemes are the fractional Euler method with FMM, SMM, and LDMM (denoted
by FEM-FM, FEM-SM, FEM-LDM). The author compares the convergence order
of FEM-FM and FEM-LDM by calculating the experimental order of convergence
(EOC) of these two numerical schemes relevant to three FDEs. The computational
costs (CC) of these numerical schemes are compared using numerical solutions of
three FODEs.

This paper is organized as follows: The newly proposed memory selection method
(linearly decreasing memory method) is introduced section in 2.1. Three explicit
numerical schemes constructed based on three memory selection methods are in-
troduced in section 2.2. To compare the proposed numerical schemes three frac-
tional differential equations are introduced in section 3.1. The convergence of the
proposed numerical schemes FEM-FM and FEM-SM are compared based on the
experimental order of convergence (EOC) in section 3.2. Computational costs of
the proposed three numerical schemes are compared in section 3.3. Finally, the
conclusion is given in section 4.

2. Methodology

This section explain three numerical schemes for numerical solutions of non-
linear FDEs of the form:

Dγy(t) = f(t, y(t)), t ∈ (0, T ], T > 0,

y(i)(0) = y
(i)
0 , i = 0, 1, 2, ..., n− 1,

(3)

where γ > 0, and n = ⌈γ⌉ is the smallest integer greater than α.

2.1. Proposed memory selection method: Linearly decreasing memory

method. In this section, the author introduces a method to improve the efficiency
of the fractional-order Eular method by reducing the number of memory points
taken into account for the computational process. In this method memory points
on uniform meshes are chosen such a way that linearly decreasing along the tail of
the memory. Consider the fractional differential equation (3). Now descritise [0, T ]
into N number of partitions P1, P2,...,PN and each of these partitions descritise
into M number of partitions with step size ∆t. That is step size of each partition
Pi (i = 1, 2, ..., N) is M∆t (see Figure 1).

PN P3 P2 P1

Partitions

0 M MHN-3L MHN-2L MHN-1L MN

T

Figure 1. Sketch for the descritisation of the full time interval
[0, T ] into main partitions.
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Now consider the integration of the FDE (3) up to t = tm = m∆t. Let

nm = ⌈m
M ⌉ − 1, and Mm,i = Round

(

p+ (N − i)

(

M − p

N − 1

))

, i = 1, 2,...,nm.

Here ⌈x⌉ and Round(x) denote the smallest integer greater than the real number
x and rounding off integer of the real number x respectively. p is the predefined
number of memory points on the partition PN in the case of last integration from
t = 0 to t = T . In the process of integration up to t = tm, choose memory points,
MP (m), as follows:

MP (m) =

{

All the memory points; from Mnm to m,
Mm,i; on partition Pi (i = 1, 2, ..., nm).

(4)

0

0

1 nm-3 nm-2 nm-1 nm

0 t

n*mMm,1Mm,2Mm,3Mm,nm

Pnm-1 P3 P2 P1

Partitions

Number of memory points

M
MHnm-3L MHnm-2L MHnm-1L Mnm m

Figure 2. A sketch for the selection of memory points for the mth

step of integration (integration from 0 to t = m∆t).

A sketch for the selection of memory points on [0, tm] is shown in Figures 2.

m
nm0 1 2 nm -1nm-2nm-3nm-4

Mm,nm

Mm,nm-1

M+m-nmM

Mm,2

Mm,3

Mm,4

Figure 3. Sketch for the number of memory points on the mth

step of integration. (integration from 0 to t = m∆t).
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for t=0.2

0 100 200

for t=0.4

0 100 200 300 400

for t=0.6

0 100 200 300 400 500 600

for t=0.8

0 100 200 300 400 500 600 700 800

for t=1

0 100 200 300 400 500 600 700 800 900 1000

Figure 4. Distribution of random memory points over different
time intervals for ∆t = 0.001, T = 1 and p1 = 5.

2.2. Numerical Schemes. This section explains fractional Euler method with full
memory, short memory and linearly decreasing memory methods.

2.2.1. Fractional Eular method with full memory(FEM-FM). Fractional Eular method [21]
with full memory for fractional differential equations of the form (3) can be written
as follows:

ym+1 =
n−1
∑

i=0

tim+1y
(i)
0

i!
+

(∆t)γ

Γ(γ + 1)

m
∑

i=0

bi,m+1f(ti, yi), where bi,m+1 = (m− i+ 1)γ − (m− i)γ .

2.2.2. Fractional Eular method with short memory(FEM-SM). In short memory
principle only a fixed memory length in the recent history is taken into account for
the computations. Suppose that Ls is the considered short (fixed) memory length
and ns = ⌈Ls

n ⌉. Then the fractional Euler method with short memory takes the
form:

ym+1 =























n−1
∑

i=0

tim+1y
(i)
0

i!
+

(∆t)
γ

Γ(γ + 1)

m
∑

i=0

bi,m+1f(ti, yi), if m ≤ ns

n−1
∑

i=0

tim+1y
(i)
0

i!
+

(∆t)γ

Γ(γ + 1)

m
∑

i=m−ns

bi,m+1f(ti, yi), if m > ns.

(5)

2.2.3. Fractional Eular method with linearly decreasing memory(FEM-LDM). Frac-
tional Euler method with linearly decreasing memory (FEM-LDM) can be written
in the form:

ym+1 =
n−1
∑

i=0

tim+1y
(i)
0

i!
+

(∆t)γ

Γ(γ + 1)





m
∑

i=n∗

m

bi,m+1f(ti, yi)+

nm
∑

i=1

M

Mm,i

Mm,i
∑

j=1

blm,i,j ,m+1f(tlm,i,j
, ylm,i,j

)



.

(6)

where, bi,m+1 = (m− i+ 1)γ − (m− i)γ , lm,i,j = M(nm − i) + round

(

M

Mm,i
j

)

,

bi,m+1 = (m− i+ 1)γ − (m− i)γ , and n∗
m = Mnm.
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3. RESULTS AND DISCUSSION

3.1. Numerical Examples. Computational efficiencies and accuracies of the above
three numerical schemes are compared with the exact solutions of the following frac-
tional differential equations.

Dγy(t) =
Γ(9)

Γ(9 − γ)
t8−γ + 3

Γ(5 + γ/2)

Γ(5− γ/2)
t4−γ/2, 0 < γ < 1, y(0) = 0. (7)

D0.5y(t) = 2y(t) + t2, y(0) = 0. (8)

D4γy(t) +D3γy(t) + y(t) =
Γ(5/2 + γ)

Γ(5/2− 3γ)
t3/2−3γ +

Γ(5/2 + γ)

Γ(5/2− 2γ)
t3/2−2γ

+t(3/2+γ), y(n) = 0, for n = 1, 2, ...⌈4γ⌉.
(9)

The exact solutions of the FDEs (7), (8) and (9) are y(t) =
(

t8 + 3t4+γ/2
)

, y(t) =

E0.5,1(2x
0.5) + Γ(3)x2.5E0.5,3.5 and y(t) = t(3/2−γ) respectively. FDE (9) is a multi

order fractional differential equation. It can be transformed into following system
of single order fractional differential equations.

Dγy1(t) = y2(t),
Dγy2(t) = y3(t),
Dγy3(t) = y4(t),

Dγy4(t) = −y4(t)− y1(t) +
Γ(5/2 + γ)

Γ(5/2− 3γ)
t3/2−3γ +

Γ(5/2 + γ)

Γ(5/2− 2γ)
t3/2−2γ + t(3/2+γ),

(10)
whee y1(t) = y(t). The initial conditions are y1(0) = y(0) = 0, y2(0) = 0, y3(0) = 0,
y4(0) = 0.

The numerical solutions obtained by FEM-FM, FEM-LDM, FEM-SM, and the
exact solutions of FDE (7) are shown in Figures 5. According to the Figure 5(b), the
solution obtained by FEM-LDM (p1 = 2, M = 32) is closer to the exact solution
than numerical solution obtained by FEM-SM when percentage memory length
(PML) is 40.

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y(
t)

0

0.5

1

1.5

2

2.5

3

3.5

4

Exact soltion
FEM-FM
FEM-LDM
FEM-SM

(a) Solutions for 0 ≤ t ≤ 1

t
0.925 0.93 0.935 0.94 0.945 0.95 0.955

y(
t)

2.5

2.6

2.7

2.8

2.9

3

3.1

Exact soltion
FEM-FM
FEM-LDM
FEM-SM

(b) Solutions for 0.925 ≤ t ≤ 0.955
Figure 5. (a), (b): Numerical solutions and exact solution of FDE
(7) . (In these simulations p1 = 2, M = 32 in LDM, PML=40 in
SMM and ∆t = 1/211).
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3.2. Estimated Order of Convergence. The estimated order of convergence
(EOC) is measured by

EOC = log2

(

Emax(∆t)

Emax(∆t/2)

)

, whereEmax(∆t) = max
1≤i≤N

|u(ti)− U i
∆t)|, whereN =

T/∆t. Here, U i
∆t is the numerical approximation for u(t) at t = ti(≡ i∆t). EOCs

of FEM-FM and FEM-LDM correspond to FDE (7) (γ = 0.9), (8) (γ = 0.5) and
(9) (γ = 0.9) are shown in Tables 1, 2 and 3 respectively.

Step Size Emax(∆t) of FDE EOC of FDE
(∆t = 1/2p) EEM-FM FEM-LDM FEM-SM EEM-FM FEM-LDM

1/210 0.0104 0.2669 1.7869 - -
1/211 0.0052 0.1340 1.7897 1.0000 0.9946
1/212 0.0026 0.0673 1.7911 1.0001 0.9933
1/213 0.0013 0.0337 1.7918 1.0000 0.9995
1/214 6.5× 10−4 0.0168 1.7922 1.0000 0.9997
Table 1. Emax and EOC of the schemes FEM-FM, FEM-LDM
(M = 2p−6, p1 = M/24) and FEM-SM (L = 0.4T ) of FDE (7).

Step Size Emax(∆t) of FDE EOC of FDE
(∆t = 1/2p) EEM-FM FEM-LDM FEM-SM EEM-FM FEM-LDM

1/210 2.0393 38.0522 111.5062 - -
1/211 1.0173 21.0099 111.5217 1.0033 0.8569
1/212 0.5070 11.08675 78.7738 1.0048 0.9222
1/213 0.2527 5.6898 78.7609 1.0046 0.9624
1/214 0.1260 2.8822 78.7547 1.0039 0.9812
Table 2. Emax and EOC of the schemes FEM-FM, FEM-LDM
(M = 2p−6, p1 = M/24) and FEM-SM (L = 0.4T ) of FDE (8).

Step Size Emax(∆t) of FODE EOC of FDE
(∆t = 1/2p) EEM-FM FEM-LDM FEM-SM EEM-FM FEM-LDM

1/210 0.0027 0.2102 0.2764 - -
1/211 0.0013 0.1091 0.0714 1.00085 0.9459
1/212 6.6220× 10−4 0.0557 0.0711 1.0061 0.9709
1/213 3.3011× 10−4 0.0281 0.0711 1.0043 0.9866
1/214 1.6471× 10−4 0.0141 0.0710 1.0031 0.9934

Table 3. Emax and EOC of the schemes FEM-FM, FEM-LDM
(M = 2p−6, p1 = M/24) and FEM-SM (L = 0.4T ) of FDE (9).

According to the Tables 1, 2 and 3 EOC of FEM-FN and FEM-LDM correspond
to the FODEs (7), (8) and (9) are approximately equal.
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3.3. Computational cost. In this section, we compare the computational costs
(CPU time) of the three numerical schemes FEM-FM, FEM-LDM, and FEM-SM.
Algorithms for the numerical schemes FEM-FM, FEM-SM, and FEM-LDM were
developed and solved using Matlab on a 2.3GHz, Intel Core i5 laptop computer
that had 8GB of ram and Microsoft Windows 10.

Now define two terms computational cost reduction percentage (CCRP) between
two numerical schemes FEM-FM and FEM-LDM as follows:

CCRP =
CC of FEM-FM− CC of FEM-LDM

CC of FEM-FM
× 100.

Table 5 shows the computational cost (CC), Emax, CCRP of FEM-FM and
FEM-LDM (M = 2p−6, p1 = M/24) when integrate FODE (7) up to different time
levels. The computational cost of FEM-LDM has been reduced by approximately
20% when compared with FEM-FM. Therefore, the FEM-LDM is computationally
more efficient than FEM-FM in the integration of FDEs on finer meshes or on larger
time ranges.

Tables 4, 5 and 6 shows the computational time of the above numerical schemes
correspond to the FDEs (7), (8) and (9).

Step Size Computational time (in seconds) CCRP
(∆t = 1/2p) FEM-FM FEM-LDM FEM-SM FEM-LDM FEM-SM

1/210 28.5057 22.1814 12.2490 22.1860 57.0295
1/211 107.8149 81.8871 46.9016 24.0481 56.4980
1/212 438.0992 371.5130 186.5630 15.1989 57.4153
1/213 1744.8 1469.1 1096.3 15.8005 37.1665
1/214 6927.9 5001.3 3026.8 27.8100 56.3105
Table 4. CC and CCRP of FEM-FM, FEM-LDM and FEM-SM
(L = 0.4T ) correspond to FODE (7) for γ = 0.9.

Step Size Computational time (in seconds) CCRP
(∆t = 1/2p) FEM-FM FEM-LDM FEM-SM FEM-LDM FEM-SM

1/210 1.98 1.3 1.27 34.25 35.99
1/211 6.54 4.66 4.56 28.22 30.24
1/212 24.71 17.39 16.86 29.65 31.76
1/213 101.08 65.5 64.18 35.20 36.59
1/214 449.54 274.19 279.46 37.62 36.42
Table 5. CC and CCRP of FEM-FM, FEM-LDM and FEM-SM
(L = 0.4T ) correspond to FDE (8) for γ = 9.
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Step Size Computational time (in seconds) CCRP
(∆t = 1/2p) FEM-FM FEM-LDM FEM-SM FEM-LDM FEM-SM

1/210 12.45 8.20 6.72 34.13 46.06
1/211 41.57 33.85 27.53 18.57 33.77
1/212 139.56 84.39 112.73 39.53 19.22
1/213 524.75 372.98 461.79 28.92 11.88
1/214 2617 2246 1897.68 14.19 27.50

Table 6. CC and CCRP of FEM-FM, FEM-LDM (p1 = M/104)
and FEM-SM (L = 0.7T ) correspond to FDE (9) for γ = 0.9.

Computational error of FEM-SM is higher for FDE (9) for smaller L. Therefore,
larger value for L (L = 0.7T ) is chosen for the simulations.

3.4. Comparison of computational cost between FEM-SM and FEM-

LDM. Now compare the computational cost of the numerical schemes FEM-SM
and FEM-LDM when computational errors of the two numerical schemes are same.
To do this comparision define percentage relative error (PRE) of a numerical scheme
as follows.

PRE=
Emax(∆t)× 100

maxt∈[0,T ] (Exact solution)
.

FDEs (7), (8) and (9) were solved using the numerical scheme FEM-LDM for
the case M = 27, p1 = 23, ∆t = 1/213. For these solutions PRE correspond to
the FDEs (7), (8),and (9) are 0.84, 4.97 and 2.84 respectively. Figures 6(a), 7(a)
and 8(a) indicate the corresponding PML values of FEM-SM such that maintain
above PRE values respectively. Figures 6(b), 7(b) and 8(b) indicate the correspond-
ing computational time relevant to the respective PML values of FEM-SM. These
information are tabulated in Table 7.

PML
50 52 54 56 58 60 62 64 66 68 70

P
R

E

0

0.5

1

1.5

2

2.5

3

(a)

PML
50 52 54 56 58 60 62 64 66 68 70

C
T

200

210

220

230

240

250

260

270

280

290

300

(b)
Figure 6. Comparision of computational cost between FEM-
LDM and FEM-SM correspond to FDE (7). PRE of LDM= 0.84,
PML of SM=62.25, CC of FEM-SM=267.25, CC of FEM-
LDM=230.31
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Figure 7. Comparision of computational cost between FEM-
LDM and FEM-SM correspond to FDE (8). PRE of LDM= 4.97,
PML of SM=65.24, CC of FEM-SM=86.25, CC of FEM-
LDM=61.88
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Figure 8. Comparision of computational cost between FEM-
LDM and FEM-SM correspond to FDE (9). PRE of LDM= 2.84,
PML of SM=79.4, CC of FEM-SM=508.00, CC of FEM-
LDM=378.89

FODE PRE of FEM-
LDM

PML of
FEM-SM

Computational cost of
FEM-SM

Computational cost
of LDM

(7) 0.84 62.25 267.25 230.31
(8) 4.97 65.6 86.25 61.88
(9) 2.84 79.4 508.00 378.89

Table 7. Comparison of computational cost of FEM-LDM and
FEM-SM for ∆t = 1/213. M = 27, p1 = 23 for FEM-LDM

According to the information in table 7, one can conclude that the computational
cost of FEM-SM is higher than that of FEM-SM when the computational error is
maintained to a fixed value in both numerical schemes.
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4. Conclusions

The accuracy and computational cost of FEM-LDM depend on the values M and
p1 of the numerical scheme. The computational cost of FEM-FM is higher than
that of FEM-LDM in solving FDEs. The computational cost of FEM-LDM is less
than that of FEM-SM when the computational error of both methods are equal.
Also, FEM-SM is not good for numerical integration of FDEs as it’s uncontrollable
error. the computational cost of FEM-FM is high for the numerical integration
of FODs on finer grids or on large time intervals. Therefore, the newly proposed
numerical scheme FEM-LDM is better for numerical integration of FDEs as its high
accuracy when compared with FEM-SM and low computational cost when compare
with FEM-FM.
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