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NUMERICAL APPROACH OF NONLINEAR FRACTIONAL

INITIAL VALUE PROBLEMS BY COMBINATION OF THE TWO

METHODS : ADOMIAN DECOMPOSITION METHOD AND

JACOBI SPECTRAL COLLOCATION

A. S. ALGHAMDI, J.F. ALZAIDY, A.K. HUSSAIN

Abstract. This paper expands a numerical method that is proposed in [1]

to obtain approximate solutions of initial value problems for nonlinear frac-
tional differential equations. This approach is based on the combination of the

two methods: Adomian decomposition method and Jacobi spectral colloca-

tion method. The aim of this approach is to reduce the nonlinear differential
equation to a system of algebraic equations that can be solved using a nu-

merical method. Several examples with numerical solutions are provided to

demonstrate the efficiency of this approach.

1. Introduction

In the middle of the 19th century, mathematicians focused on the theoretical
approach to fractional calculus. Within years, many applications of fractional cal-
culus had appeared in other academic areas, such as chemistry, physics, financial
and social sciences and even engineering[2, 3, 4].

Fractional differential equations have been solved using several methods, though
the most commonly used methods are the Adomian decomposition method (ADM[5,
6],the collocation method[7, 9], the orthogonal polynomial method[10, 11], the series
solution method[12], and the Laplace transform method[10, 13].

George Adomian developed the Adomian decomposition method (ADM) in [2,
14] and has been repeatedly referenced. This method is applicable to a wide range
of linear and nonlinear ordinary differential equations, partial differential equations,
and integral equations. The Adomian decomposition method relies on decomposing
the solution into the infinite series solution[15]

y(x) =

∞∑
k=0

yk(x). (1)
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The collocation method [7, 16, 17]is used to obtain the numerical solution of the
fractional derivative as it is a global operator. However, spectral collocation meth-
ods are preferable techniques to obtain numerical solutions of nonlinear differential
equations and have a number of outstanding features, such as efficiency, high accu-
racy, and exponential convergence. The main objective of the spectral collocation
method is to approximate the unknown solution y(x) using a linear combination
of trial functions, such as orthogonal polynomials.The orthogonal polynomials can
be chosen according to their advantages, making it particularly suitable for the
problem under study.

To solve nonlinear fractional differential equation, this paper combines two meth-
ods, namely the Adomian decomposition method (ADM) and the Jacobi spectral
collocation method (JSCM), in order to overcome the difficulties of convergence.
The proposed approach reduces nonlinear fractional differential equations to sys-
tems of linear algebraic equations. Following this process, the resulting systems are
solved using numerical methods for example Newton iterative method.

The remainder of this paper is arranged as follows. Section 2 introduces nec-
essary definitions and the mathematical tools needed for fractional calculus, also
discusses the properties of Jacobi polynomial.Section 3 shows the Adomian decom-
position method that is used to solve the nonlinear term of fractional differential
equations(FDEs). Section 3 ends with an explanation of how the collocation method
is used to solve the linear terms of FDEs. Section 4 discusses how the algorithm is
built. Section 5 presents numerical results to clarify the methods used. Section 6
is a summary of the paper.

2. Preliminaries and Useful Formulas

This section provides basic definitions and properties of fractional differential
and integral operator as in [10, 18, 19].Then we mention to some properties of
shifted Jacobi polynomials..

2.1. Fractional calculus definitions. The left-sided Riemann-Liouville fractional
integral operator RIαa of order α ∈ R+ on the usual Lebesgue space L1[a, b] is de-
fined as:

RIαa f(x) =
1

Γ(α)

∫ x

a

(x− ξ)α−1f(ξ)dξ. ax, (2)

where Γ(.) represents the Euler gamma function.
The operator RIαa has the following properties:(β, γ ∈ R+)

(i) RIαa I
β
a = Iα+β

a ,

(ii)RIαa I
β
a = Iβa I

α
a ,

(iii)RIαa x
γ = Γ(1+γ)

Γ(1+γ+α)x
α+γ .

The Riemann-Liouville fractional derivative operator RDα
a of order α ∈ R+ is

defined as:

RDα
a f(x) = DkIk−αa f(x) =

dk

dxk
1

Γ(k − α)

∫ x

a

(x− ξ)k−α−1f(ξ)dξ. (3)

where α satisfies the relation k − 1 < αk, k ∈ N , and f ∈ L1[a, b].
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The fractional differential operator in Caputo sense is defined as:

CDα
a f(x) =

1

Γ(k − α)

∫ x

a

(x− ξ)k−α−1f(ξ)dξ. a < xb (4)

where k− 1 < αk, k ∈ N . For the Caputo fractional derivative operator, we have
the following some basic properties:

Iαa
CDα

a f(x) = f(x)−
m−1∑
j=0

f (j)(0+)
xj

j!
,

CDα
ax

γ =

{
0, γ ∈ N0; dαe > γ,

Γ(1+γ)
Γ(1+γ−α)x

γ−α, γ ∈ N0; dαe ≤ γ,

wheredαe is the ceiling functions , while N0 = {0, 1, ...}.
In this paper, only Caputo fractional derivatives are considered .

2.2. Properties Of Shifted Jacobi Polynomials. The Jacobi polynomials P
(η,δ)
k (x) (k =

0, 1, ...) of degree k are defined on the interval [−1, 1], and can be generated using
Rodrigue‘s formula[20, 21, 22]:

P
(η,δ)
k (x) =

(−1)k

2kk!
(1− x)−η(1 + x)−δ

dk

dxk
[(1− x)η+k(1 + x)δ+k], (5)

where k = 0, 1, ... and η, δ > −1.

The qth derivative of P
(η,δ)
k (x) is provided by

dq

dxq
P

(η,δ)
k (x) =

Γ(η + δ + k + 1)

2qΓ(η + δ + k + 1)
P

(η+q,δ+q)
k−q (x) (6)

Also,the Jacobi polynomial satisfy the orthogonality relation

(P
(η,δ)
k (x), P

(η,δ)
l (x))ω(x) =

∫ 1

−1

P
(η,δ)
k (x)P

(η,δ)
l (x)ω(x)dx = hkδlk, (7)

where δlkis the Kronecker delta function and

ω(η,δ)(x) = (1− x)η(1 + x)δ, hk = 2η+δ+1Γ(k+η+1)Γ(k+δ+1)
(2k+η+δ+1)k!Γ(k+η+δ+1) .

To use these polynomials on the interval [0, L], this paper defines the shifted

Jacobi polynomials by inserting the change in variable x =
2x

L
− 1. Let the shifted

Jacobi polynomials P
(η,δ)
i ( 2x

L − 1) be denoted by P
(η,δ)
L,i (x) those can be obtained

by the following recurrence formula:

P
(η,δ)
L,k+1(x) = (a

(η,δ)
k (

2x

L
− 1)− b(η,δ)k (x))P

(η,δ)
L,k (x)− c(η,δ)k (t)P

(η,δ)
L,k−1(x), k ≥ 1,

P
(η,δ)
L,0 (x) = 1, P

(η,δ)
L,1 (x) =

1

L
(η + δ + 2)x− (δ + 1),

(8)

where

a
(η,δ)
k =

(2k + η + δ + 1)(2k + η + δ + 2)

2(k + 1)(k + η + δ + 1)
, (9)

b
(η,δ)
k =

(δ2 − η2)(2k + η + δ + 1)

2(k + 1)(k + η + δ + 1)(2k + η + δ)
, (10)
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c
(η,δ)
k =

(k + η)(k + δ)(2k + η + δ + 2)

(k + 1)(k + η + δ + 1)(2k + η + δ)
, (11)

The explicit analytic form of the shifted Jacobi polynomials P
(η,δ)
L,j (t) of degree j is

given by

P
(η,δ)
L,j (x) =

j∑
k=0

(−1)j+k
Γ(j + δ + 1)Γ(j + k + η + δ + 1)

Γ(k + δ + 1)Γ(j + η + δ + 1)(j − k)!k!Lk
xk (12)

and the orthogonality condition is∫ L

0

P
(η,δ)
L,j (x)P

(η,δ)
L,k (x)ω

(η,δ)
L (x)dt = ~(η,δ)

L,k δjk, (13)

where ω
(η,δ)
L (x) = xδ(L− x)η and ~(η,δ)

L,k =
Lη+δ+1Γ(k + η + 1)Γ(k + δ + 1)

(2k + η + δ + 1)k!Γ(k + η + δ + 1)
.

Suppose that the function y(t) is square-integral in [0, L], then it can be expressed
in terms of shifted Jacobi polynomials as in the following form:

y(t) =

∞∑
k=0

ckP
(η,δ)
L,k (t), (14)

where the coefficients ck are given by

ck =
1

~(η,δ)
L,k

∫ L

0

y(t)P
(η,δ)
L,k (t)ω

(η,δ)
L (t)dt, k = 0, 1, .... (15)

To approximate y(t) by the first (M + 1)−terms, we can write

yM (t) '
M∑
k=0

ckP
(η,δ)
L,k (t). (16)

3. Adomain decomposition and Jacobi spectral collocation method

3.1. The Adomian decomposition method(ADM). Consider the following
nonlinear differential equation

L[y] +N [y] = g(x), (17)

where L is a linear operator, N is a nonlinear operator and g(x) is a given function.
To decompose the solution y(x) use the infinite series solution

y(x) =

∞∑
k=0

yk(x) (18)

and the decomposetion of the nonlinear operatorN in (17) is:

N (y) =

∞∑
i=0

Ai(y0, y1, ....., yi) (19)

whereAi are the Adomian polynomials and are obtained by

Ai =
1

i!

di

dλi
[N (

∞∑
k=0

λkyk)] (20)
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Substituting (18) and (19) into (17) provides the following recursive scheme:{
L[y0] = g(x).

L[yi+1] = −Ai, i = 0, 1, 2, ....,
(21)

The M - term approximation solution is defined as

φM (x) =

M−1∑
i=0

yi(x) (22)

where we assume that

lim
M→∞

φM (x) = y(x). (23)

3.2. Jacobi spectral Collocation method. To fix the idea, we consider the
following linear fractional differential equation:

n∑
`=0

Dβ`y(x) = f(x), ` < β` ≤ `+ 1 (24)

with the initial conditions

y(s)(0) = %s, s = 0, 1, 2, ......, n (25)

The solution y(x)in (24) can be approximated on the partition interval[0, L] by
a truncated series of shifted Jacobi polynomials:

yr(x) =

r∑
j=0

cjP
(η,δ)
L,j (x), (26)

where cj are unknown coefficients.
Substituting (26) into (24) and (25), we have

r∑
j=0

cj

n∑
`=0

P
(η,δ,β`)
j (x) = f(x), (27)

r∑
j=0

cjP
(η,δ,s)
j (0) = %s, s = 0, 1, ..., n, (28)

where

P
(η,δ,β`)
j (x) = Dβ`P

(η,δ)
j (x),

P
(η,δ,s)
j (0) =

ds

dxs
P

(η,δ)
j (0).

Relation (28) forms a system with n+1 equations and m+1 unknowns. To construct
the remainingm−n equations, we substitute Jacobi-Gauss points xi(i = 1, ...,m− n),to
obtain m− n equations. Therefore,the method reduces the solution of (17) to the
solution of system ΩC = Ξ where Ω, C, and Ξ are

Ω =

(
Ω1

Ω2

)
, (29)
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where

Ω1
(m−n)×(m+1) =

n∑
`=0

P
(η,δ,β`)
j (xi), i = 1, ....,m− n, j = 0, 1, ...,m,

Ω2
(n+1)×(m+1) = P

(η,δ,s)
j (0), s = 1, ...., n, j = 0, 1, ...,m,

C =


c0
c1
...
cn

 (30)

and vector

Ξ =

(
Ξ1

Ξ2

)
, (31)

where Ξ1
(n+1)×1 = %s (s = 0, 1, ...., n) and Ξ2

(m−n)×1 = f(xi) (i = 1, ....,m− n).

For more detalis see [1, 7, 16].

4. Methodology

Suppose the following differential equation:

L[y] +N [y] = f(x)

y(s)(0) = %s, s = 0, 1, ...., n.
(32)

Now,by applying the ADM mentioned in the subsection 3.1 to the above problem,
we get

yi+1 = −L−1[Ai], i ≥ 0. (33)

Sometimes, L−1 is difficult or impossible to find. So, we can solve it by our
proposed method. That is, we set

yk(x) =

m∑
i=0

c
(k)
i P

(η,δ)
L,i (x) (34)

Using subsection 3.2, we can write

C(0) = Ω−1Ξ(0) (35)

where

C(0) = [c
(0)
0 , c

(0)
1 , ...., c(0)

m ]T

Ξ(0) = [f(x1), f(x2), ...., f(xm−n), %0, %1, ...., %n]T ,
(36)

and x1, x2, ...., xm−n are zeros of polynomial P
(η,δ)
m−n(t),while,

C(i) = Ω−1Ξ(i) (37)

where

C(i) = [c
(i)
0 , c

(i)
1 , ...., c(i)m ]T

Ξ(i) = [−Ai−1(x1),−Ai−1(x2), ....,−Ai−1(xm−n), 0, 0, ...., 0]T , i = 1, ...
(38)
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5. Numerical Examples and Comparisons

This section illustrates some numerical examples solved in [1] to show the accuracy
and applicability of the proposed method in solving the initial value problems of
nonlinear FDEs. This section also compares the given results from our scheme
using shifted Jacobi polynomials at various points of (η, δ) and those reported in
[1], which was achieved using the shifted Legendre polynomial. These comparisons
show the effectiveness and high accuracy of our method. Maple 2017 has been used
to compute the numerical results with 32-digit precision in the following examples.

Example 1: Consider the following initial value problem of the nonlinear frac-
tional differential equation

D3/2y +D1/2y +Dy + y + ey =
4
√
x√
π

+
8x3/2

3
√
π

+ 2x+ x2 + ex
2

x ∈ [0, 1] (39)

y(0) = y
′
(0) = 0. (40)

with exact solution y(x) = x2 .
In Table 1, present method gives the numerical results based on the maximum

absolute errors(MEAs) for N=7 ,η = 24.001 and δ = 0.00001. We observe numerical
results for present method are more accurate than the numerical results of the
method in [1].Fig. 1 shows the matching between the numerical solution and exact
solution.

Table 1. Comparison of MAEs between SADM by Legendre
polynomials[1] and Present method for example 5

K SADM by Legendre polynomials[1] Present method
10 1.0× 10−5 2.1× 10−8

20 1.6× 10−9 1.7× 10−17

30 3.0× 10−13 3.9× 10−25

Figure 1. comparison of numerical solution and exact solution
for example 5 at K=30.
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Example 2: Consider the initial value problem of the nonlinear fractional differ-
ential equation

D3y +D5/2y + y2 = x4, x ∈ [0, 1] (41)

y(0) = y
′
(0) = 0, y

′′
(0) = 2, (42)

with exact solution y(x) = x2 .
In Table 2, MEAs for N=7 and at choose values,η = 30, δ = −0.5 are given . It

is to be noted that presented method converges before SADM by shifted Legendre
polynomial in [1],and the error becomes stable after 10 iteration . A comparison
between numerical solution and exact solution is given in Fig. 2. The numerical
solutions match well with exact solution.

Table 2. Comparison of MAEs between SADM by Legendre
polynomials[1] and Present method for example 5

K SADM by Legendre polynomials[1] Present method
5 1.2× 10−17 3.2× 10−28

10 1.2× 10−31 8.0× 10−32

15 8.0× 10−32 8.0× 10−32

Figure 2. Comparison of numerical solution and exact solution
for example 5 at k=15.

6. Conclusion

In this work, the proposed method was a generalization of SADM in [1]. In sum-
mary, the main advantage of this method is that is uses shifted Jacobi polynomials
to find a highly accurate numerical solutions for nonlinear initial value problems of
FDEs. Through comparison, the validity and accuracy of our scheme is asserted.
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