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CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS

DEFINED WITH GENERALIZED SÃLÃGEAN OPERATOR AND

RELATED TO SIGMOID FUNCTION AND LEMNISCATE OF

BERNOULLI

GURMEET SINGH, GAGANDEEP SINGH, GURCHARANJIT SINGH

Abstract. In this paper, the authors introduce new subclasses of multivalent

functions defined with generalized Sãlãgean operator related to Sigmoid func-
tion and Lemniscate of Bernoulli. The initial coefficient bounds, Fekete-Szegö
inequality and Hankel determinant problems are investigated for these classes.
The results proved by various authors follow as special cases.

1. Introduction

The importance of theory of special functions can be gauged from the fact that
it draws as much attention of scientists and engineers as that of the researchers
working in the field of Physics and Computer science etc.

Out of the treasure of special functions, in this paper we shall focus on the
sigmoid function given by

h(z) =
1

1 + e−z
, (1)

whose working is analogous to the human brain.

The function h(z) is a differentiable function possessing the following attributes:
(i) Its output ranges between 0 and 1.
(ii) Sufficiently large input domains are mapped onto a small output range.
(iii) Being a one-one function, no information is lost in the process.
(iv) The function is monotonically increasing.
The above mentioned properties make it quite useful in the Geometric function
theory.
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Let Ap denote the class of functions of the form

f(z) = zp +

∞∑
n=2

an+pz
n+p, (2)

which are analytic and p-valent in the open unit disc E = {z : |z| < 1}.
Let U be the class of Schwarzian functions of the form

w(z) =
∞∑

n=1

cnz
n, (3)

which are regular in the unit disc E and satisfying the conditions

w(0) = 0, |w(z)| < 1.

For the functions f and g in E, we say that f is subordinate to g in E, if a
Schwarzian function w(z) ∈ U can be found such that f(z) = g(w(z)), denoted by
f ≺ g. It follows from Schwarz lemma that f(z) ≺ g(z) implies that f(0) = g(0)
and f(E) ⊂ g(E) (see detain in [11]).
Sokol and Thomas [22] introduced and studied the class S∗

L in the unit disc E,
normalized by f(0) = f ′(0)− 1 = 0 and satisfying the condition

zf ′(z)

f(z)
≺

√
1 + z = q(z), z ∈ E,

where the branch of the square root is chosen to be q(0) = 1.
It is also noted that the set q(E) lies in the region bounded by the right loop of the
lemniscate of Bernoulli γ1 : (x2 + y2)2 − 2(x2 − y2) = 0.
For f ∈ Ap and δ ≥ 0, Goyal et al. [8] introduced the following differential operator:

D0
δf(z) = f(z),

D1
δf(z) = (1− δ)f(z) +

δ

p
zf ′(z) = Dδf(z),

and in general

Dt
δf(z) = Dδ(D

t−1
δ f(z)) = zp+Dδf(z)+

∞∑
k=p+1

[
1 +

(
k

p
− 1

)
δ

]t
akz

k, p ∈ N0 = N∪{0}

with D0
δf(0) = 0.

The operator Dt
δf(z) is named as generalized Sãlãgean operator.

For p = 1, the above defined operator coincides with that introduced by Al-
Aboudi [3].
For p = 1, δ = 1, the operator Dt

1f(z) ≡ Dtf(z), the well known Sãlãgean operator.
Let ϕ(z) be an analytic function with positive real part in E such that ϕ(0) = 1
and ϕ′(0) > 0 and maps E onto a region starlike with respect to 1 and symmetric
with respect to the real axis.
In 1976, Noonan and Thomas [14] stated the qth Hankel determinant for q ≥ 1 and
n ≥ 1 as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 ... an+q+1

an+1 ... ... ...
... ... ... ...

an+q+1 ... ... an+2q−2

∣∣∣∣∣∣∣∣ .
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This determinant has been investigated by several authors.
In the particular cases, q = 2, n = p, a1 = 1 and q = 2, n = p + 1, the Hankel
determinant simplifies respectively to
H2(p) = |ap+2 − a2p+1| and H2(p+ 1) = |ap+1ap+3 − a2p+2|.
The functional Jn,m(f) = anam − am+n−1, n,m ∈ N − {1}, was investigated
by Ma [10] and it is known as generalized Zalcman functional. The functional
J2,3(f) = a2a3−a4 is a specific case of the generalized Zalcman functional. Various
authors including Janowski [4, 5, 6, 21, 23] computed the upper bound for the
functional J2,3(f) over different subclasses of analytic functions to obtain a bound
for third Hankel determinant. For the functions in the class Ap, the Zalcman
functional takes the form of ap+1ap+2 − ap+3.
For q = 3 and n = p as

H3(p) =

∣∣∣∣∣∣
ap ap+1 ap+2

ap+1 ap+2 ap+3

ap+2 ap+3 ap+4

∣∣∣∣∣∣ ,
which is known as Hankel determinant of order 3.
For f ∈ Ap and ap = 1, we have

H3(p) = ap+2(ap+1ap+3 − a2p+2)− ap+3(ap+3 − ap+1ap+2) + ap+4(ap+2 − a2p+1),

and using the triangle inequality, it yields

|H3(p)| ≤ |ap+2||ap+1ap+3 − a2p+2|+ |ap+3||ap+3 − ap+1ap+2|+ |ap+4||ap+2 − a2p+1|.
(4)

A function f(z) ∈ Ap is said to be in the class S∗
b,p(ϕ) if

1 +
1

b

[
1

p

zf ′(z)

f(z)
− 1

]
≺ ϕ(z).

A function f(z) ∈ Ap is said to be in the class Cb,p(ϕ) if

1− 1

b
+

1

bp

[
1 +

zf ′′(z)

f ′(z)

]
≺ ϕ(z).

The classes S∗
b,p(ϕ) and Cb,p(ϕ), were studied in [1]. For b = 1, we have the classes

S∗
p(ϕ) and Cp(ϕ)(see [2]) and for p = b = 1 the classes reduce to S∗(ϕ) and C(ϕ)

which were earlier introduced and investigated in [9]. These classes reduce to the

classes of starlike and convex functions respectively when ϕ(z) =
1 + z

1− z
.

Also for p = 1 and ϕ(z) =
1 + z

1− z
, the classes S∗

b,p(ϕ) and Cb,p(ϕ) reduce to the

classes S∗(b) and C(b) which were investigated in [13] and [24].
Motivated by above defined classes, we introduce the following subclasses of p-valent
analytic functions of complex order related to sigmoid functions and Lemniscate of
Bernoulli.
Definition 1.1 For b ∈ C, let the class Mp,λ(δ, t; b,Φm,n) denote the subclass of
Ap consisting of functions of the form (2) and satisfying the following condition:

p+
1

b

[
z(Dt

δf(z))
′ + λz2(Dt

δf(z))
′′

λz(Dt
δf(z))

′ + (1− λ)(Dt
δf(z))

− p

]
> 0,

for 0 ≤ λ ≤ 1 and Φm,n(z) is a simple logistic sigmoid activation function.
In particular, Mp,λ(1, 0; b,Φm,n) ≡ Mp,λ(b,Φm,n), the class studied by Singh and
Singh [20].
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Definition 1.2 For b ∈ C, let the class Gp,λ(δ, t; b,Φm,n) denote the subclass of Ap

consisting of functions of the form (2) and satisfying the following condition:

p+
1

b

[
z(Dt

δf(z))
′

Dt
δf(z)

+ λ
z2(Dt

δf(z))
′′

Dt
δf(z)

− p

]
> 0,

for 0 ≤ λ ≤ 1 and Φm,n(z) is a simple logistic sigmoid activation function.
Particularly, Gp,λ(1, 0; b,Φm,n) ≡ Gp,λ(b,Φm,n), the class studied by Singh and
Singh [20].
Definition 1.3 For b ∈ C, let the class ML(δ, t; p, λ, b,Φm,n) denote the subclass
of Ap consisting of functions of the form (2) and satisfying the following condition:

p+
1

b

[
z(Dt

δf(z))
′ + λz2(Dt

δf(z))
′′

λz(Dt
δf(z))

′ + (1− λ)(Dt
δf(z))

− p

]
≺ p

√
1 + z,

where the branch of the square root is chosen to be q(0) = 1, 0 ≤ λ ≤ 1 and Φm,n(z)
is a simple logistic sigmoid activation function.
Specifically, ML(1, 0; p, λ, b,Φm,n) ≡ ML(p, λ, b,Φm,n) the class studied by Olatunji
and Dutta [18].
Definition 1.4 For b ∈ C, let the class GL(δ, t; p, λ, b,Φm,n) denote the subclass of
Ap consisting of functions of the form (2) and satisfying the following condition:

p+
1

b

[
z(Dt

δf(z))
′

Dt
δf(z)

+ λ
z2(Dt

δf(z))
′′

Dt
δf(z)

− p

]
≺

√
1 + z,

where the branch of the square root is chosen to be q(0) = 1, 0 ≤ λ ≤ 1 and Φm,n(z)
is a simple logistic sigmoid activation function.
As a special case, GL(1, 0; p, λ, b,Φm,n) ≡ GL(p, λ, b,Φm,n) the class studied by
Olatunji and Dutta [18].
Recently, various authors as Oladipo [15], Murugusundramoorthy et al. [12], Olatunji
et al. [17], and Olatunji [16] have studied sigmoid function for different classes of
analytic and univalent functions.
In the present work, we obtained initial coefficient bounds, Fekete-Szegö inequality,
second and third Hankel determinants for the classesMp,λ(δ, t; b,Φm,n), Gp,λ(δ, t; b,Φm,n),
ML(δ, t; p, λ, b,Φm,n) and GL(δ, t; p, λ, b,Φm,n). The results proved by Singh and
Singh [20] and Olatunji and Dutta [18] follows as special cases.
To prove our results, we shall make use of the following lemmas:
Lemma 1 [19] If a function p ∈ P is given by p(z) = 1 +

∑∞
k=1 pkz

k, then

|pk| ≤ 2, k ∈ N,

where P is the family of all functions analytic in E for which p(0) = 1 and
Re(p(z)) > 0.
Lemma 2 [7] Let h be the sigmoid function defined in (1) and

Φm,n(z) = 2h(z) = 1 +
∞∑

m=1

(−1)m

2m

( ∞∑
n=1

(−1)n

n!
zn

)m

,

then Φ(z) ∈ P , |z| < 1, where Φ(z) is a modified sigmoid function.
Lemma 3 [7] Let

Φm,n(z) = 2h(z) = 1 +
∞∑

m=1

(−1)m

2m

( ∞∑
n=1

(−1)n

n!
zn

)m

,
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then |Φm,n(z)| < 2.
Lemma 4 [7] If

Φ(z) = 2h(z) = 1 +
∞∑

n=1

cnz
n,

where cn =
(−1)n+1

2n!
, then |cn| ≤ 2, n ∈ N and the result is sharp for each n.

2. The class Mp,λ(δ, t; b,Φm,n)

2.1 Initial Coefficients
Theorem 2.1 If f(z) ∈ Ap, of the form (2) is belonging to Mp,λ(δ, t; b,Φm,n), then

|ap+1| ≤
pt+1|b|[1 + λ(p− 1)]

2[1 + λp](p+ δ)t
, (5)

|ap+2| ≤
pt+2|b|2[1 + λ(p− 1)]

8[1 + λ(p+ 1)](p+ 2δ)t
= h1, (6)

|ap+3| ≤
pt+1|b|[1 + λ(p− 1)]

24[1 + λ(p+ 2)](p+ 3δ)t

∣∣∣∣p2b22
− 1

3

∣∣∣∣ = h2 (7)

and

|ap+4| ≤
pt+2|b|2[1 + λ(p− 1)]

192[1 + λ(p+ 3)](p+ 4δ)t

∣∣∣∣p2b22
− 4

3

∣∣∣∣ = h3. (8)

Proof. As f ∈ Mp,λ(δ, t; b,Φm,n), therefore

p+
1

b

[
z(Dt

δf(z))
′ + λz2(Dt

δf(z))
′′

λz(Dt
δf(z))

′ + (1− λ)(Dt
δf(z))

− p

]
= pΦm,n(z), (9)

where

Φm,n(z) = 1 +
1

2
z − 1

24
z3 +

1

240
z5 − 1

64
z6 +

779

20160
z7 − ... (10)

Using (10), (9) can be expanded as

(1 + λp)

(
1 +

δ

p

)t

ap+1z + 2(1 + λ(p+ 1))

(
1 +

2δ

p

)t

ap+2z
2

+3(1 + λ(p+ 2))

(
1 +

3δ

p

)t

ap+3z
3 + 4(1 + λ(p+ 3))

(
1 +

4δ

p

)t

ap+4z
4 + ...

= bp

[
1

2
z − 1

24
z3 +

1

240
z5
]

.

[
(1 + λ(p− 1)) + (1 + λp)

(
1 +

δ

p

)t

ap+1z + (1 + λ(p+ 1))

(
1 +

2δ

p

)t

ap+2z
2

+ (1+ λ(p+ 2))

(
1 +

3δ

p

)t

ap+3z
3 + (1+ λ(p+ 3))

(
1 +

4δ

p

)t

ap+4z
4 + ...

]
. (11)

Equating the coefficients of z, z2, z3 and z4 in (11), we obtain

ap+1 =
pt+1b[1 + λ(p− 1)]

2[1 + λp](p+ δ)t
, (12)

ap+2 =
pt+2b2[1 + λ(p− 1)]

8[1 + λ(p+ 1)](p+ 2δ)t
, (13)
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ap+3 =
pt+1b[1 + λ(p− 1)]

24[1 + λ(p+ 2)](p+ 3δ)t

[
p2b2

2
− 1

3

]
(14)

and

ap+4 =
pt+2b2[1 + λ(p− 1)]

192[1 + λ(p+ 3)](p+ 4δ)t

[
p2b2

2
− 4

3

]
. (15)

Results (5), (6), (7) and (8) can be easily obtained from (12), (13), (14) and (15)
respectively.
For δ = 1, t = 0, Theorem 2.1 gives the following result due to Singh and Singh [20].
Corollary 2.1 If f(z) ∈ Ap, of the form (2) is belonging to Mp,λ(b,Φm,n), then

|ap+1| ≤
p|b|[1 + λ(p− 1)]

2[1 + λp]
,

|ap+2| ≤
p2|b|2[1 + λ(p− 1)]

8[1 + λ(p+ 1)]
,

|ap+3| ≤
p|b|[1 + λ(p− 1)]

24[1 + λ(p+ 2)]

∣∣∣∣p2b22
− 1

3

∣∣∣∣
and

|ap+4| ≤
p2|b|2[1 + λ(p− 1)]

192[1 + λ(p+ 3)]

∣∣∣∣p2b22
− 4

3

∣∣∣∣ .
2.2 Fekete-Szegö Inequality
Theorem 2.2 If f(z) ∈ Ap, of the form (2) is belonging to Mp,λ(δ, t; b,Φm,n), then

|ap+2−µa2p+1| ≤
p2t+2|b|2[1 + λ(p− 1)]

4[1 + λp]2(p+ δ)2t

∣∣∣∣ (1 + λp)2(p+ δ)2t

2pt[1 + λ(p+ 1)](p+ 2δ)t
− µ[1 + λ(p− 1)]

∣∣∣∣ .
(16)

Proof. From (11) and (12), we have

ap+2−µa2p+1 =
p2t+2|b|2[1 + λ(p− 1)]

4[1 + λp]2(p+ δ)2t

[
(1 + λp)2(p+ δ)2t

2pt[1 + λ(p+ 1)](p+ 2δ)t
− µ[1 + λ(p− 1)]

]
.

(17)
Hence (16) can be easily obtained from (17).
In particular for µ = 1,

|ap+2−a2p+1| ≤
p2t+2|b|2[1 + λ(p− 1)]

4[1 + λp]2(p+ δ)2t

∣∣∣∣ (1 + λp)2(p+ δ)2t

2pt[1 + λ(p+ 1)](p+ 2δ)t
− [1 + λ(p− 1)]

∣∣∣∣ = h4.

(18)
For δ = 1, t = 0, Theorem 2.2 agrees with the following result due to Singh and
Singh [20].
Corollary 2.2 If f(z) ∈ Ap, of the form (2) is belonging to Mp,λ(b,Φm,n), then

|ap+2 − µa2p+1| ≤
p2|b|2[1 + λ(p− 1)]

4(1 + λp)2

[
(1 + λp)2

2[1 + λ(p+ 1)]
− µ[1 + λ(p− 1)]

]
.

2.3 Second hankel determinant
Theorem 2.3 If f(z) ∈ Ap, of the form (2) is belonging to Mp,λ(δ, t; b,Φm,n), then

|ap+1ap+3 − µa2p+2| ≤
p2t+2|b|2[1 + λ(p− 1)]2

16

.

∣∣∣∣ 1

3(1 + λp)[1 + λ(p+ 2)](p+ δ)t(p+ 3δ)t

[
p2b2

2
− 1

3

]
− µ

p2b2

4[1 + λ(p+ 1)]2(p+ 2δ)2t

∣∣∣∣ .
(19)
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Proof. From (12), (13) and (14), we have

ap+1ap+3 − µa2p+2 =
p2t+2|b|2[1 + λ(p− 1)]2

48(1 + λp)[1 + λ(p+ 2)](p+ δ)t(p+ 3δ)t

[
p2b2

2
− 1

3

]
− µ

p2t+4b4[1 + λ(p− 1)]2

64[1 + λ(p+ 1)]2(p+ 2δ)2t
. (20)

Hence (19) can be easily obtained from (20).
In particular for µ = 1,

|ap+1ap+3 − a2p+2| ≤
p2t+2|b|2[1 + λ(p− 1)]2

16

.

∣∣∣∣ 1

3(1 + λp)[1 + λ(p+ 2)](p+ δ)t(p+ 3δ)t

[
p2b2

2
− 1

3

]
− p2b2

4[1 + λ(p+ 1)]2(p+ 2δ)2t

∣∣∣∣ = h5.

(21)
For δ = 1, t = 0, Theorem 2.3 coincides with the following result due to Singh and
Singh [20].
Corollary 2.3 If f(z) ∈ Ap, of the form (2) is belonging to Mp,λ(b,Φm,n), then

|ap+2ap+3 − µa2p+2| ≤
p2|b|2[1 + λ(p− 1)]2

16

.

∣∣∣∣ 1

3(1 + λp)[1 + λ(p+ 2)]

[
p2b2

2
− 1

3

]
− µ

p2b2

4[1 + λ(p+ 1)]2

∣∣∣∣ .
2.4 Zalcman Functional
Theorem 2.4 If f(z) ∈ Ap, of the form (2) is belonging to Mp,λ(δ, t; b,Φm,n), then

|ap+1ap+2 − ap+3| ≤
pt+1|b|[1 + λ(p− 1)]

8

.

∣∣∣∣ pt+2b2[1 + λ(p− 1)]

2(1 + λp)[1 + λ(p+ 1)](p+ δ)t(p+ 2δ)t
− 1

3[1 + λ(p+ 2)](p+ 3δ)t

[
p2b2

2
− 1

3

]∣∣∣∣ = h6.

(22)
Proof. From (11), (12) and (13), the result (22) is obvious.
For δ = 1, t = 0, Theorem 2.4 gives the following result due to Singh and Singh [20].
Corollary 2.4 If f(z) ∈ Ap, of the form (2) is belonging to Mp,λ(b,Φm,n), then

|ap+1ap+2 − ap+3| ≤
∣∣∣∣ p3b3[1 + λ(p− 1)]2

16(1 + λp)[1 + λ(p+ 1)]
− pb[1 + λ(p− 1)]

24[1 + λ(p+ 2)]

[
p2b2

2
− 1

3

]∣∣∣∣ .
2.5 Third Hankel determinant
Theorem 2.5 If f(z) ∈ Ap, of the form (2) is belonging to Mp,λ(δ, t; b,Φm,n), then

|H3(p)| ≤ h1h5 + h2h6 + h3h4,

where h1, h2, h3, h4, h5 and h6 are given by (11), (12), (13), (14), (15), (16) respec-
tively.
Proof. The proof of the result is obvious.

3. The class Gp,λ(δ, t; b,Φm,n)

3.1 Initial Coefficients
Theorem 3.1 If f(z) ∈ Ap, of the form (2) is belonging to Gp,λ(δ, t; b,Φm,n), then

|ap+1| ≤
pt+1|b|

2[1 + λp(p+ 1)](p+ δ)t
, (23)
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|ap+2| ≤
pt+2|b|2

4[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)](p+ 2δ)t
= k1, (24)

|ap+3| ≤
pt+1|b|

8[3 + λ(p+ 2)(p+ 3)](p+ 3δ)t

∣∣∣∣ p2b2(p+ 2δ)t

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

∣∣∣∣ = k2

(25)
and

|ap+4| ≤
pt+2|b|2

16[4 + λ(p+ 3)(p+ 4)](p+ 4δ)t

.

∣∣∣∣ 1

[3 + λ(p+ 2)(p+ 3)]

[
p2b2(p+ 2δ)t

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

]
− 1

3[1 + λp(p+ 1)]

∣∣∣∣ = k3.

(26)
Proof. As f ∈ Gp,λ(δ, t; b,Φm,n), therefore

p+
1

b

[
z(Dt

δf(z))
′

Dt
δf(z)

+ λ
z2(Dt

δf(z))
′′

Dt
δf(z)

− p

]
= pΦm,n(z), (27)

where

Φm,n(z) = 1 +
1

2
z − 1

24
z3 +

1

240
z5 − 1

64
z6 +

779

20160
z7 − ... (28)

Using (28), (27) can be expanded as
λpt+1(p− 1) + [1 + λp(p+ 1)](p+ δ)tap+1z + [2 + λ(p+ 1)(p+ 2)](p+ 2δ)tap+2z

2

+[3 + λ(p+ 2)(p+ 3)](p+ 3δ)tap+3z
3 + [4 + λ(p+ 3)(p+ 4)](p+ 4δ)tap+4z

4 + ...

= bp

[
1

2
z − 1

24
z3 +

1

240
z5
]

.

[
pt+(p+δ)tap+1z+(p+2δ)tap+2z

2+(p+3δ)tap+3z
3+(p+4δ)tap+4z

4+ ...

]
. (29)

Equating the coefficients of z, z2, z3 and z4 in (29), we obtain

ap+1 =
pt+1b

2[1 + λp(p+ 1)](p+ δ)t
, (30)

ap+2 =
pt+2b2

4[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)](p+ 2δ)t
, (31)

ap+3 =
pt+1b

8[3 + λ(p+ 2)(p+ 3)](p+ 3δ)t

[
p2b2(p+ 2δ)t

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

]
(32)

and

ap+4 =
pt+2b2

16[4 + λ(p+ 3)(p+ 4)](p+ 4δ)t[
1

[3 + λ(p+ 2)(p+ 3)]

[
p2b2(p+ 2δ)t

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

]
− 1

3[1 + λp(p+ 1)]

]
.

(33)
Results (23), (24), (25) and (26) can be easily obtained from (30), (31), (32) and
(33) respectively.
For δ = 1, t = 0, Theorem 3.1 gives the following result due to Singh and Singh [20].
Corollary 3.1 If f(z) ∈ Ap, of the form (2) is belonging to Gp,λ(b,Φm,n), then

|ap+1| ≤
p|b|

2[1 + λp(p+ 1)]
,
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|ap+2| ≤
p2|b|2

4[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
,

|ap+3| ≤
p|b|

8[3 + λ(p+ 2)(p+ 3)]

∣∣∣∣ p2b2

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

∣∣∣∣
and

|ap+4| ≤
p2|b|2

16[4 + λ(p+ 3)(p+ 4)]

.

[
1

[3 + λ(p+ 2)(p+ 3)]

[
p2b2(p+ 2δ)t

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

]
− 1

3[1 + λp(p+ 1)]

]
.

3.2 Fekete-Szegö Inequality
Theorem 3.2 If f(z) ∈ Ap, of the form (2) is belonging to Gp,λ(δ, t; b,Φm,n), then

|ap+2 − µa2p+1| ≤
pt+2|b|2

4[1 + λp(p+ 1)]2(p+ δ)2t

∣∣∣∣ (p+ δ)2t[1 + λp(p+ 1)]

[2 + λ(p+ 1)(p+ 2)](p+ 2δ)t
− µpt

∣∣∣∣ .
(34)

Proof. From (30) and (31), we have

ap+2 − µa2p+1 =
pt+2b2

4[1 + λp(p+ 1)]2(p+ δ)2t

[
(p+ δ)2t[1 + λp(p+ 1)]

[2 + λ(p+ 1)(p+ 2)](p+ 2δ)t
− µpt

]
.

(35)
Hence (34) can be easily obtained from (35).
In particular for µ = 1,

|ap+2−a2p+1| ≤
pt+2|b|2

4[1 + λp(p+ 1)]2(p+ δ)2t

∣∣∣∣ (p+ δ)2t[1 + λp(p+ 1)]

[2 + λ(p+ 1)(p+ 2)](p+ 2δ)t
− pt

∣∣∣∣ = k4.

(36)
For δ = 1, t = 0, Theorem 3.2 agrees with the following result due to Singh and
Singh [20].
Corollary 3.2 If f(z) ∈ Ap, of the form (2) is belonging to Gp,λ(b,Φm,n), then

|ap+2 − µa2p+1| ≤
p2|b|2

4[1 + λp(p+ 1)]2

∣∣∣∣ [1 + λp(p+ 1)]

[2 + λ(p+ 1)(p+ 2)]
− µ

∣∣∣∣ .
3.3 Second hankel determinant
Theorem 3.3 If f(z) ∈ Ap, of the form (2) is belonging to Gp,λ(δ, t; b,Φm,n), then

|ap+1ap+3 − µa2p+2| ≤
p2t+2|b|2

16[1 + λp(p+ 1)]2
|η − µσ| (37)

where

η =
[1 + λp(p+ 1)]

[3 + λ(p+ 2)(p+ 3)](p+ δ)t(p+ 3δ)t

[
p2b2(p+ 2δ)t

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

]
(38)

and

σ =
p2b2

[2 + λ(p+ 1)(p+ 2)]2(p+ 2δ)2t
. (39)

Proof. From (30), (31) and (32), we have

ap+1ap+3 − µa2p+2 =
p2t+2b2

16[1 + λp(p+ 1)][3 + λ(p+ 2)(p+ 3)](p+ δ)t(p+ 3δ)t

.

[
p2b2(p+ 2δ)t

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

]
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− µ
p2t+4b4

16[2 + λ(p+ 1)(p+ 2)]2[1 + λp(p+ 1)]2(p+ 2δ)2t
. (40)

Hence (37) can be easily obtained from (40).
In particular for µ = 1,

|ap+1ap+3 − a2p+2| ≤
p2t+2|b|2

16[1 + λp(p+ 1)]2
|η − σ| = k5. (41)

For δ = 1, t = 0, Theorem 3.3 coincides with the following result due to Singh and
Singh [20].
Corollary 3.3 If f(z) ∈ Ap, of the form (2) is belonging to Gp,λ(b,Φm,n), then

|ap+1ap+3 − µa2p+2| ≤
p2|b|2

16[1 + λp(p+ 1)]2
|η − µσ| (42)

where

η =
[1 + λp(p+ 1)]

[3 + λ(p+ 2)(p+ 3)]

[
p2b2

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

]
(43)

and

σ =
p2b2

[2 + λ(p+ 1)(p+ 2)]2
. (44)

3.4 Zalcman Functional
Theorem 3.4 If f(z) ∈ Ap, of the form (2) is belonging to Gp,λ(δ, t; b,Φm,n), then

|ap+1ap+2 − ap+3| ≤
∣∣∣∣ p2t+3b3

8[1 + λp(p+ 1)]2[2 + λ(p+ 1)(p+ 2)](p+ δ)t(p+ 2δ)t

− pt+1b

8[3 + λ(p+ 2)(p+ 3)](p+ 3δ)t

[
p2b2(p+ 2δ)t

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

] ∣∣∣∣ = k6.

(45)
Proof. From (30), (31) and (32), the result (45) is obvious.
For δ = 1, t = 0, Theorem 3.4 gives the following result due to Singh and Singh [20].
Corollary 3.4 If f(z) ∈ Ap, of the form (2) is belonging to Gp,λ(b,Φm,n), then

|ap+1ap+2 − ap+3| ≤
∣∣∣∣ p3b3

8[1 + λp(p+ 1)]2[2 + λ(p+ 1)(p+ 2)]

− pb

8[3 + λ(p+ 2)(p+ 3)]

[
p2b2

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
− 1

3

] ∣∣∣∣.
3.5 Third Hankel determinant
Theorem 3.5 If f(z) ∈ Ap, of the form (2) is belonging to Gp,λ(δ, t; b,Φm,n), then

|H3(p)| ≤ k1k5 + k2k6 + k3k4,

where k1, k2, k3, k4, k5 and k6 are given by (24), (25), (26), (36), (41), (45) respec-
tively.
Proof. The proof of the result is obvious.
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4. The class ML(δ, t; p, λ; b,Φm,n)

4.1 Initial Coefficients
Theorem 4.1 If f(z) ∈ Ap, of the form (2) is belonging to ML(δ, t; p, λ; b,Φm,n),
then

|ap+1| ≤
pt+1|b|[1 + λ(p− 1)]

8[1 + λp](p+ δ)t
, (46)

|ap+2| ≤
pt+1|b|[1 + λ(p− 1)]|2bp− 5|
256[1 + λ(p+ 1)](p+ 2δ)t

= l1, (47)

|ap+3| ≤
pt+1|b|[1 + λ(p− 1)]|6p2b2 − 45pb+ 14|

18432[1 + λ(p+ 2)](p+ 3δ)t
= l2 (48)

and

|ap+4| ≤
pt+1|b|[1 + λ(p− 1)]|12p3b3 − 180p2b2 + 337pb+ 651|

1179648[1 + λ(p+ 3)](p+ 4δ)t
= l3. (49)

Proof. As f ∈ ML(δ, t; p, λ; b,Φm,n), therefore

p+
1

b

[
z(Dt

δf(z))
′ + λz2(Dt

δf(z))
′′

λz(Dt
δf(z))

′ + (1− λ)(Dt
δf(z))

− p

]
= p
√
1 + w(z) = p

√
1 +

Φm,n(z)− 1

Φm,n(z) + 1

(50)
where

Φm,n(z) = 1 +
1

2
z − 1

24
z3 +

1

240
z5 − 1

64
z6 +

779

20160
z7 − ... (51)

Using (51), (50) can be expanded as

(1 + λp)

(
1 +

δ

p

)t

ap+1z + 2(1 + λ(p+ 1))

(
1 +

2δ

p

)t

ap+2z
2

+3(1 + λ(p+ 2))

(
1 +

3δ

p

)t

ap+3z
3 + 4(1 + λ(p+ 3))

(
1 +

4δ

p

)t

ap+4z
4 + ...

= bp

[
1

8
z − 5

128
z2 +

7

3072
z3 +

217

98304
z4 + ...

]
.

[
(1 + λ(p− 1)) + (1 + λp)

(
1 +

δ

p

)t

ap+1z + (1 + λ(p+ 1))

(
1 +

2δ

p

)t

ap+2z
2

+ (1+ λ(p+ 2))

(
1 +

3δ

p

)t

ap+3z
3 + (1+ λ(p+ 3))

(
1 +

4δ

p

)t

ap+4z
4 + ...

]
. (52)

Equating the coefficients of z, z2, z3 and z4 in (52), we obtain

ap+1 =
pt+1b[1 + λ(p− 1)]

8[1 + λp](p+ δ)t
, (53)

ap+2 =
pt+1b[1 + λ(p− 1)](2bp− 5)

256[1 + λ(p+ 1)](p+ 2δ)t
, (54)

ap+3 =
pt+1b[1 + λ(p− 1)](6p2b2 − 45pb+ 14)

18432[1 + λ(p+ 2)](p+ 3δ)t
(55)

and

ap+4 =
pt+1b[1 + λ(p− 1)](12p3b3 − 180p2b2 + 337pb+ 651)

1179648[1 + λ(p+ 3)](p+ 4δ)t
. (56)

Results (46), (47), (48) and (49) can be easily obtained from (53), (54), (55) and
(56) respectively.
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For δ = 1, t = 0, Theorem 4.1 gives the following result due to Olatunji and
Dutta [18].
Corollary 4.1 If f(z) ∈ Ap, of the form (2) is belonging to ML(p, λ, b,Φm,n), then

|ap+1| ≤
p|b|[1 + λ(p− 1)]

8[1 + λp]
,

|ap+2| ≤
p|b|[1 + λ(p− 1)]|2bp− 5|

256[1 + λ(p+ 1)]
,

and

|ap+3| ≤
p|b|[1 + λ(p− 1)]|6p2b2 − 45pb+ 14|

18432[1 + λ(p+ 2)]
.

4.2 Fekete-Szegö Inequality
Theorem 4.2 If f(z) ∈ Ap, of the form (2) is belonging to ML(δ, t; p, λ; b,Φm,n),
then

|ap+2−µa2p+1| ≤
pt+1|b|[1 + λ(p− 1)]

64[1 + λp]2(p+ δ)2t

∣∣∣∣ (2pb− 5)(1 + λp)2(p+ δ)2t

4[1 + λ(p+ 1)](p+ 2δ)t
− µpt+1b[1 + λ(p− 1)]

∣∣∣∣ .
(57)

Proof. From (53) and (54), we have

|ap+2 −µa2p+1| =
∣∣∣∣pt+1b[1 + λ(p− 1)](2bp− 5)

256[1 + λ(p+ 1)](p+ 2δ)t
− µ

p2(t+1)b2[1 + λ(p− 1)]2

64[1 + λp]2(p+ δ)2t

∣∣∣∣ . (58)

Hence (57) can be easily obtained from (58).
In particular for µ = 1,

|ap+2−a2p+1| ≤
pt+1|b|[1 + λ(p− 1)]

64[1 + λp]2(p+ δ)2t

∣∣∣∣ (2pb− 5)(1 + λp)2(p+ δ)2t

4[1 + λ(p+ 1)](p+ 2δ)t
− pt+1b[1 + λ(p− 1)]

∣∣∣∣ = l4.

(59)
For δ = 1, t = 0, Theorem 4.2 agrees with the following result due to Olatunji and
Dutta [18].
Corollary 4.2 If f(z) ∈ Ap, of the form (2) is belonging to ML(p, λ, b,Φm,n), then

|ap+2 − µa2p+1| ≤
p|b|[1 + λ(p− 1)]

64[1 + λp]2

∣∣∣∣ (2pb− 5)(1 + λp)2

4[1 + λ(p+ 1)]
− µpb[1 + λ(p− 1)]

∣∣∣∣ .
4.3 Second hankel determinant
Theorem 4.3 If f(z) ∈ Ap, of the form (2) is belonging to ML(δ, t; p, λ; b,Φm,n),
then

|ap+1ap+3 − µa2p+2| ≤
p2t+2|b|2[1 + λ(p− 1)]2

16384[1 + λ(p+ 1)]2
|η − µσ|, (60)

where

η =
[1 + λ(p+ 1)]2[6p2b2 − 45pb+ 14]

9(1 + λp)[1 + λ(p+ 2)](p+ δ)t(p+ 3δ)t

and

σ =
(2pb− 5)2

4(p+ 2δ)2t
.

Proof. Using 53), (54), (55) and following the procedure of Theorem 3.3, (60) can
be easily obtained.
In particular for µ = 1,

|ap+1ap+3 − a2p+2| ≤
p2t+2|b|2[1 + λ(p− 1)]2

16384[1 + λ(p+ 1)]2
|η − σ| = l5. (61)
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For δ = 1, t = 0, Theorem 4.3 coincides with the following result due to Olatunji
and Dutta [18].
Corollary 4.3 If f(z) ∈ Ap, of the form (2) is belonging to ML(p, λ, b,Φm,n), then

|ap+1ap+3 − µa2p+2| ≤
p2|b|2[1 + λ(p− 1)]2

16384[1 + λ(p+ 1)]2
|η − µσ|,

where

η =
[1 + λ(p+ 1)]2[6p2b2 − 45pb+ 14]

9(1 + λp)[1 + λ(p+ 2)]

and

σ =
(2pb− 5)2

4
.

4.4 Zalcman Functional
Theorem 4.4 If f(z) ∈ Ap, of the form (2) is belonging to Mp,λ(δ, t; b,Φm,n), then

|ap+1ap+2 − ap+3| ≤
∣∣∣∣ p2t+2b2[1 + λ(p− 1)]2(2pb− 5)2

2048(1 + λp)[1 + λ(p+ 1)](p+ δ)t(p+ 2δ)t

− pt+1b[1 + λ(p− 1)](6p2b2 − 45pb+ 14)

18432[1 + λ(p+ 2)](p+ 3δ)t

∣∣∣∣ = l6. (62)

Proof. From (53), (54) and (55), the result (62) is obvious.
4.5 Third Hankel determinant
Theorem 4.5 If f(z) ∈ Ap, of the form (2) is belonging to ML(δ, t; p, λ; b,Φm,n),
then

|H3(p)| ≤ l1l5 + l2l6 + l3l4,

where l1, l2, l3, l4, l5 and l6 are given by (47), (48), (49), (59), (61) and (62) respec-
tively.
Proof. The proof of the result is obvious.

5. The class GL(δ, t; p, λ; b,Φm,n)

5.1 Initial Coefficients
Theorem 5.1 If f(z) ∈ Ap, of the form (2) is belonging to GL(δ, t; p, λ; b,Φm,n),
then

|ap+1| ≤
pt+1|b|

8[1 + λp(p+ 1)](p+ δ)t
, (63)

|ap+2| ≤
pt+1|b||2bp− 5[1 + λp(p+ 1)]|

128[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)](p+ 2δ)t
= d1, (64)

|ap+3| ≤
pt+1|b|

1024[3 + λ(p+ 2)(p+ 3)](p+ 3δ)t

.

∣∣∣∣pb[2pb− 5(1 + λp(p+ 1))]− 5pb[2 + λ(p+ 1)(p+ 2)]

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
+

7

3

∣∣∣∣ = d2 (65)

and

|ap+4| ≤
pt+1|b|

8192[4 + λ(p+ 3)(p+ 4)](p+ 4δ)t
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.

∣∣∣∣pb{3[pb{2pb− 5(1 + λp(p+ 1))} − 5pb{2 + λ(p+ 1)(p+ 2)}] + 7[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)]}
3[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)][3 + λ(p+ 2)(p+ 3)]

+
pb{14[2 + λ(p+ 1)(p+ 2)]− 15[2pb− 5(1 + λp(p+ 1))]}

6[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)]
+

217

12

∣∣∣∣ = d3. (66)

Proof. These results can be easily proved using the procedure of Theorem 4.1.
For δ = 1, t = 0, Theorem 5.1 gives the following result due to Olatunji and
Dutta [18].
Corollary 5.1 If f(z) ∈ Ap, of the form (2) is belonging to GL(p, λ, b,Φm,n), then

|ap+1| ≤
p|b|

8[1 + λp(p+ 1)]
,

|ap+2| ≤
p|b||2bp− 5[1 + λp(p+ 1)]|

128[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
,

and

|ap+3| ≤
p|b|

1024[3 + λ(p+ 2)(p+ 3)]

∣∣∣∣pb[2pb− 5(1 + λp(p+ 1))]− 5pb[2 + λ(p+ 1)(p+ 2)]

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
+

7

3

∣∣∣∣ .
5.2 Fekete-Szegö Inequality
Theorem 5.2 If f(z) ∈ Ap, of the form (2) is belonging to GL(δ, t; p, λ; b,Φm,n),
then

|ap+2 − µa2p+1| ≤
pt+1|b|

64[1 + λp(p+ 1)]2(p+ δ)2t
(67)

.

∣∣∣∣ [2pb− 5(1 + λp(p+ 1))][1 + λp(p+ 1)](p+ δ)2t

2[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)](p+ 2δ)t
− µpt+1b

∣∣∣∣.
Proof. The proof is similar to Theorem 4.2.
In particular for µ = 1,

|ap+2 − a2p+1| ≤
pt+1b

64[1 + λp(p+ 1)]2(p+ δ)2t

.

∣∣∣∣ [2pb− 5(1 + λp(p+ 1))][1 + λp(p+ 1)](p+ δ)2t

2[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)](p+ 2δ)t
− pt+1b

∣∣∣∣ = d4. (68)

For δ = 1, t = 0, Theorem 5.2 agrees with the following result due to Olatunji and
Dutta [18].
Corollary 5.2 If f(z) ∈ Ap, of the form (2) is belonging to GL(p, λ, b,Φm,n), then

|ap+2−µa2p+1| ≤
p|b|

64[1 + λp(p+ 1)]2

∣∣∣∣ [2pb− 5(1 + λp(p+ 1))][1 + λp(p+ 1)]

2[1 + λp(p+ 1)][2 + λ(p+ 1)(p+ 2)]
− µpb

∣∣∣∣ .
5.3 Second hankel determinant
Theorem 5.3 If f(z) ∈ Ap, of the form (2) is belonging to GL(δ, t; p, λ; b,Φm,n),
then

|ap+1ap+3 − µa2p+2| ≤
p2t+2|b|2

8192[1 + λp(p+ 1)]2
|η − µσ|, (69)

where

η =
[1 + λp(p+ 1)]

[3 + λ(p+ 2)(p+ 3)](p+ δ)t(p+ 3δ)t
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.

[
pb[2pb− 5(1 + λp(p+ 1))]− 5pb[2 + λ(p+ 1)(p+ 2)]

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
+

7

3

]
and

σ =
p2t+2b2{2bp− 5[1 + λp(p+ 1)]}2

2[2 + λ(p+ 1)(p+ 2)]2[1 + λp(p+ 1)]2(p+ 2δ)2t
.

Proof. This theorem can be easily proved following the procedure of Theorem 4.3.
In particular for µ = 1,

|ap+1ap+3 − a2p+2| ≤
p2t+2|b|2

8192[1 + λp(p+ 1)]2
|η − µσ| = d5. (70)

For δ = 1, t = 0, Theorem 5.3 coincides with the following result due to Olatunji
and Dutta [18].
Corollary 5.3 If f(z) ∈ Ap, of the form (2) is belonging to GL(p, λ; b,Φm,n), then

|ap+1ap+3 − µa2p+2| ≤
p2|b|2

8192[1 + λp(p+ 1)]2
|η − µσ|,

where

η =
[1 + λp(p+ 1)]

[3 + λ(p+ 2)(p+ 3)]

[
pb[2pb− 5(1 + λp(p+ 1))]− 5pb[2 + λ(p+ 1)(p+ 2)]

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
+

7

3

]
.

and

σ =
p2b2{2bp− 5[1 + λp(p+ 1)]}2

2[2 + λ(p+ 1)(p+ 2)]2[1 + λp(p+ 1)]2
.

5.4 Zalcman Functional
Theorem 5.4 If f(z) ∈ Ap, of the form (2) is belonging to GL(δ, t; b, λ,Φm,n), then

|ap+1ap+2 − ap+3| ≤
∣∣∣∣ p2t+2b2{2pb− 5[1 + λp(p+ 1)]}
1024[1 + λp(p+ 1)]2[2 + λ(p+ 1)(p+ 2)](p+ δ)t(p+ 2δ)t

− pt+1b

1024[3 + λ(p+ 2)(p+ 3)](p+ 3δ)t

.

[
pb{2pb− 5[1 + λp(p+ 1)]} − 5pb[2 + λ(p+ 1)(p+ 2)]

[2 + λ(p+ 1)(p+ 2)][1 + λp(p+ 1)]
+

7

3

] ∣∣∣∣ = d6. (71)

Proof. The proof is similar to that of the Theorem 4.4.
5.5 Third Hankel determinant
Theorem 5.5 If f(z) ∈ Ap, of the form (2) is belonging to GL(δ, t; p, λ; b,Φm,n),
then

|H3(p)| ≤ d1d5 + d2d6 + d3d4,

where d1, d2, d3, d4, d5 and d6 are given by (64), (65), (66), (68), (70) and (71) re-
spectively.
Proof. The proof of the result is obvious.
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