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BILINEAR, BILATERAL AND TRILATERAL GENERATING

RELATIONS

LAKSHMI NARAYAN MISHRA, RAKESH KUMAR SINGH, SHIKHA PANDEY

Abstract. The object of this paper is to present certain systematic applica-

tions of a class of bilateral generating functions for new polynomialsGαn(x, r, β, k)
due to Singhal and Srivastava (1969). Some new Bilateral and Trilateral gener-

ating relations for these polynomials. We obtain a bilinear generation relation

by using an operational technique.

1. Introduction

The bilinear and bilateral generating functions are defined as, If a Function
G(x, y, t) can be expanded in the form

G(x, y, t) =

∞∑
n=0

knfn(x).fn(y)tn, (1.1)

where kn is independent of x, y and t, then G(x, y, t) is called a bilinear generating
function.
Again if a function H(x, y, t) be expanded in powers of ′t′ in the form

H(x, y, t) =

∞∑
n=0

hnfn(x).gn(y)tn, (1.2)

where hn is independent of x and y. fn(x) and gn(x) are different functions of x,
then by Rainville [13], H(x, y, t) be bilateral generating function. Various bilinear
and bilateral generating relations for the classical polynomials viz Hermite, Laguerre
and Legendre are studied in ([6], [10]-[15]).
In course of discussion of group theoretic origin of certain generating functions for
the hypergeometric function, 2F1(−n;β : y : z), Weisner obtained the following

2010 Mathematics Subject Classification. 33D15, 33D10, 33E05.
Key words and phrases. Bilinear, Bilateral or Mixed Multilateral generating Non-negative and

Non-vanishing function.
Submitted March 10, 2021.

1



2 LAKSHMI N. MISHRA, RAKESH K. SINGH, SHIKHA PANDEY JFCA-2021/12(1)

bilateral generating relation for Laguerre polynomials-

∞∑
n=0

2Fn(−n,−ν; 1 + α : ω)L(α)
n (x)yn = (1− y)−1−aν(1− y + ωy)exp

(
−xy
1− y

)
× 1F1

[
−ν;

xyω

1 + α(1− y)(1− y + ωy)

]
.

The above bilateral generating relation has also been established by Brafman [3]
and Rainville [13] by different methods.
In 1969, Chatterjea [8] proved, by means of operational methods, the following
bilateral generating relation for the ultra spherical polynomials.

ρ−2λF

(
x− t
ρ

,
yt

ρ

)
=

∞∑
r=0

trbr(y)pλr (x), (1.3)

where

F (x, t) =

∞∑
r=0

amt
,pλm(x), (1.4)

br(y) =

r∑
r=0

(
r
m

)
amy

m, (1.5)

and

ρ = (1− 2xt+ t2)1/2. (1.6)

Mc Bride[10] presented a systematic study of obtaining generating functions {Sn(x), n =
0, 1, ...} as the coefficient set in a bilinear (or bilateral) generating relations that
belongs to a class of functions generated by

∞∑
n=0

Am,nSm+n(x)tn = f(x, t){g(x, t)}−mSm(h(x, t)), (1.7)

where m ≥ 0 is an integer, Am,n are arbitrary constants and f, g, h are arbitrary
functions of x and t.
An effective method of obtaining bilateral generating functions for Sn(x) defined
by (1.7) was given and illustrated by Srivastava [14] as,

Theorem 1. Let

F (x, t) =

∞∑
n=0

ansn(x)tn, (1.8)

where an 6= 0 are arbitrary and the sequence of functions {Sn(x), n = 0, 1, 2, ....}
is generated by (1.7).
Then

f(x, t)F

[
h(x, t),

yt

g(x, t)

]
=

∞∑
n=0

Sn(x)σn(y)tn, (1.9)

where

σn(y) =

n∑
k=0

akAk,n−ky
k. (1.10)
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Chatterjea pointed out that the scope of the above theorem remains limited, for
example, if we take

Sn(x) = P (α,β)
n .

Then no formula corresponding (1.7) is yet known and that is the reason why
Singhal and Srivastava failed to apply their theorem in the case of proper Jacobi
polynomials. Chatterjea [8] gave the improved version of the above Theorem (1.1)
in the form of following proposition.

Proposition 1.1. For a set of functions Sα(x) generated by

f(x, t)

[g(x, t)]α
Sα(h(x, t)) =

∞∑
n=0

AnSα+n(x)tn, (1.11)

and for

F (x, t) =

∞∑
n=0

ansn+m(x)tn, (1.12)

where F (x, t) is of arbitrary nature, the following bilateral generating relation holds.

f(x, t)

[g(x, t)]m
F

[
h(x, t),

yt

g(x, t)

]
=

∞∑
n=0

sn+m(x)σn(y)tn, (1.13)

where

σn(y) =

n∑
k=0

akAn−ky
k. (1.14)

A mild generalization of (1.7) include special functions such as the Bessel func-
tion Jµ(x) which possesses a generating relation of the type:∑

Jµ+n(z)
tn

n!
=

(
1− 2t

z

)−µ
2

Jµ((z2 − 2zt)1/2), (1.15)

where µ is an arbitrary complex number.
Mittal[12] has given a general method for deriving bilinear and bilateral generating

relations for the set of polynomials {f (a)n (x)} defined by

Tna+1{f(x)} = n!xng(x)f (a)n (x), (1.16)

where f(x) admits a formal lower series expansion in x, g(x) being a function of
x alone, Ta = x(a + xQ′x), Q′ = d

dx and ′a′ is a constant. As a consequence, he
obtained several generating relations for Boas and Buck type polynomials [4]
Shrivastava and Singh [15] presented a novel extension of several bilateral generating
relations derived earlier by Al-Salam [2], Srivastava [17], Chatterjea [8] and others,
in the form of Mixed Trilateral generating relations and applied their theorem to the
Hermite, generalized Hermite, Laguerre, Bessel, Srivastava - Singhal polynomials
and to the Bessel function of 1st kind.
In another publications, Srivastava and Singh [15] established the following bilateral
generating relation:

∞∑
m=0

V
(α)
ν+m(x; a, k, s)Rqm,y(y)tn = (1− axαt)

−(a+s)
a exp.

[
pk(x)−pk

{
x(1−axαt)

−1
a

}]
(1.17)

×φq,ν
[
x(1− axαt)

−1
a , ytq

]
,
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where ν = 0, 1, 2, .... and

φq,ν(x, t) =

∞∑
m=0

δν,mV
(α)
ν+m(x; a, k, s)tm, (1.18)

and

(1− axαt)
(a+s)
a exp.

[
pk(x)− pk

{
x(1− axαt)

−1
a

}]
=

∞∑
n=0

V (α)
n (x; a, k, s)tn. (1.19)

In 1980, Agrawal and Manocha [1] deduced a bilateral generating relation.
∞∑
n=0

L(α)
n (x)Pmn (y, z)tn =

Γ(m+ β + 1)(1− t)m+β−1(1− t− zt)−(m+β+1)

Γ(α+ 1)Γ(β + 1)
(1.20)

×exp.
[
y − (x+ y)t

1− t

]
× ψ2

[
m+ β + 1;α+ 1, β + 1;

−xzt
(1−t)(1−t−zt) ,

−y(1−t)t
(1−t−zt)

]
,

with

Pmn (y, z) =

n∑
k=0

(
n
k

)
(m+ k)!

(α+ k + 1)!
L
(α)
k+mL(y)zk. (1.21)

Srivastava [16], presented a systematic introduction to and several interesting ap-
plications of a general method of obtaining bilinear, bilateral or mixed multilateral
generating functions for a fairly wide variety of special functions in one, two and
more variables.

2. Characterizations

By making use of the formula

L(α)
n (x) = (n!)−1

[

( J = 1)](n)π(xD′ = x+ α+ J). (2.1)

Al-Salam [2] proved the following theorem for characterization of the Laguerre
polynomials.

Representation 2.1. Let bn(n = 1, 2, ...) be the sequence of numbers let,

Pn(x) =
[

( J = 1)](n)π(xQ′ + x+ bj), (n = 1, 2, 3, ...), (2.2)

P0(x) = 1.

If the set {Pn(x)}; defined by means of (2.2), is a set of orthogonal polynomials
then Pn(x) is the nth Laguerre polynomials.

In the same paper, Al-Salam [2] has also given a similar result for Hermite
polynomials.
Carlitz has shown that the formula∫ 1

0

L(α)
m (xt)L(β)

n ((1−x)t)xα(1−x)βdx =

(
m+ n
m

)
Γ(α+m+ 1)Γ(β + n+ 1)

Γ(α+ β +m+ n+ 2)
×L(α+β+1)

m+n (t),

(2.3)
α, β > −1
can be used to characterize the Laguerre polynomials. In order to characterize the

Bessel polynomials Y
(α)
n (x) of Krall and Frink [9], Al-Salam [2] has established the

following theorems.
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Representation 2.2. Given a sequence {f (α)(n) (x)} of polynomial in x where degree

of f
(α)
(n) (x) = n and α is a parameter such that

Qrf
(γ)
r (x) =

1

2
r(r + n+ 1)f

(γ+2)
r−1 (x),

f (γ)r (0) = 1,

f (γ)r (x) = Y (γ)
r (x).

Representation 2.3. Given a sequence of functions {f (α)(n) (x)} such that

∆af
(α)
n (x) =

1

2
nxf

(α+2)
n−1 (x),

f (α)n (0) = 1, f
(α)
0 (x) = 1.

Then
f (α)n (0) = Y

(α)
0 (x).

Representation 2.4. If the sequence {f (α)(n) (x)} where f
(α)
n (x) is polynomials of

degree n in x and α is a parameter satisfying ∆αf
(α)
n (x) = x

n+α+1Qxf
(α)
n (x), such

that f
(α)
n (x) = Yn(x). Then

f (α)n (x) = Y (α)
n (x),

Y (0)
n (x) = Yn(x).

Representation 2.5. Given a sequence of functions {f (α)(n) (x)} such that

∆nf
(α)
n (x) =

n

2
(2n+ α+ 2)f (α+1)

n (x),

where
f
(α)
0 (x) = 1, for every x and α.

Then
f (α)n (0) = Y (α)

n (x).

Recently, Verma and Prasad[23] considered a class of polynomial sets {Pn(x), n =
0, 1, 2, ...} defined by

(1− t)−cφ
{

2t(x− 1)

(1− t)2

}
=

∞∑
n=0

(e)n
(c− β)n

Pn(x)tn, (2.4)

where φ(u) has formal power series expansion, φ(0) 6= 0. For this class of polyno-
mials, they proved the following

Representation 2.6. The simple set of polynomials {Pn(x)} , where degree of
Pn(x) = n, which is orthogonal and satisfies (2.4), is either the set of Jacobi or
Bessel polynomials.

Further, they assumed that polynomial set {Pn(x)} , of (2.4) satisfies.

Pn(x) =
(c)2n
n! (cn)

(x− 1)n

2
× pFq

[
−n, 1− α− c− n(αp−2);

1− c− 2n, (βq−1)

2

1− x

]
, (2.5)

where the parameters c1 α1, α2, ....αp−2, β1, β2, ...βq−1 are arbitrary complex num-
ber with βk 6= −m (a negative integer) and they proved.
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Representation 2.7. The only hypergeometric polynomial of the type (2.5) which
has a generating functions (2.4) is the set of Jacobi polynomials.

3. Bilinear Generating relation

Singhal and Srivastava [14] considered an unified polynomial set defined by the
generalized Rodrigues formula.

G(α)
n (x, r, β, k) =

1

n!
x−α−knexp(βxr)θn(xαe−βx

r

), θ = (xk+1Qx). (3.1)

That provides us with an elegant generalization of the various extensions of the
classical Hermite and Laguerre polynomials given, for instance by S.K. Chatterjea
[8], Gould and Hopper, and Singh & Srivastava [15]. Chandel ([5],[6],[7]) introduced

and studied slightly modified polynomials T
(α,k)
n (x, r, p) defined by

T (α,k)
n (x, r, p) = x−αepx

r

Ωnx{xαe−px
r

}, Ωx ≡ xk
d

dx
(3.2)

with connection

G(α)
n (x, r, p, k) =

1

n!xkn
T (α,k)
n (x, r, p). (3.3)

Also

G(α)
n (x, 1, 1, k) =

1

n!
G

(α)
n,k(x), (3.4)

G(α+n)
n (x, r, 1, 1) = G(α+1)

n (x, r, 1, 1) = P (α)
n,r (x), (3.5)

G(α)
n (x, r, β,−1) = G(α−n+1)

n (x, r, β, 1) =
(−x)n

n!
Hr
n(r, x, β), (3.6)

G(α+n)
n (x, r, β,−1) = G(α+1)

n (x, r, β, 1) = L(α)
n (x, r, β), (3.7)

G(α)
n (x, 2, 1,−1) = G(−n+1)

n (x, 2, 1, 1) =
(−x)n

n!
Hn(x), (3.8)

G(α+n)
n (x, 1, 1, k) = G(α+1)

n (x, 1, 1, 1) = L(x)
n (x), (3.9)

and

G(α+n)
n (x, 1, 1, k) = kny(α)n (x; k), α > −1, k = 1, 2, (3.10)

where H
(α)
n (x), L

(α)
n (x) and Y

(α)
n (x; k) are the Hermite, Laguerre and Konhauser

polynomials respectively.

It may be of interest to note that Y
(α)
n (x; 1) = L

(α)
n (x).

Singhal and Srivastava [14] discussed several interesting properties such as lin-
ear, bilinear and bilateral generating functions, pure as well as mixed recurrence
relations and the differential equations associated with the class of polynomials.

G(α)
n (x, r, β, k), n = 0, 1, 2, ....

The object of the present investigation is to present some applications of a class

of bilateral generating functions for the polynomials G
(α)
n (x, r, β, k) due to Srivas-

tava [16] in deriving some new bilateral and trilateral generating relations for these
polynomials. We obtain a bilinear generating relation using an operational tech-
nique. Srivastava [14] derived following Class of bilateral generating functions for
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the polynomials. G
(α)
n (x, r, β, k) as a special case of his general theorem for obtain-

ing bilinear, bilateral or mixed multilateral generating functions for a certain class
of special functions.

∆m,q[x; y1, ...ys, t] =

∞∑
n=0

anG
(α)
m+qn(x, r, β, k)Ωµ+pn(y1....ys)t

n. (3.11)

If an 6= 0 and Ω(y1, ....ys) is a non-vanishing function.
Then for every non-negative integer m,

∞∑
n=0

G
(α)
m+n(x, r, β, k)Np,µ

n,m,q(y1, ...., ys; z)t
n (3.12)

= (1− kt)−m−α/kexp[βxr{1− (1− (1− kt)−r/k)}]

×∆m,q

[
x(1− xt)−1/k; y1, ...., ys

ztq

(1− kt)q

]
,

where

Np,µ
n,m,q(y1, ....., ys; z) =

[n/q]∑
r=0

(
m+ n
n− qr

)
arΩµ+pr(y1, ...., ys; z)z

r (3.13)

is an arbitrary complex number, p and q are positive integers.

4. Applications

We derive some interesting applications of (3.1) when m = 0 and Ωµ = 1.

Case 4.1 (q = 1 ) Firstly, on taking an =
∏p
j=1(bj)n∏s
j=1(cj)n

and replacing y by −y, the

polynomials

σ1
n(y) = Nn,0,1(y)

n∑
r=0

(
n
r

)
ary

r (4.1)

becomes identical with the extended Laguerre polynomials.

αn(y : b1, ..., bp; c1, ..., cs) = p+1Fs

[
−n, b1, ..., bp;
c1, c2, ..., cs

y

]
. (4.2)

Thus from (3.1), we obtain

∞∑
n=0

G(α)
n (x, r, β, k)αn(y : b1, ..., bp; c1, ..., cs)t

n (4.3)

= (1− kt)−α/kexp[βxr{1− (1− kt)−r/k}]

×F (2)

[
x(1− kt)−α/k, −yt

(1− kt)

]
,

where

F (2)(x, t) =

∞∑
n=0

∏p
j=1(bj)n∏s
j=1(cj)n

G(α)
n (x, r, β, k). (4.4)
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We record, from (4.3), the following trilateral generating relation:

∞∑
n=0

{
n!

(1 + α)n

}n
[
n](α)C(x, r, β,−1)× L(α)

n (2
√
y)L(α)

n (−2
√
y) · tn (4.5)

= (1− xt)−α/kexp[βxr{1− (1− kt)−r/k}]

×F (3)

[
x(1− kt)−1/k, −yt

(1− kt)

]
,

where L
(α)
n (z) are classical Laguerre polynomials and

F (3)(x, t) =

∞∑
n=0

(α+ n+ 1)

(α+ 1)n

(
(α+1)

2

)
n

(
(α+2)

2

)G(α)
n (x, r, β, k). (4.6)

Next, we note the polynomials fn(y) from an Appell set provided

d

dy
(fn(y)) = nfn−1(y) (n = 0, 1, 2, ...).

It follows that

fn(y) =

n∑
r=0

(
n
r

)
cry

n−r. (4.7)

For some sequence (cr) contained in (4.7), we obtain the following bilateral gener-
ating relation from (3.1)

∞∑
n=0

G(α)
n (x, r, β, k)fn(y)tn = (1− kyt)−α/kexp[βxr{1− (1− kyt)−r/k}](4.8)

×F (4)

[
x(1− kyt)−1/k, t

(1− kyt)

]
,

where

F (4)(x, t) =
∑

QnC
(α)
n (x, r, β, k)tn. (4.9)

Case 4.2 (q ≥ 1) Wright’s generalized hypergeometric function is defined by

pψs

[
(a1, α1), ..., (ap, αp) :
(b1, β1), ..., (bs, βs)

z

]
=

∞∑
n=0

p∏
j=1

Γ(aj)(aj)nαjz
n

s∏
j=1

Γ(bj)(bj)nβjn!
, (4.10)

where the variable z and the various parameters are such that the series con-
verges.
On setting

an =

m∏
j=1

Γ(aj)(aj)nµj
s∏
j=1

Γ(ej)(ej)nξj (qn)!

p∏
j=1

Γ(ej)(ej)nj
l∏

j=1

Γ(dj)(dj)mηj

(4.11)

in the polynomials

[
n]qσ(y) = Nn,0,q(y) =

[n/q]∑
r=0

(
n
qr

)
ary

r (4.12)
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and replacing y by (−1)qy; we arrive at the following bilateral generating relation.

∞∑
n=0

G(α)
n (x, r, β, k)× m+s+1ψp+1

[
(n, q), {bn, µn, {ex, qξs}};

(cp, vp), (qi, qn1);
y

]
(4.13)

= (1− kt)−α/kexp[βxr{1− (1− kt)−r/k}]

×F (5)

[
x(1− kt), y

{
−t

(1− kt)q

}]
,

where (ap, αp) abbreviate the array of p parameli pair (a1, α1), ...(ap, αp), and

F (5)(x, t) =

∞∑
n=0

anG
(α)
qn (x, r, β, k). (4.14)

Some special cases of (4.13) are noteworthy. For example, if in (4.13) we
take q = 1, m = s = l = 0, p = 1, c1 = y + 1, v1 = δ and then applying the
definition

L(δ,y)
n (x) =

(y + 1)nδ
n! 1ψ1[(−n, 1); (y + 1, δ);x], (4.15)

L
(δ,y)
n (x) being a generalization of the Konhauser polynomials Z

(α)
n (x, k), we get

∞∑
n=0

{
n!

(y + 1)nδ

}
G(α)
n (x, r, β, k)L(δ,y)

n (y)tn (4.16)

= (1− kt)−α/kexp[βxr{1− (1− kt)−r/k}]× F (6)

[
x(1− kt)−1/k, −yt

(1− kt)

]
,

where

F (6)(x, t) =

∞∑
n=0

(qn)!tn

(y + 1)nδ
G(α)
qn (x, r, β, k). (4.17)

In other hand, in terms of the Brafman polynomials defined by [3]

Bqn(a1, ..., ap; b1, ..., bs; y) = p+qFs

[
(a : −n), a1, ...ap;

b1, ...bs; y

]
, (4.18)

we deduce, from (4.13), the following bilateral generating relation:

∞∑
n=0

G(α)
n (x, r, β, k)Bqn(a1, ..., ap; b1, ..., bs; y)tn (4.19)

= (1− kt)−α/kexp[βxr{1− (1− kt)−r/k}]

×F (7)

[
x(1− kt)−1/k, y

{
−t

q(1− kt)

}q ]
,

where

F (7)(x, t) =

∞∑
n=0

∏p
j=1(aj)n(qn)!tn∏s

j=1(bj)n
G(α)
qn (x, r, β, k). (4.20)

By suitably specializing the arbitrary parameters involved in (4.18), the Braf-
man’s polynomials can be reduced to a number of familiar polynomials. Thus, the
relation (4.19) may be applied in deriving a number of bilateral generating relations

for G
(α)
qn (x, r, β, k) .
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