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A NEW OPERATIONAL MATRIX OF INTEGRATION BASED ON THE
INDEPENDENCE POLYNOMIAL OF GRAPH TO SOLVE FRACTIONAL

POISSON EQUATION

CHANDRALI BAISHYA

ABSTRACT. In this paper, we have derived a new operational matrix of fractional inte-
gration by using the independence polynomial of a complete bipartite graph and applied
it to solve the Poisson equation with Dirichlet boundary conditions. While deriving the
operational matrix, the Caputo sense fractional derivatives are considered. Series solutions
are found by using the collocation matrix method. The main characteristic of the approach
is that it reduces a complex fractional differential equation to a system of algebraic equa-
tions. The error bound and computational complexity of the projected algorithm are also
investigated. Solutions obtained for the Poisson equation have established the relevance
and applicability of the method described. Comparative analysis of the obtained results
with the exact solutions convinces that the present method can be considered an efficient
numerical tool for solving fractional differential equations.

1. INTRODUCTION

The Poisson equation is the famous elliptic partial differential equation that governs
many physical phenomena such as steady heat conduction, seepage through porous media,
the irrotational flow of an ideal fluid, distribution of electrical and magnetic potential,
torsion of the prismatic shaft, bending of prismatic beams, distribution of gravitational
potentials and many others. It has the general form:

52 w = g. (1)

where g is the source function defined in the domain Ω and Ω∈R2 or Ω∈R3. The bound-
ary conditions on the boundary ∂Ω for this equation can be Dirichlet boundary condition
or Neumann boundary condition or mixed boundary condition [1].

In recent years, fractional calculus and its theory have been remarkably developed
[2, 3, 4, 5] and are extensively used in the different fields of science and technology. Pud-
lobny [4] and Kilbas et al. [5] have investigated the existence and uniqueness of solutions
to the fractional differential equations (FDEs). The utility of fractional partial differential
equations (FPDEs) in mathematical modelling has attracted the attention of many scientists
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in recent years. Kumar et al. [6] and Veeresh et al.[7] analyzed Fornberg– Whitham equa-
tion and Fisher-Kolmogorov equation respectively incorporating fractional derivative with
Mittag–Leffler type kernel. Fluid mechanics [8], the nonlinear oscillation of earthquakes
[9], traffic model [10], viscoelasticity [11], continuum and statistical mechanics [12], solid
mechanics [13], economics [14, 15], mathematical biology [16, 17, 18], bioengineering
[19], dynamics of interfaces between nanoparticles and substrates [20] are some of such
examples where FDEs and in particular FPDEs arise.

There are many effective numerical techniques to solve FPDEs viz. homotopy pertur-
bation method [21], homotopy analysis method [22], q-homotopy analysis method [23, 7],
adomian decomposition method [24], differential transform method [25], the variational
iteration method [26], the heat-balance integral method [27] and others [28, 29, 30, 31, 32,
33]. Recently Chen et al. have proposed Kansa method which belongs to the RBF collo-
cation method for solving fractional diffusion equations [34]. Wasim et al. [35] have used
a B-Spline Collocation method for solving the generalized Burgers-Fisher and Burgers-
Huxley equations. In [36], Sayevand et al. applied B-Spline collocation method to solve
fractional diffusion equations in transport dynamic systems. In [37], Sun et al. applied
a novel finite difference method for solving variable-order time fractional diffusion equa-
tion. Fu and Yang [38] have proposed the Laplace transformed boundary particle method
for solving time fractional diffusion equations.

Because of the ability to represent a function at different levels of resolution, orthogonal
polynomial bases remain a popularly adopted trend for numerical solutions of both integer
order and fractional order partial differential equations. In recent years, we can observe
many research publications involving orthogonal polynomial-based numerical methods to
solve FPDEs. In this context, researchers have solved FPDEs by generating operational
matrix of fractional derivatives using orthogonal polynomials such as Legendre polynomial
[39, 40], Laguerre polynomial [41], Jacobi polynomial [42, 43, 44], Chebyshev polynomial
[45, 46], Genocci polynomial [47, 48].

In the same line of curiosity to invent new methods for FDEs, few mathematicians
also developed new numerical techniques involving non-orthogonal bases and achieved re-
markable accuracy. Bernstein polynomial is one of the non-orthogonal polynomials widely
used to solve integer order and fractional order ordinary and partial differential equations.
Parand et al. [49] have introduced an operation matrix method based on Bernstein poly-
nomials for the Riccati differential equation and Volterra population model. Rostamy et
al. [50] treated FDEs by an operational matrix of fractional derivatives derived from Bern-
stein polynomial. Hossein and Haleh [51] have solved fractional order optimal control
problems by operation matrix method based on Bernstein polynomials. Numerical so-
lutions of time-fractional order telegraph equations are solved by Bernstein polynomials
operational matrices by Asgari et al. [52]. Recently, some of the researchers have applied
polynomials derived from various graphs to solve linear and nonlinear ordinary differential
equations, partial differential equations, integral equations, and integro-differential equa-
tions [53, 54, 55, 56, 57]. Ramane et al. [53] have solved integral equations using Hosoya
polynomial of a path graph. The Fibonacci polynomial being one of the most fascinat-
ing polynomials with their many generalized properties, attracted applied mathematicians
to use them in solving differential equations. While articles using these polynomials in
different applications are limited, a collocation procedure was built in [58, 59] for treat-
ing BVPs using the Fibonacci operational matrix of derivatives. Waleed and Youssri [60]
solved FDEs using an operational matrix calculated from Fibonacci polynomials.
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The major goal of this research is to contribute a novel solution technique for dealing
with FDEs. Even though numerous orthogonal polynomials are utilized to solve FDEs by
producing operational matrices, non-orthogonal polynomials are rarely used in this direc-
tion with the same enthusiasm. Graph theory is a large field of studies in which academics
are always working to contribute new theories connected to diverse physical structures in
graphical form, resulting in many new polynomials in this subject. This motivates us to for-
mulate a novel numerical approach by using polynomial related to a graph. We created an
operational matrix of fractional integration in this study based on the independence poly-
nomial of a complete bipartite graph. We demonstrated the use of this operational matrix
for converting the FPDEs to a system of algebraic equations by taking the Poisson equation
as a case study. The proposed technique is a first step in developing a new numerical strat-
egy for dealing with FDEs. The key feature of the technique is that the polynomial under
consideration is non-orthogonal, and the analysis reveals that the algorithm produces an
efficient operational matrix from a non-orthogonal polynomial in a straightforward man-
ner. The proposed scheme converts complex differential equations to a system of algebraic
equations. The strength of the suggested algorithm is determined by its error-bound anal-
ysis and computational complexity study. The derived operational matrix could give good
accuracy for the FDEs irrespective of the choice of collocation points. One notable obser-
vation is that the algorithm needs more CPU time if the number of nodal points is large. In
this paper, we consider the Poisson equation with fractional derivatives in the Caputo sense
in the domain Ω = {(x,y) : 0 ≤ x ≤ a,0 ≤ x ≤ b}, a and b are finite constant, concerning
the solution w(x,y) satisfying the equation

∂ α w(x,y)
∂xα

+
∂ β w(x,y)

∂yβ
= g(x,y), 1 < α,β ≤ 2, for(x,y) inΩ, (2)

with boundary conditions

w(x,y) = ψ(x,y), for(x,y)on the boundary∂Ω. (3)

where ∂Ω is the boundary of the region Ω.
The paper is organized as follows: In Section 2, we give the definitions related to the in-
dependence polynomial of a complete bipartite graph and some preliminaries of fractional
calculus. In Section 3, we have described the approximation of a function by the inde-
pendence polynomial of a complete bipartite graph. Construction of operational matrix of
fractional integration by the independence polynomial of a complete bipartite graph, error
bound, and computational complexity analysis of the algorithm is presented in Section 4.
In Section 5, we have demonstrated the method of solving the Poisson equation by using
the complete bipartite independence polynomial collocation (CBIPC) method. To investi-
gate the efficiency of the present method numerically, in Section 6, we have solved three
Poisson equation examples involving Caputo fractional derivative. Conclusion is presented
in Section 7.

2. INDEPENDENCE POLYNOMIAL AND PRELIMINARIES

2.1. Independence polynomial of a complete bipartite graph. A simple graph is a pair
G = (V,E), where V is a set of elements called vertices, and E is a set of elements called
edges. Let u,v ∈V . The vertices u and v are said to be adjacent if there is an edge between
u and v. An independent set in the graph G is a set of pairwise non-adjacent vertices. The
independence number denoted by α(G) is the cardinality of a maximum independent set
of G. We have referred to the literature [61], to get the theoretical concept of independence
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FIGURE 1. Class of complete bipartite graphs.

polynomial. The independence polynomial of a graph G is the polynomial whose coeffi-
cient on xk is given by the number of independent sets of order k in G. We denote this
polynomial by I(G;x).
So, I(G;x) = ∑

α(G)
k=1 ckxk, where xk is the number of independent sets of order k in G.

A bipartite graph is a graph whose vertices can be partitioned into two independent sets
A and B such that every edge connects a vertex in A to one in B. The Complete Bipartite
graph, denoted by Km,n, is a bipartite graph on m+ n vertices. The vertices in Km,n are
partitioned into two independent sets A and B, where |A| = m and |B| = n. Additionally,
every vertex in A is adjacent to every vertex in B. Star graph, Utility graph, Cayley graph
are some of the well known complete bipartite graphs shown in the figure 1.

In this paper, we shall assume that m = n. The recurrence relation for I(Kn,n;x) is

I(Kn,n;x) = I(Kn−1,n−1;x)+2x(1+ x)n−1 with I(K0,0) = 1. (4)
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The recurrence relation (4) gives closed form of the independence polynomial of a com-
plete bipartite graph as

I(Kn,n) = 2(1+ x)n−1. (5)

2.2. Preliminaries.

Definition 1. The Riemann–Liouville fractional order integral operator is defined by [4]

Jα
x f (x) =

1
Γ(α)

∫ x

0

f (t)
(x− t)α−1 dt, α > 0.

J0 f (x) = f (x).

For Riemann–Liouville fractional order integral operator, we have

Jα
x xn =

Γ(n+1)
Γ(n+1+α)

xn+α . (6)

3. FUNCTION APPROXIMATION

A function g(x,y) ∈ L2([0,1]× [0,1]) can be expressed in terms of the independence
polynomials of a complete bipartite graph basis as

g(x,y) =
m

∑
i=0

m

∑
j=0

gi jI(Kii;x)I(K j j;y)

= Ψ
T (x)GΨ(y).

where ΨT (x) = [I(K00;x), I(K11;x), ...I(Kmm;x)].

G =


g00 g01 ... g0m
g10 g11 ... g1m
. . ... .
. . ... .

gm0 gm1 ... gmm


G is computed by the equation

G = Q−1 < Ψ(x),< Ψ(y),g(x,y)>> Q−1, (7)

where

Q =< Ψ(x),Ψ(x)>=
∫ 1

0
Ψ(x)ΨT (x)dx. (8)

4. GENERLIZED COMPLETE BIPARTITE OPERATIONAL MATRIX OF FRACTIONAL
INTEGRATION

Since the order of fractional derivatives α and β in equation (2) satisfy 1 < α,β ≤ 2, in
the process of integration we encounter first derivative of Ψ(x). The first derivative of the
vector Ψ(x) for m = 6 can be written as:

d
dx

Ψ(x) =



0 0 0 0 0 0 0
2 0 0 0 0 0 0
2 2 0 0 0 0 0
3 0 3 0 0 0 0
4 0 0 4 0 0 0
5 0 0 0 5 0 0
6 0 0 0 0 6 0


Ψ(x).
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Therefor, in general we may write first derivative of the vector Ψ(x) as

d
dx

Ψ(x) = D(1)
Ψ(x). (9)

where D(1) = (di j) is the complete bipartite operational matrix of derivatives of order (m+
1)× (m+1) and

di j =


2, for i = 1, j = 0,
i, for j = 0 and j = i−1,
0, otherwise.

By using relation (9) it is clear that

dnψ(x)
dxn = (D(1))n

Ψ(x) where n ∈ N.

The following theorem generalizes the operational matrix of fractional integration based
on the independence polynomial of a complete bipartite graph.

Theorem 1. Let Ψ(x) be the complete bipartite vector defined in (5) and let α > 0 then

Jα
x Ψ(x)≈ xα J(α)

Ψ(x).

where J(α)
x is the (m+1)× (m+1) operational matrix of fractional integration of order α

and is defined as follows:

J(α) =



Θα
0,0 0 0 ... 0 ... 0

Θα
1,0 Θα

1,1 0 ... 0 ... 0
Θα

2,0 Θα
2,1 Θα

2,2 ... 0 ... 0
. . . .
. . . .
. . . .

Θα
i,0 Θα

i,1 Θα
i,2 ... Θα

i,i ... 0
. . . .
. . . .
. . . .

Θα
m,0 Θα

m,1 Θα
m,2 ... Θα

m,i ... Θα
m,m


(10)

Proof. We have

I(Kii;x) = 2
i

∑
k=0

(
i
k

)
xk−1 (11)

Using equations (6) and (11) we get,

Jα
x I(Kii;x) =2

i

∑
k=0

(
i
k

)
Γ(k+1)

Γ(k+1+α)
xk+α − 1

Γ(1+α)
xα

=2xα
i

∑
k=1

i!
(i− k)!Γ(k+1+α)

xk +
1

Γ(1+α)
, i = 1,2, ...,m. (12)

Approximating xk by (m + 1) the independence polynomial of a complete bipartite
graph, we have,

x =−1
2
(
I(K00;x)− I(K11;x)

)
,
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x2 =
1
2
(
I(K00;x)−2I(K11;x)+ I(K22;x)

)
,

x3 =−1
2
(
I(K00;x)−3I(K11;x)+3I(K22;x)− I(K33;x)

)
.

In general

xk = (−1)k 1
2

k

∑
j=0

(−1) j
(

k
j

)
I(K j j;x) =

k

∑
j=0

ak, jI(K j j;x), k = 0,1,2, ... (13)

Where,

ak, j = (−1)k+ j 1
2

(
k
j

)
.

Using equation (13) in equation (12) we get,

Jα
x I(Kii;x) =2xα

i

∑
k=1

k

∑
j=1

i!
(i− k)!Γ(k+1+α)

ak, jI(K j j;x)

+ xα
( i

∑
k=1

i!(−1)k

(i− k)!Γ(k+1+α)
+

1
Γ(1+α)

)
I(K00;x)

=xα
i

∑
j=1

i

∑
k=1

i!
(i− k)!Γ(k+1+α)

(−1)k+ j
(

k
j

)
I(K j j;x)

+ xα
( i

∑
k=1

i!(−1)k

(i− k)!Γ(k+1+α)
+

1
Γ(1+α)

)
I(K00;x)

=xα
( i

∑
j=1

Θ
α
i, jI(K j j;x)+Θ

α
i,0I(K00;x)

)
, i = 1,2, ...,m (14)

Where, for i = 1,2, ...,m

Θi, j =


∑

i
k=1

i!(−1)k

(i−k)!Γ(k+1+α) +
1

Γ(1+α) , for j = 0,

∑
i
k=1

i!
(i−k)!Γ(k+1+α) (−1)k+ j

(k
j

)
, for j ≤ i,

0, otherwise.

(15)

Θ
α
0,0 =

1
Γ(1+α)

.

And,
Jα

x I(K00;x) = Θ
α
0,0I(K00;x). (16)

We have,
Jα

x I(Kii;x)≈ xα [Θα
i,0,Θ

α
i,1, ...,Θ

α
i,m]ψ(x), i = 0,1...m. (17)

Equations (15), (16) and (17) yield the result (10). �

Theorem 2. The error |ϒm| = |Jα
x w(x,y)− Jα

x wm(x,y)| in approximating Jα
x w(x,y) with

operational matrix of fractional integration is bounded as follows:

|Jα
x w(x,y)−Jα

x wm(x,y)| ≤≤
∞

∑
i=m+1

∞

∑
j=m+1

|Wi j|

(
m

∑
p=1
|Θα

i,p|

(
2

p

∑
k=1

(
p
k

)
+1

)
+ |Θα

i,0|

)(
2

j

∑
k=0

(
j
k

)
+1

)
,
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where wm is the approximation of the function w(x) based on the independence polyno-
mials a complete bipartite graph, Wi, j, i = 0,1,2, ...,m, j = 0,1,2, ...,m is the coefficients
matrix of this approximation and Θα

i, j is given by equation (15).

Proof. We consider,

w(x,y) =
∞

∑
i=0

∞

∑
j=0

Wi jI(Kii;x)I(K j j;y).

Taking first m terms, we get,

wm(x,y) =
m

∑
i=0

m

∑
j=0

Wi jI(Kii;x)I(K j j;y).

Then,

w(x,y)−wm(x,y) =
∞

∑
i=m+1

∞

∑
j=m+1

Wi jI(Kii;x)I(K j j;y).

|Jα
x w(x,y)− Jα

x wm(x,y)|= |
∞

∑
i=m+1

∞

∑
j=m+1

Wi jJα
x I(Kii;x)I(K j j;y)|

= |
∞

∑
i=m+1

∞

∑
j=m+1

Wi jxα

(
m

∑
p=1

Θ
α
i,pI(Kpp;x)+Θ

α
i,0I(K00;x)

)
I(K j j;y)|

≤
∞

∑
i=m+1

∞

∑
j=m+1

|Wi j|

(
m

∑
p=1
|Θα

i,p||I(Kpp;x)|+ |Θα
i,0||I(K00;x)|

)
|I(K j j;y)|

≤
∞

∑
i=m+1

∞

∑
j=m+1

|Wi j|

(
m

∑
p=1
|Θα

i,p|

(
2

p

∑
k=1

(
p
k

)
|x|k +1

)
+ |Θα

i,0|

)(
2

j

∑
k=0

(
j
k

)
|y|k +1

)
.

If 0 < |x|, |y| ≤ 1, then we get the upper bound for the independence polynomial of a
complete bipartite graph as follows

|I(Kii;x)|= |2
i

∑
k=0

(
i
k

)
xk−1| ≤ 2

i

∑
k=0

(
i
k

)
|xk|+1≤ 2

i

∑
k=0

(
i
k

)
+1. (18)

�

Theorem 3. Computational Complexity of the proposed algorithm is O(m3).

Proof. The steps involved in the present algorithm to solve an FPDE can be categorized in
three steps:

(1) To compute the operational matrix of fractional integration:
To compute Jα

x I(Kii;x) in equation (14), let us set that the number of multiplication
required is mA2 +A1. J(α) defined in Theorem 1 is a lower triangular matrix of
order m+1. The first row is evaluated 1 time, second row is evaluated 2 times and
so on. Therefore, total number of computation required to compute J(α) is

(m+1)(m+2)
2

(mA2 +A1).

(2) Since the Poisson equation is linear PDE, we solve the system by the Gaussian
elimination method. From the mathematical knowledge, the number of operations
required in Gaussian elimination for a system of m+1 equations is

(m+1)(m+2)(2m+3)
6

.
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(3) Finally to compute w(x,y), we need to multiply matrices of order (1×m), (m×m)
and (m×1). Total number of computations required in matrix multiplication is of
order O(m3).

Therefore, the computational complexity of the present algorithm is

(m+1)(m+2)
2

(mA2 +A1)+
(m+1)(m+2)(2m+3)

6
+O(m3) = O(m3).

�

5. DESCRIPTION OF THE CBIPC METHOD

A function w(x,y) ∈ L2([0,1]× [0,1]) can be approximated by using the independence
polynomials of a complete bipartite graph bases as

w(x,y) =
m

∑
i=0

m

∑
j=0

Wi jI(Kii;x)I(K j j;y)

= Ψ
T (x)WΨ(y).

(19)

Here Ψ(x) and Ψ(y) are vectors defined by Ψ(x) = [K00(x),K11(x), ...,Kmm(x)]T and
Ψ(y) = [K00(y),K11(y), ...,Kmm(y)]T and the unknown W is (m+1)× (m+1) matrix that
can be written as

W =


W00 W01 ... W0m
W10 W11 ... W1m
. . ... .
. . ... .

Wm0 Wm1 ... Wmm

 .

Taking fractional integration of order α and β in equation (19) with respect to x and y, we
get

Jα
x w(x,y) = xα

Ψ
T (x)(J(α))TWΨ(y),

Jβ
y w(x,y) = yβ

Ψ
T (x)WJ(β )Ψ(y).

where J(α and J(β ) are (m+1)× (m+1) operational matrices of fractional integration of
order α and β respectively.
Consider the Poisson equation (2) with boundary condition

w(x,0) = f0(x),w(0,y) = g0(y),w(x,1) = f1(x),w(1,y) = g1(y). (20)

Taking fractional integral of order α with respect to x in equation (2), we get

w(x,y)−w(0,y)− xDxw(0,y)+ Jα
x
(∂ β w(x,y)

∂yβ

)
= Jα

x g(x,y). (21)

Taking fractional integral of order β with respect to y in equation (19), we get

Jβ
y w(x,y)− Jβ

y w(0,y)− xJβ
y Dxw(0,y)+ Jα

x (w(x,y)−w(x,0)− yDyw(x,0)) = Jβ
y Jα

x g(x,y),

Or,

Jβ
y w(x,y)+Jα

x w(x,y)−Jβ
y w(0,y)−xJβ

y Dxw(0,y)−Jα
x w(x,0)−yJα

x Dyw(x,0)= Jα
x Jβ

y g(x,y).
(22)
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In equation (22), we substitute the following:

Jβ
y w(x,y) = yβ

Ψ
T (x)WJ(β )Ψ(y),

Jα
x w(x,y) = xα

Ψ
T (x)(J(α)TWΨ(y),

Jβ
y w(0,y) = yβ

Ψ
T (0)WJ(β )Ψ(y),

Jβ
y Dxw(0,y) = yβ

Ψ
T (0)(D(1))TWJ(β )Ψ(y),

Jβ
x W (x,0) = xα

Ψ
T (x)W (J(α)T

Ψ(y),

Jβ
x Dyw(x,0) = xα

Ψ
T (x)(J(β ))TWD(1)

Ψ(y),

Jα
x Iβ

y g(x,y) = xα yβ
Ψ

T (x)GΨ
T (y).

Here G is a known (m+1)× (m+1) matrix obtained from (7).
The boundary conditions (20) may be written as:

Ψ
T (x)WΨ(0) =CT

1 Ψ(x), Ψ
T (0)WΨ(y) =CT

2 Ψ
T (y),

Ψ
T (x)WΨ(1) =CT

3 Ψ(x), Ψ
T (1)WΨ(y) =CT

4 (x).
(23)

where C1,C2,C3,C4 are known vectors of dimension m+1 and
C(α)

J T = (
∫ 1

0 fi(x)ΨT (x)dx)Q−1, and Q is derived from equation (8).
Collocation points are equi-spaced points in the limited domain. If width in between two
points are small then we get more accuracy in the solution. These methods helps us while
dealing with irregular functions (functions with sudden abrupt changes). In this paper,
the collocation points are chosen by the method: xi = x0 +

xn−x0
n+1 i, in the interval [a,b] =

[x0,xm]. Since the interval in the present paper is [0,1] and it is divided into m+1 points,
we have chosen the collocation points as xi =

i
n+1 . Using the collocation points xi =

i
m+1 ,y j =

j
m+1 , i, j = 0,1,2, ...m, we get 4m equations from equation (23) and remaining

(m+1)(m+1)−4m = (m−1)2 equations are obtained from the equation (22).

6. ILLUSTRATIVE EXAMPLES

This section applies the CBIPC method to obtain a numerical solution of the fractional
Poisson equation. To show the efficiency of the present method, we report the abso-
lute error |w(xi,y j)− w̃(xi,y j)|. The program corresponding to the proposed algorithm
is executed using Mathematica 12 in Windows 10 operating system, Processor: Intel(R)
Core(TM) i5-4300U CPU @ 1.90GHz 2.49 GHz, RAM: 4.00 GB, 64-bit operating sys-
tem. CPU timing is computed by executing the code for the proposed algorithm inside the
Mathematica function Timing[].

Example 1. We consider the Poisson equation (2) with α = 4/3, β = 3/2 and g(x,y) =
3x2/3y(y−1)

Γ( 2
3 )

+
4(x−1)x

√
y√

π
. Boundary conditions are given as w(x,0) = w(0,y) = w(x,1) =

w(1,y) = 0. Exact solution is w(x,y) = xy(x−1)(y−1).

Solution 1. : Taking m = 4, we approximate the solution of equation (2) by relation (19).
We obtain

D(1) =


0 0 0 0 0
2 0 0 0 0
2 2 0 0 0
3 0 3 0 0
4 0 0 4 0

 ,
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J(4/3) =


0.839885 0 0 0 0
0.479934 0.359951 0 0 0
0.335954 0.287961 0.21597 0 0
0.258426 0.232584 0.199357 0.149518 0
0.209971 0.19382 0.174438 0.149518 0.112138

 ,

J(3/2) =


0.752253 0 0 0 0
0.451352 0.300901 0 0 0
0.322394 0.257915 0.171943 0 0
0.250751 0.214929 0.171943 0.114629 0
0.20516 0.182364 0.156312 0.12505 0.0833665

 .

Collocate equation (22) at (m−1)2 points xi = y j =
i

m+1 , i= j = 1,2,3. Also, we collocate
the boundary conditions ΨT (x)WΨ(0) = 0 and ΨT (x)WΨ(1) = 0 at 2(m-1) points xi =
y j =

i
m+1 with i = j = 0(1)2 and ΨT (0)WΨ(y) = 0 and ΨT (1)WΨ(y) = 0 at 2(m+ 1)

points xi = y j =
i

m+1 with i = j = 0(1)4.
Solving the system of equations, we obtain the solution as

w(x,y) = x4(0.149624×10−14y4 +0.186603×10−14y3−0.0166367×10−15y2

−0.00516478×10−14y+6.444844×10−14)+ x3(0.127752×10−14y4−0.433455×10−15y3

+0.0519567×10−15y2 +0.00616997×10−14y−9.997558×10−14)+ x2(−0.138865×10−14y4

+0.39345×10−14y3 + y2− y+3.84137×10−14)+ x(0.116994×10−14y4−0.146598×10−14y3

−0.999877y2 +0.999989y−2.831068×10−15)−6.59194×10−17y4−2.220446×10−16y2

−3.330669×10−16y−2.498001×10−16

Similarly, we have computed the solution by taking m = 6 and m = 10, and presented
the absolute error for various values of (x,y) in Table 1 and 2 by taking different collocation
points. It is observed that the change of collocation points has the least influence on the
accuracy of the solutions obtained using the CBIPC algorithm. In Figure 2, we have pre-
sented the absolute error for m = 4, m = 6 and m = 10 and the comparison of approximate
solution for m = 10 with exact solution.

TABLE 1. Absolute error for Example 1 using collocation points xi =
i

m+1 , y j =
j

m+1 .

y 0.2 0.6 1 0.2 0.6 1

x m = 6, CPU time 13.45 sec m = 10, CPU time 19.23 sec

0 4.776×10−16 1.678×10−15 5.326×10−15 3.786×10−13 3.894×10−13 2.033×10−13

0.2 7.140×10−9 2.331×10−8 4.201×10−8 4.743×10−11 4.742×10−11 4.758×10−11

0.4 1.112×10−8 3.599×10−8 6.445×10−8 9.524×10−11 9.522×10−11 9.531×10−11

0.6 1.191×10−8 3.805×10−8 6.732×10−8 1.431×10−10 1.431×10−10 1.421×10−10

0.8 9.531×10−9 2.948×10−8 5.061×10−8 1.909×10−10 1.908×10−10 1.906×10−10

1.0 3.985×10−9 1.028×10−8 1.434×10−8 2.387×10−10 2.386×10−10 2.382×10−10
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TABLE 2. Absolute error for Example 1 using collocation points xi =
i

m2+1 , y j =
j

m2+1 .

y 0.2 0.6 1 0.2 0.6 1

x m = 6, CPU time 15.22 sec m = 10, CPU time 22.45 sec

0 5.233×10−17 2.111×10−15 4.452×10−15 3.745×10−13 3.735×10−13 2.121×10−13

0.2 6.782×10−9 2.311×10−8 4.532×10−8 4.643×10−11 4.833×10−11 4.655×10−11

0.4 1.115×10−8 3.521×10−8 6.564×10−8 9.531×10−11 9.511×10−11 9.534×10−11

0.6 1.182×10−9 3.872×10−8 5.431×10−8 1.521×10−10 1.522×10−10 1.331×10−10

0.8 8.112×10−9 2.901×10−8 5.721×10−9 1.302×10−10 1.877×10−10 1.933×10−10

1.0 3.876×10−9 1.811×10−9 1.375×10−9 2.473×10−10 2.346×10−10 2.492×10−10

Example 2. We consider the Poisson equation (2) with α = 3/2, β = 4/3 and g(x,y) =
8x3/2y3(8xy−8x−5y+5)

5
√

π
+ 27x3y5/3(3xy−2x−3y+2)

10Γ( 2
3 )

. Boundary conditions are given as w(x,0) =

w(0,y) = w(x,1) = w(1,y) = 0. Exact solution is w(x,y) = x3y3(x−1)(y−1).
For m = 4, m = 6 and m = 10, the graphs of absolute error are presented in Figure 3. It
also projects the comparison of approximate solution for m = 10 with exact solution of
example 2.

Example 3. We consider the Poisson equation (2) with α = 2, β = 3/2 and g(x,y) =
4
√

y(4y−3)sin(πx)cos(πx)√
π

− 4π2y
(
y− 1

2

)
(y− 1)sin(2πx). Boundary conditions are given as

w(x,0)=w(0,y)=w(x,1)=w(1,y)= 0. Exact solution is w(x,y)= sin(2πx)y
(
y− 1

2

)
(y−

1).
In Figure 4(A) and 4(C), the graphs of absolute error for example 3 are presented for m= 10
and m = 14 respectively. Whereas, Figure 4(B) and 4(D) project approximate solutions for
m = 10 and m = 14 respectively. Figure 4(E) represents the exact solution for Example 3.

7. CONCLUSION

In this paper, a general formulation for the operational matrix of fractional integration
has been derived using the independence polynomials of a complete bipartite graph. The
fractional derivatives are described in the Caputo sense. The novelty of the present paper
is that here we have applied a polynomial generated by a graph to produce an operational
matrix of Riemann-Liouville fractional integration. Because the resultant operational ma-
trix is triangular, it reduces the computational complexity of the algorithm. We have also
presented the error bound and computational complexity of the projected algorithm. More-
over, while demonstrating the efficiency of the present method with the help of the Poisson
equation, we have observed that it could produce a satisfactory amount of accuracy for
a smaller number of nodal points. Moreover, even though CPU time consumed depends
on the number of collocation points considered by this algorithm, it is observed that CPU
time taken is reasonably less. The solutions obtained for the Poisson equation using the
present method suggest that this method can be considered as an efficient new addition to
numerical analysis literature for solving FDEs.
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(A) The absolute error for
m = 4 (B) The absolute error for

m = 6

(C) The absolute error for
m = 10 (D) Approximate solution

for m = 10

(E) Exact solution

FIGURE 2. Graphs of solution at different values of m for Example 1.
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