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A FAMILY OF THETA-FUNCTION IDENTITIES BASED UPON

Rm-FUNCTIONS RELATED TO JACOBI’S TRIPLE-PRODUCT

IDENTITY

M. P. CHAUDHARY, SANGEETA CHAUDHARY, GOPI KANT GOSWAMI

Abstract. The authors establish a set of five new relationships involving Rm-
functions, which are based upon a q-product identities and Jacobi’s celebrated
triple-product identity. The present work is motivated and based upon recent
findings of Srivastva et al (see [18]).

1. Introduction and Definitions

Throughout this article, we denote by N, Z, and C the set of positive integers,
the set of integers and the set of complex numbers, respectively. We also let

N0 := N ∪ {0} = {0, 1, 2, · · · }

Several q-series identities, which emerge naturally from Jacobi’s triple-product iden-
tity, are worthy of note here (see, for details, [5, pp. 36–37, Entry 22]):

φ(q) :=
∞∑

n=−∞
qn

2

= 1 + 2
∞∑

n=1

qn
2

=
{
(−q; q2)∞

}2
(q2; q2)∞ =

(−q; q2)∞ (q2; q2)∞
(q; q2)∞ (−q2; q2)∞

; (1)

ψ(q) := f(q, q3) =
∞∑
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q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

; (2)

f(−q) := f(−q,−q2) =
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(−1)n q

n(3n−1)
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∞∑
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(−1)n q
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∞∑
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2 = (q; q)∞. (3)
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Equation (3) is known as Euler’s Pentagonal Number Theorem. Remarkably, the
following q-series identity:

(−q; q)∞ =
1

(q; q2)∞
=

1

χ(−q)
(4)

provides the analytic equivalent form of Euler’s famous theorem (see, for details,
[2] and [4]).
By introducing the general family R(s, t, l, u, v, w), Andrews et al. [3] investigated
a number of interesting double-summation hypergeometric q-series representations
for several families of partitions and further explored the rôle of double series in
combinatorial-partition identities:

R(s, t, l, u, v, w) :=
∞∑

n=0

qs(
n
2)+tn r(l, u, v, w;n), (5)

where

r(l, u, v, w : n) :=

[nu ]∑
j=0

(−1)j
quv(

j
2)+(w−ul)j

(q; q)n−uj (quv; quv)j
. (6)

We also recall the following interesting special case of (5) (see, for details, [3, p.
106, Theorem 3]; see also [15]):

R(m,m, 1, 1, 1, 2) =
(q2m; q2m)∞
(qm; q2m)∞

. (7)

Recently, Srivastva et al (see [18]) has introduced three notations:

Rα = R(2, 1, 1, 1, 2, 2);Rβ = R(2, 2, 1, 1, 2, 2);Rm = R(m,m, 1, 1, 1, 2) (m ∈ N).
(8)

for multivaraite R-functions, which we shall use for computation of our main results
in section 2.
Ever since the year 2015, several new advancements and generalizations of the
existing results were made in regard to combinatorial partition-theoretic identities
(see, for example, [15] to [17]).
Here, in this paper, our main objective is to establish set of five new relationships
involving Rm-functions which are based upon q-product identities and Jacobi’s
celebrated triple-product identity.
Each of the following preliminary results will be needed for the demonstration of
our main results in this paper (see [1]):
Ramanujan continued fraction is defined as (see [1, p. 489])

c(q) =
1

1+

2q

1− q2+

q2(1 + q2)2

1− q6+

q4(1 + q4)2

1− q10 + · · ·
(|q| < 1). (9)

A product representation for c(q) is given as (see [1, p. 490, Theorem 1.2])

c(q) =
ϕ(q4)

ϕ(q)
. (10)

Let u = c(q), v = c(−q) and w = c(q2). Then we have (see [1, p. 492, Theorem
3.2])

u+ v = 2uv, (11)

and

(u− v)2(2w − 1)2 + 8uvw(w − 1) = 0. (12)
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Also, let u = c(q) and v = c(q3). Then we recall (see [1, p. 494, Corollary 4.2])

(u2 + v2)2 − 12uv(u+ v)2 − 4uv[(1 + 2uv)(2uv − 3(u+ v)) + 1] = 0. (13)

2. A Set of Main Results

In this section, we introduce a set of five new relationships involvingRm-functions,
which are based upon q-product identities and Jacobi’s celebrated triple-product
identity.

Theorem 1. Each of the following relationships holds true:

ψ2(−q) = 2. R1 {R4}2

R8
− {R1}3

R2
. (14)

Equation (14) gives inter-relationships between R1, R2, R4 and R8.

{R4}2

R8

(
R2

{R1}2
+

R1

ψ2(−q)
− 2.R2{R4}2

R1R8ψ2(−q)

)
= 0. (15)

Equation (15) gives inter-relationships between R1, R2, R4 and R8.

4.R8

R16

(
{R2}2

{R1}4
+

{R1}2

ψ4(−q)

)
·
(
{R8}3

R16
− {R4}2

)
+

{R4}4

{R8}2

(
R2

{R1}2
− R1

ψ2(−q)

2)
= 0.

(16)
Equation (16) gives inter-relationships between R1, R2, R4, R8 and R16.

{R4}8{R2}4

{R1}8{R8}4
+

{R12}8{R6}4

{R3}8{R24}4
− 30.{R4}4{R2}2

{R1}4{R8}2
· {R12}4{R6}2

{R3}4{R24}2

−12.{R4}2R2

{R1}2R8
· {R12}2R6

{R3}2R24

(
{R4}4{R2}2

{R1}4{R8}2
+

{R12}4{R6}2

{R3}4{R24}2
− {R4}2R2

{R1}2R8

−{R12}2R6

{R3}2R24
+

2.{R4}4{R2}2

{R1}4{R8}2
· {R12}2R6

{R3}2R24
+

2.{R4}2R2

{R1}2R8
.
{R12}4{R6}2

{R3}4{R24}2

)
−4.{R4}2R2

{R1}2R8
· {R12}2R6

{R3}2R24

(
4.{R4}4{R2}2

{R1}4{R8}2
· {R12}4{R6}2

{R3}4{R24}2
+ 1

)
= 0. (17)

Equation (17) gives inter-relationships between R1, R2, R3, R4, R6, R8, R12 and R24.

R2

{R1}2
ψ2(−q) = −R1 +

2.R2{R4}2

R1R8
. (18)

Equation (18) gives inter-relationships between R1, R2, R4 and R8.
It is assumed that each member of the assertions (14) to (18) exists.

Proof: First of all, in order to prove the assertion (14) of Theorem 1, let u =
c(q), v = c(−q) and w = c(q2); using (10), (4), (1) and (8), we have:

u = c(q) =
{R4}2R2

{R1}2R8
, (19)

v = c(−q) = {R4}2R1

R8ψ2(−q)
, (20)

and

w = c(q2) =
{R8}3

{R4}2R16
. (21)
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Now combining values of u and v from (19) and (20) into (11), we are led to the
first assertion (14) of Theorem 1.
Secondly, we prove the second relationship (15) of Theorem 1; by using values of
u, v and w from (19), (20) and (21) into (12), we are led to the second assertion
(15) of Theorem 1.
Thirdly, we prove the third relationship (16) of Theorem 1. Let v = c(q3); and
using identities (10), (4), (1) and (7), we have;

v = c(q3) =
{R12}2R6

{R3}2R24
. (22)

Using values of u and v from (19) and (22) into (13), we are led to the third assertion
(16) of Theorem 1.
We can prove identities (17) and (18) easily, by using similar argument.
We thus have completed our proof of the above Theorem 1.

3. Concluding Remarks and Observations

The present investigation was motivated by several recent developments deal-
ing essentially with theta-function identities and combinatorial partition-theoretic
identities. Here, in this article, we have established a family of five presumably
new theta-function identities which depict the inter-relationships that exist among
derivatives of Rm-functions. We have also considered several closely-related identi-
ties such as (for example) q-product identities and Jacobi’s triple-product identities.
And, with a view to further motivating researches involving theta-function identities
and combinatorial partition-theoretic identities,we have chosen to indicate rather
briefly a number of recent developments on the subject-matter of this article.
The list of citations, which we have included in this article, is believed to be poten-
tially useful for indicating some of the directions for further researches and related
developments on the subject-matter which we have dealt with here. In particular,
the recent works by Cao et al. [6], Chaudhary et al. (see [7] – [10]) and Srivastava
et al. (see [15]–[18]) are worth mentioning here.
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