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CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS
DEFINED WITH GENERALIZED SALAGEAN OPERATOR AND
RELATED TO SIGMOID FUNCTION AND LEMNISCATE OF
BERNOULLI

GURMEET SINGH, GAGANDEEP SINGH, GURCHARANJIT SINGH

ABSTRACT. In this paper, the authors introduce new subclasses of multivalent
functions defined with generalized Salagean operator related to Sigmoid func-
tion and Lemniscate of Bernoulli. The initial coefficient bounds, Fekete-Szego
inequality and Hankel determinant problems are investigated for these classes.
The results proved by various authors follow as special cases.

1. INTRODUCTION

The importance of theory of special functions can be gauged from the fact that
it draws as much attention of scientists and engineers as that of the researchers
working in the field of Physics and Computer science etc.

Out of the treasure of special functions, in this paper we shall focus on the
sigmoid function given by
_ 1
Clte =’

h(z) (1)

whose working is analogous to the human brain.

The function h(z) is a differentiable function possessing the following attributes:
(i) Its output ranges between 0 and 1.
(ii) Sufficiently large input domains are mapped onto a small output range.
(iii) Being a one-one function, no information is lost in the process.
(iv) The function is monotonically increasing.
The above mentioned properties make it quite useful in the Geometric function

theory.
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Let A, denote the class of functions of the form
f(z) =274 3 anip™™, @
n=2

which are analytic and p-valent in the open unit disc F = {z: |z| < 1}.
Let U be the class of Schwarzian functions of the form

w(z) = Z cn 2", (3)

which are regular in the unit disc E' and satisfying the conditions
w(0) =0, |w(z)| < 1.

For the functions f and g in E, we say that f is subordinate to g in E, if a
Schwarzian function w(z) € U can be found such that f(z) = g(w(z)), denoted by
f < g. Tt follows from Schwarz lemma that f(z) < g(z) implies that f(0) = g(0)
and f(E) C g(E) (see detain in [11]).

Sokol and Thomas [22] introduced and studied the class S} in the unit disc E,
normalized by f(0) = f/(0) — 1 = 0 and satisfying the condition

2f'(2)
f(z)
where the branch of the square root is chosen to be ¢(0) = 1.
It is also noted that the set ¢(E) lies in the region bounded by the right loop of the
lemniscate of Bernoulli v : (22 + y?)? — 2(2? — y?) = 0.
For f € A, and § > 0, Goyal et al. [8] introduced the following differential operator:

<V14+z2=¢q(2),z€E,

Dif(z) = f(2),

DLf(2) = (1- 8)f(2) + ng%z) — Dsf(2),

and in general

Dyf() = Do(DE f(2) = P4+ Dsf(2)+ 3 [1 ¥ (’; - 1) 5} ax*.p € Ny = NU{0)
k=p+1

with DY f(0) = 0.

The operator D5 f(z) is named as generalized Salagean operator.

For p = 1, the above defined operator coincides with that introduced by Al-
Aboudi [3].

For p = 1,6 = 1, the operator D! f(z) = D! f(z), the well known Salagean operator.
Let ¢(z) be an analytic function with positive real part in E such that ¢(0) = 1
and ¢’'(0) > 0 and maps E onto a region starlike with respect to 1 and symmetric
with respect to the real axis.

In 1976, Noonan and Thomas [14] stated the gth Hankel determinant for ¢ > 1 and
n>1 as

Ay Ap+1 - Gn+4q+1
an+1
Hgy(n) =

An+q+1 cee Ap42q—2
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This determinant has been investigated by several authors.

In the particular cases, ¢ = 2,n = p,a; = 1 and ¢ = 2,n = p + 1, the Hankel
determinant simplifies respectively to

Hy(p) = lapt2 — ags| and Ha(p +1) = |api1ap13 — ap o).

The functional Jp, o (f) = @nam — @Gman—1, n,m € N — {1}, was investigated
by Ma [10] and it is known as generalized Zalcman functional. The functional
J2,3(f) = azas —ay is a specific case of the generalized Zalcman functional. Various
authors including Janowski [4, 5, 6, 21, 23] computed the upper bound for the
functional J; 3(f) over different subclasses of analytic functions to obtain a bound
for third Hankel determinant. For the functions in the class A,, the Zalcman
functional takes the form of a,1i1ap12 — apss.

Forg=3and n=p as

Gp  Apt+1 Opy2
Hs3(p) = |apr1 apy2 Gpis,
ap+2  Apt3  Gptd
which is known as Hankel determinant of order 3.
For f € A, and a, =1, we have

2 2
H3(p) = apya(apriapis — ap+2) — apy3(apy3 — apr1apy2) + apra(apra — ap-‘,—l)?
and using the triangle inequality, it yields

|H3(p)| < laptollapriaprs — azyol + |aprs||aprs — apriapso| + |apyallapss — ady ]

(4)
A function f(z2) € A4, is said to be in the class Sj () if
1[1zf'(2)
v s e

A function f(z) € A, is said to be in the class Cj () if

1 1 z2f"(2)

1——+— 1 < ¢(2).

i 1+ ) <o

The classes Sy ,(¢) and C,,(¢), were studied in [1]. For b = 1, we have the classes
Sy(¢) and Cp()(see [2]) and for p = b = 1 the classes reduce to S*(¢) and C(¢)
which were earlier introduced and investigated in [9]. These classes reduce to the

1+2
classes of starlike and convex functions respectively when ¢(z) = + .

1—=2
Also for p = 1 and ¢(z) = %, the classes Sy ,(¢) and Cj,(¢) reduce to the
classes S*(b) and C(b) which were investigated in [13] and [24].
Motivated by above defined classes, we introduce the following subclasses of p-valent
analytic functions of complex order related to sigmoid functions and Lemniscate of
Bernoulli.
Definition 1.1 For b € C, let the class M x(d,t;b, Dy, ) denote the subclass of
A, consisting of functions of the form (2) and satisfying the following condition:
L L[ 2Dsf () + A2 (Dff(2))”
" DAD )Y + (1= N0 ()
for 0 < A <1 and @, ,(z) is a simple logistic sigmoid activation function.
In particular, M, A(1,0;b, @y, ) = M, A(b, @1y, the class studied by Singh and
Singh [20].

-p >07
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Definition 1.2 For b € C, let the class G}, A(0,t; b, ®,, ) denote the subclass of A4,
consisting of functions of the form (2) and satisfying the following condition:

L[2(Dsf () L\ (D5 (2)"
bl Dif(=) D f(z)
for 0 < XA <1 and ®,,,(2) is a simple logistic sigmoid activation function.
Particularly, Gp (1,0;b, @p,.) = Gpa(b, Ppy ), the class studied by Singh and
Singh [20].

Definition 1.3 For b € C, let the class M (d,t;p, A, b, ., ) denote the subclass
of A, consisting of functions of the form (2) and satisfying the following condition:

P+ -Pp >07

L[ 2(Dif(2)) + X22(D5f(2))"

PR Ry T a - noe) T T

where the branch of the square root is chosen to be ¢(0) = 1,0 < XA < 1 and ®,, ,,(2)
is a simple logistic sigmoid activation function.

Specifically, M, (1,0;p, A, b, @1,.r) = ML (p, A\, b, Dy, »,) the class studied by Olatunji
and Dutta [18].

Definition 1.4 For b € C, let the class GL(d,t;p, A, b, @, ) denote the subclass of
A, consisting of functions of the form (2) and satisfying the following condition:

1 [2(DLf(2)) 22(D% f(2))"

S Y S TS R A

where the branch of the square root is chosen to be ¢(0) = 1,0 < XA < 1 and ®,, ,, ()
is a simple logistic sigmoid activation function.

As a special case, GL(1,0;p, A\, b, @p,.n) = Gr(p, A\, b, Py, ) the class studied by
Olatunji and Dutta [18].

Recently, various authors as Oladipo [15], Murugusundramoorthy et al. [12], Olatunji
et al. [17], and Olatunji [16] have studied sigmoid function for different classes of
analytic and univalent functions.

In the present work, we obtained initial coefficient bounds, Fekete-Szego inequality,
second and third Hankel determinants for the classes My, x(9,t; 0, @ry 1), Gp A (0,856, Py ),
Mp(6,t;p, A\, b, @, ) and G (6,80, A, b, @y, ). The results proved by Singh and
Singh [20] and Olatunji and Dutta [18] follows as special cases.

To prove our results, we shall make use of the following lemmas:

Lemma 1 [19] If a function p € P is given by p(z) = 1+ > p—, px2*, then

Ipk| <2,k € N,

where P is the family of all functions analytic in E for which p(0) = 1 and
Re(p(z)) > 0.
Lemma 2 [7] Let h be the sigmoid function defined in (1) and

m=1

then ®(z) € P, |2| < 1, where ®(z) is a modified sigmoid function.
Lemma 3 [7] Let
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then |®,, »,(2)| < 2.
Lemma 4 [7] If

O(z) =2h(z) =1+ Z cn 2",
n=1

1 n+1
where ¢, = %, then |c,| <2, n € N and the result is sharp for each n.
n!
2. THE cLASS M, (6,850, @y )

2.1 Initial Coeflicients
Theorem 2.1 If f(z) € A, of the form (2) is belonging to M, (4, t; b, @), then

PP+ A(p — 1)]

<
4l < T S+ oy ®)
t+2 2
P A1+ A(p — 1))
< = hy, 6
2l S ST DI ooy ©)
t+1 212
PRI+ -] [P 1
< — = =
|%%L‘%H+A@+QMp+%V 3 3| Q
and t+2(7,(2 212
PRBPL+ A1) [P 4
< —Zl=n
[ap-al < 1921+ A(p+3)|(p+40)t| 2 3] )
Proof. As f € M, »(6,t;b, @,.1,), therefore
1 2(DLf(2)) + A22(DLf(2))"
7 - = (I)m n )
G RO+ (= D 7] =P )
where 11 1 1 779
_ [PV 5_ - _6 7T _
Pmnlz) =14 32 =512+ 507 ~65” Taote0” (10)

Using (10), (9) can be expanded as
t

5\* 26
(14 Ap) (1+p) apt12+2(1+ A(p+1)) (1+p) pi27?
36\ 5 46\" .
+3(1+A(p+2) 1+; apt32° +4(1+ Xp + 3)) 1+; Appaz™ + ...

=bp {12 _ 1l + 125}
. {(1 +Ap—1))+ (1+ \p) <1 + Z)t apy12+ (1+ Ap+1)) (1 + ?)t Apt22>

t

+(1+Ap+2) (1 + ?)t api32° + (1+A(p+3)) <1 + Zf) apraz* + ] (11)

Equating the coefficients of z, 22, 23 and 2z* in (11), we obtain
P[4+ A(p — 1)]
ap+1 = t
2[1+ Apl(p+9)
R Ap—1)
PR+ AMp+ D)](p+20)F

(12)

(13)
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P[4+ Ap —1)] p2b? 1
T U+ A (p + 2)](p + 30)F [ 2 3} (14)
and
PR A -] (PR 4
T 19201+ Ap + 3)](p + 40)F { 2 3} (15)

Results (5), (6), (7) and (8) can be easily obtained from (12), (13), (14) and (15)
respectively.

For 6 = 1,¢t = 0, Theorem 2.1 gives the following result due to Singh and Singh [20].
Corollary 2.1 If f(z) € A,, of the form (2) is belonging to M, x(b, ®,, ), then

Il + Alp — 1)]

|apa] <

2[1 + Ap] ’
2|52
p7[b[*[1 + A(p — 1)]
<
lapta] < SL+Ap+1)]
@ |<p|b|[1+/\(p—1)] PPy 1
PEL= a1+ M p+2)] | 2 3
and
] < PP+ Ap —1)] [p°0® 4
PRI+ Ap+3)] | 2 3]

2.2 Fekete-Szego Inequality
Theorem 2.2 If f(z) € A, of the form (2) is belonging to M, (6, t; b, @, 1), then

2 PP+ AP - D] | 1+ Ap)P(p+9)*
[@p 2= pay ] < AL+ Apl2(p + 6)* ’ 201+ Ap + D](p + 20) ulL+ )\(p(;ﬁl))]’ '
Proof. From (11) and (12), we have

o _ PP+ A(p — 1) L+’ +6)* B
2T T T R + 0) [W[l AT Ol r ey AP (117))]} '

Hence (16) can be easily obtained from (17).
In particular for p =1,

2 P* 2B+ A(p — 1)] (1+Ap)*(p +9)**
ap+2—a +1| <
g 41+ ApP(p +0)2t [2p L+ A(p + 1)](p + 20)"

— [1—1—)\(1)—1)]’ = hy.

(18)
For 6 = 1,t = 0, Theorem 2.2 agrees with the following result due to Singh and
Singh [20].
Corollary 2.2 If f(z) € A,, of the form (2) is belonging to My, x(b, @), then

PO+ Ap —1)] [ (14 p)?
4(1 4 Mp)? 21+ A(p+1)]

2.3 Second hankel determinant
Theorem 2.3 If f(z) € A, of the form (2) is belonging to M, (6, t; b, @, 1), then
264272 2
P b*[1+Xp—1
oyt ol < L N~ 1)

(apsa — oy, | < ~lt+ M- 1]

1 22 1 p2b?

p
U131+ M)+ Ap+2)(p+ 6)t(p + 36) [ 2 _3] _“4[1+A(p+1)]2(p+(25);t
19
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s _ PP+ A(p — 1)) p
Ap4+1ap+3 — flpyo = -5
P BA+ I+ Ap+2)](p+o)ilp+30)| 2 3
PO 1+ Ap — 1)]?

Proof. From (12), (13) and (14), we have
b? 1]

— . 20
P64+ Mp + DP(p + 20)% (20)
Hence (19) can be easily obtained from (20).
In particular for p =1,
26422 2
P b#[1+Xp—1
apsrapes — o] < P LEAR =)
1 |:p2b2 B 1:| B p2b2 o
1BA+ M)A+ AP +2)](p+0)tp+30)t | 2 3] 4+ Ap+ DR(p+20)2]
(21)
For § = 1,¢ =0, Theorem 2.3 coincides with the following result due to Singh and
Singh [20].
Corollary 2.3 If f(z) € A,, of the form (2) is belonging to M), x(b, @, ), then
2|2 2
po|bF L+ A(p—1
|lapt2apt3 *U0129+2| < il 16( )
1 |:p2b2 1:| p2b2
N ECE YY) N ME ] R TRYPES IR
2.4 Zalcman Functional
Theorem 2.4 If f(z) € A, of the form (2) is belonging to M, (4, t; b, @), then
t+1
P B+ A(p — 1)
|ap1apt2 — apis| < [ ) }
P21+ A(p — 1) ) i [ﬁﬁ_l]_h
T2+ AT+ Ap+ D]+ 0)(p+20) 3L+Ap+2)]p+35)¢| 2 3| %

(22)
Proof. From (11), (12) and (13), the result (22) is obvious.
For § = 1,¢t = 0, Theorem 2.4 gives the following result due to Singh and Singh [20].
Corollary 2.4 If f(z) € A,, of the form (2) is belonging to My x(b, @1, ), then

lap+1a —apys] < p33[1 + Ap — 1)) B pb[1 + A(p — 1)] {pzbz B 1]
p+10p+2 p+3| = 16(1+ Ap)[1 + A(p+ 1)] 241 + \(p + 2)]

2 3
2.5 Third Hankel determinant
Theorem 2.5 If f(z) € A, of the form (2) is belonging to M, (4, t; b, @), then

|H3(p)| < hihs + hahe + haha,
where hy, ha, hs, hq, hs and hg are given by (11), (12), (13), (14), (15), (16) respec-
tively.
Proof. The proof of the result is obvious.

3. THE cLASS Gp (0,10, @)

3.1 Initial Coefficients
Theorem 3.1 If f(z) € A,, of the form (2) is belonging to G, »(4,¢;b, @, ), then
pb|

bl S S R D+ ) =
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< PP k 24
el S BT DGO e T Dl e @Y
aps] < P p*b*(p + 26)° 3 1‘ o
P 8B AR+ 2 +3)](p+30) R+ A+ D20+ M+ 1] 3]
(25)
and
sl < p'2[b)?
T 16[4+ A(p+3)(p+4)](p + 46)
1 [ p?b?(p + 26)* B 1} B 1 ‘ 4
UBHAp+2)(p+3)] [R+Ap+ D +2)IA+M@+1)] 3] 3[1+ /\p(p(+ )1)] >
26
Proof. As f € G, A(0,t;b, Py, ), therefore
L [2(Dif(2) |\ 2 (Dsf(2)" ]
p—|—|: +/\ —p :pq>m,nza 27
b | DL D f(2) ) &
where 1 1 1 1 779
P =14+-2— =23+ —2°— =20+ —>7" 2
man(2) =14 52— 502"+ 906% ~ 51° T 20160° (28)
Using (28), (27) can be expanded as
M p—1) + 1+ Ap(p+ 1D)](p+ ) lapiiz + [2+ Ap+ 1) (p+ 2)](p + 26) api22>
B AMp+2)(p+3)](p +30) aprsz® + [+ A(p + 3)(p +4)](p + 40) apraz? + ...
R R I DA -
=57~ 5% T app®
.[pt—l—(p+6)tap+1z+(p+26)tap+222+(p—|—36)tap+3z3+(p+46)tap+4z4+... . (29)
Equating the coefficients of z, 22, 23 and 2* in (29), we obtain
t+1
prh
= , 30
TS+ App + D](p+ o) (30)
pt+2b2
= 9 31
P = I A+ Do+ 2] + o + D)o + 26 31
. _ pt+1b |: p2b2(p+26)t B 1:|
PR SB A +2)(p+3)](p+30)¢ [[2+ Ap+1)(p+ 2)][1 + Ap(p + 1)] (3 )
32
and rioro
Op+4 = P
16[4+ A(p+3)(p+4)](p + 46)"
1 [ p?b%(p + 26) B 1] B 1 ]
B+Ap+2)(p+3)] L2+ Ap+D+2)]1+Ap(+1)] 3] 31+ /\p(p(+ %)] ’
33

Results (23), (24), (25) and (26) can be easily obtained from (30), (31), (32) and
(33) respectively.

For § = 1,¢t = 0, Theorem 3.1 gives the following result due to Singh and Singh [20].
Corollary 3.1 If f(z) € A,, of the form (2) is belonging to G, x(b, Py, ), then

lap+1] < %7
2[1 4+ Ap(p+ 1)]
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apal < p[b|?
PR+ A+ D(p+ 2L+ Ap(p + 1]
- p|b| p*b? 1
o3l < SE T+ 20+ 3) ‘[2+A<p+1)(p+2>n1+xp<p+1>1 - 3'
and
] < p?[b|?
PHL=16[4+ Ap + 3)(p + 4)]

P22 (p + 20)! 1} 1 } |

1
B+ +2)(p +3)] [[2+A(p+ Dp+2)]1+ pp+1)] 3] 3[1+Ap(p+1)]

3.2 Fekete-Szego Inequality
Theorem 3.2 If f(z) € A,, of the form (2) is belonging to G, » (4, ¢; b, @y, ), then

(s — a2, | < p'2b? (P+0)* 1+ XEp+1)] pt
P AL 2w + DR+ )% [+ Mp+ e+ 2)](p + 26)° b
34
Proof. From (30) and (31), we have
Apto — Py = Py [ (p+ P+ Aplp+ 1) upt} .
P T AT el PG+ O B+ A+ )+ 2]+ 207
(35)
Hence (34) can be easily obtained from (35).
In particular for p =1,
0y 0—a?. | < P b (p+0)*"[1 4+ Ap(p +1)] I
PP A M+ DP(p+ 0% |2+ Ap + 1)(p + 2)](p + 20)° I
36

For § = 1,t = 0, Theorem 3.2 agrees with the following result due to Singh and
Singh [20].
Corollary 3.2 If f(z) € A,, of the form (2) is belonging to Gy x(b, ®s, ), then
> p’[bl? [+ Ap(p + 1)]
(a2 = i1l < TG T IR | B+ A + D+ 2) ‘
3.3 Second hankel determinant
Theorem 3.3 If f(z) € A,, of the form (2) is belonging to G, x (4, t; b, Py, p), then

9 p2t+2|b|2
lapt1apt3 — pa, o] < 1601+ Ap(p + 12 |n — pol (37)
where
_ [+ Ap(p +1)] b2 (p + 26)¢ 1
T BT AP+ 2 +3)]0+0) @ +30) |2+ p+ Do+ 2)][1+ o+ 1)}(3859,
and 22
o= £ (30)

2+ AP+ D(p+2)P(p +20)°
Proof. From (30), (31) and (32), we have

) p2t+2b2
Gt ees TR 2 = 61 T p(p+ 1)IB+ Ap+2)(p+ 3)](p+0)!(p + 30)!
p*b%(p +26) 1

LR2HAe D)@+ Ap(e+1)] 3
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p2iHapl

_ . 40
P62 + Mo+ V)(p+ 2)IP[1 + Ap(p + D2(p + 20) (40)

Hence (37) can be easily obtained from (40).

In particular for =1,
2042 p|2

a2 < — P — 0| = ks. 41
|0’P+1ap+3 a’p—i—2| = 16[1 + )\p(p+ 1)]2 |77 J| 5 ( )

For § =1,t =0, Theorem 3.3 coincides with the following result due to Singh and
Singh [20].
Corollary 3.3 If f(z) € A,, of the form (2) is belonging to G, x (b, @y, ), then

|aps1ap43 — pas | < o[ f;pﬁ'}; P In — pol (42)
where
= LtApt+1)] Py 1 (43)
B+A+2)(p+3)] [Z+Ap+DE+2)1+Ap(p+1)] 3
and
o Ll (44)

2+Ap+Dp+2)*

3.4 Zalcman Functional

Theorem 3.4 If f(z) € A,, of the form (2) is belonging to G, » (4, ¢;b, @, ), then
2t+37,3
p*'Th

L+ Ap(p+ P2+ Ap+1)(p +2)I(p + )" (p + 20)°

P20 (p + 20)" 1‘
:k;6

|apt1ap+2 — apis| < ‘8[

pt+1b
8B+ A(p+2)(p+3)(p+30) {[2 +Ap+ D +2L+Mp+1)] 3

(45)
Proof. From (30), (31) and (32), the result (45) is obvious.
For 6 = 1,t = 0, Theorem 3.4 gives the following result due to Singh and Singh [20].
Corollary 3.4 If f(z) € A, of the form (2) is belonging to Gp (b, @ ), then
313
p°b
8[1+Ap(p+ D2+ Alp+ 1)(p + 2)]

p2b2 1:| ’

‘ap+1ap+2 - ap+3| <
B pb { _ 2
8B+ Ap+2)(p+3)] [2+Ap+1D+2)]1+ pp+1)] 3

3.5 Third Hankel determinant
Theorem 3.5 If f(z) € A,, of the form (2) is belonging to G, »(4,¢; b, @, ), then

|H3(p)| < kiks + kake + kska,

where k1, ko, k3, k4, k5 and kg are given by (24), (25), (26), (36), (41), (45) respec-
tively.
Proof. The proof of the result is obvious.
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4. THE CLASS My (d,t;p, A\; b,y )

4.1 Initial Coeflicients
Theorem 4.1 If f(z) € A,, of the form (2) is belonging to My (d,t;p, A; b, @),
then
PRI + Alp — 1)]

< , 46
N S P IFER 1o
t+1
PRI + A(p — 1)][2bp — 5|
< =1 47
lap+2] < 256[1 + A(p + 1)](p + 20)* b (47)
11| [1 4+ A(p — 1)]|6p>b2 — 45pb + 14
apes] < P [b][L + A(p — 1)]|6p pb + |212 (48)
18432[1 + A(p + 2)](p + 39)*
and
L] [1 4+ A(p — 1)]]12p%b3 — 180p2b% + 337pb + 651
lapea < 7 [bl[1 + A(p — D)]|12p p7b® + 337pb + 651| _ (49)

1179648[1 4+ A(p + 3)](p + 46)*
Proof. As f € My (6,t;p, A\;b, @, 1), therefore

p+1{ 2(D4f(2)) + A2(DL(2))" p}p ST 1 B 1

b [Az(Dsf(2)) + (1= A)(D5f(2)) P (z) +1
(50)

where
q»m,n(z):ulzfizﬂ Lo Loy T 7 (51)

2% 7 214% T210° " 614° T 20160°

Using (51), (50) can be expanded as
t

5\’ 20
(1+Ap) <1+p) apt12+2(1+A(p+1)) <1+p> apy27?
36\" 5 46\" .
+3(1+A(p+2) 1—|—; apt+32° +4(1+ A(p +3)) 1—|—; ap+az™ + ...

=b 1,z—i,>;24riz?’+£z4+
P18 T 128 T 30727 Tom304”
t

Jaeao =1+ am (14 i)+ FEAE+D) (14 2) apia2

t

+(1+Ap+2) (1 + ?)t api32° + (1+A(p+3)) <1 + Zf) aprazt + ] (52)

Equating the coefficients of z, 22, 23 and 2* in (52), we obtain
PO+ A(p — 1)]

R VPR o
o PO 4 A(p — D](2bp — 5) (54)
PF2 T T956[1 + A(p + 1)](p + 20)t
= P! TB[1 4+ A(p — 1)](6p?b* — 45pb + 14) (55)
pt3 18432[1 4+ A(p + 2)](p + 36)¢
and
P!l 4 A(p — 1)](12p3b — 180p%b? + 337pb + 651) (56)

Ip+d = 1179648[1 + A(p + 3)] (p + 40)"
Results (46), (47), (48) and (49) can be easily obtained from (53), (54), (55) and
(56) respectively.
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For 6 = 1,t = 0, Theorem 4.1 gives the following result due to Olatunji and
Dutta [18].
Corollary 4.1 If f(z) € A, of the form (2) is belonging to My, (p, A, b, @, ), then
plbl[L + Alp — 1)]

8[1 + Ap] ’
pIo[[L + A(p — 1)]|2bp — 5|

2561+ A(p + 1)) ’

laps1| <

lapta| <

and
pIbl[1 + Alp — 1)]|6p*b* — 45pb + 14|
18432[1 + A(p + 2)]

lap+s| <

4.2 Fekete-Szego6 Inequality
Theorem 4.2 If f(z) € A, of the form (2) is belonging to My (6,¢;p, A; b, @py.0),
then

PRI + Ap — D] | (2pb — 5)(1 + Ap)*(p + 6)*
64[1+ Ap]2(p+0)% | 4[1+ Ap+ 1)](p+ 20)t

‘ap+2_ﬂa;27+1 | <

(57)
Proof. From (53) and (54), we have
(a1 — a2, | = PO+ AP —1D](2bp—5)  p*TUR[1 4 A(p - 1))? (58)
k2 T RO o6+ A(p + D)](p+ 20)F 1 6A[L+ ApR(p+ 0)2 |

Hence (57) can be easily obtained from (58).
In particular for p =1,

P B + A(p — )]
64[L + Ap|*(p + 6)*

(2pb —5)(1 + Ap)*(p +6)*
A[1+ Ap + D](p + 20)t

\ap+2—a12)+1| <

(59)
For § =1,¢t =0, Theorem 4.2 agrees with the following result due to Olatunji and
Dutta [18].
Corollary 4.2 If f(2) € A, of the form (2) is belonging to My, (p, A, b, @, ), then

plbl[L+ Ap — )] | (2pb = 5)(1 + Ap)°
64[1 + Ap)? 41+ Ap+1)]
4.3 Second hankel determinant

Theorem 4.3 If f(z) € A,, of the form (2) is belonging to My (0, ¢;p, A; b, @py.0),
then

(g2 — 2| < ~ sl + 2= D).

PP+ Ap — D]?

2
_ < -
lp1apes = Hapeol < S op 1Rk (60)
where
[T+ Ap+1D)]?[6p°b* — 45pb 4 14]
9+ A1+ Ap+2)](p+ 0)H(p + 30)
and

5o (2P0 —5)
4(p +26)%t°
Proof. Using 53), (54), (55) and following the procedure of Theorem 3.3, (60) can
be easily obtained.

In particular for p =1,
P* 221+ A(p — )2

a—a2 .l < —o|=1Is. 61
|ap+1ap+3 ap+2| = 16384[1 _|_>\(p_|_ 1)]2 ‘77 0| 5 ( )

=PI+ Ap — 1)

— up" L+ A(p — 1)]’ -

ly.
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For 6 = 1,t = 0, Theorem 4.3 coincides with the following result due to Olatunji
and Dutta [18].
Corollary 4.3 If f(z) € A, of the form (2) is belonging to My, (p, A, b, @, ), then

|aps1aps3 — pal, | < PP+ Mp — DI In — pol
P T 21 = 163841 + Ap + 1)]2 ’

where
~[14 Xp + 1)]2[6p*b* — 45pb + 14]
a 9L+ Ap)[1+ Ap +2)]
and
_ (2pb—5)*
=1

4.4 Zalcman Functional
Theorem 4.4 If f(z) € A, of the form (2) is belonging to M, (6, t; b, @y, ), then
G ares — g] < PR+ Ap — D]?(2pb — 5)?

prtfpr PRS2 12048(1 4+ Ap)[L + Alp + 1)](p + 6) (p + 20)*

PO+ Ap — D](6p%h* — 45pb + 14) | (62)
18432[1 + A(p + 2)](p + 30)* o

Proof. From (53), (54) and (55), the result (62) is obvious.

4.5 Third Hankel determinant

Theorem 4.5 If f(z) € A, of the form (2) is belonging to Mp(6,;p, A;b, @pn.r),
then

|Hs(p)| < lils + lals + l3la,
where 11, 12,13,14,15 and lg are given by (47), (48), (49), (59), (61) and (62) respec-
tively.
Proof. The proof of the result is obvious.

5. THE cLass GL(d,t;p, A0, Dy )

5.1 Initial Coefficients
Theorem 5.1 If f(z) € A, of the form (2) is belonging to G (4, ;p, A; b, @py.r),
then

pHHb|
L+ Ap(p+ D](p + )"
0] < P Hb]120p — 51 4+ Ap(p + 1)]|
PR2E= 92812 4+ AMp + 1) (p + 2)][1 + Ap(p + 1)](p + 26)
| ‘ - pt+1|b|
a
PEL= 102434 AMp + 2)(p + 3)](p + 30)°
pb[2pb — 5(1 + Ap(p + 1))] — 5pb[2 + A(p + 1) (p + 2)] 47
24+ Ap+1)(p+2)][1 + Ap(p +1)] 3

il < (63)

r dla (64)

—dy  (65)

and .
ol

[@ptal < 8192[4 + A(p + 3)(p + 4)](p + 40)*
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[Po{3[pb{2pb — 5(1 + Ap(p + 1))} — 5pb{2 + Alp + 1)(p + 2)}] + 7[1 + Ap(p + DI2+ Alp+ 1 (p + 2)]}

3L+ Ap(p+ D2+ M+ D +2)B+ A +2)(p+3)]

pb{14[2 + A(p + 1)(p + 2)] — 15[2pb — 5(1 4+ Ap(p + 1))]} Lar (66)
6L+ Ap(p + DI+ A(p + 1)(p +2)] 2]
Proof. These results can be easily proved using the procedure of Theorem 4.1.
For § = 1,t = 0, Theorem 5.1 gives the following result due to Olatunji and
Dutta [18].

Corollary 5.1 If f(z) € A,, of the form (2) is belonging to G (p, A, b, @, ), then

laps1| < L
PHE= R+ ap(p + 1))

0y 0] < p|b][2bp — 5[1 + Ap(p + 1)]|
PEL= 1282+ Ap + 1) (p + 2)][1 + Ap(p + 1))

and

P plb| pb[2pb — 5(1 + Ap(p + 1))] = 5pb2 + A(p+1)(p+2)] 7
P 10243 + Mp + 2)(p + 3)] 2+ Xp+1)(p+2)][1+ Mp(p+1)] 3|

5.2 Fekete-Szego Inequality

Theorem 5.2 If f(z) € A,, of the form (2) is belonging to GL(0,t;p, A; b, @py.0),

then

lapys — pal, | < P (67)
P2 T Bl = G 3 + DR + )
[2pb = 5(1 + Ap(p + D)][1 + Ap(p + D](p +8)* R
2[1 4+ Ap(p+ DJ[2 4+ Alp + 1) (p + 2)](p + 26)* '
Proof. The proof is similar to Theorem 4.2.
In particular for p =1,
5 pt-'rlb
- <
a2 =Gl S G F DRG0
‘ [2pb — 5(1 + Ap(p+ )][1 + Ap(p+ 1)](p +0)* o] = d (68)
21+ Ap(p+ D2+ A+ 1)(p +2)](p + 26)° '

For § =1,¢t =0, Theorem 5.2 agrees with the following result due to Olatunji and
Dutta [18].
Corollary 5.2 If f(z) € A, of the form (2) is belonging to G (p, A, b, &, ), then

(s a—pua, | < plb| 2pb = 5(1 + Ap(p + D)L + Ap(p +1)] ‘
PR 64+ Ap(p+ D2 | 2[1+ Ap(p + D2+ Ap+ 1) (p + 2)]
5.3 Second hankel determinant

Theorem 5.3 If f(z) € A, of the form (2) is belonging to Gr(6,;p, A; b, @py.1),
then

p2t+2|b‘2
1+ Xp(p+1

Ap+1Qp+3 — Ma;rz)+2| < 8192[ )]2 |77 - ,LLJ|7 (69)

where
[1+Ap(p+1)]
3+ Ap+2)(p+3)(p+9)(p+30)

T
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pb[2pb — 5(1 + Ap(p +1))] —5pb2 + A(p+1)(p+2)] | 7
2+ A+ 1)(p+2)][1 + Ap(p + 1)] 3

_ p* 20?2 {20p — 5[1 + Ap(p + 1)]}*

C 224 A+ 1)(p+ 2)]2[1 + Ap(p + 1] (p + 20)

Proof. This theorem can be easily proved following the procedure of Theorem 4.3.
In particular for p =1,

and

g

p2t+2|b|2

—a? < — =ds. 70
|ap+1ap+3 a’p+2| = 8192[1 T )\p(p_’_ 1)]2 ‘77 ,u0-| 5 ( )

For 6 = 1,t = 0, Theorem 5.3 coincides with the following result due to Olatunji
and Dutta [18].
Corollary 5.3 If f(z) € A,, of the form (2) is belonging to Gr(p, A\;b, &y, ), then

2 172|b|2
|a17+1ap+3 - Map+2| < 8192[1 + )\p(p + 1)]2 |77 - MU|7
where
_ A+ +1)] {pb@pb — 5L+ Ap(p+ D) —5pb2 + Ap + D(p+2)] | 7
TT BT A+ 2+ 3)] 2+ A+ D+ 2]+ p(p + 1) 3
and

oo P?0{2p =51+ Ap(p + D]}
224+ Mp+ 1)(p+2)]2[L+ Ap(p + 1)]*

5.4 Zalcman Functional
Theorem 5.4 If f(z) € A, of the form (2) is belonging to G (,t; b, A, @y, ), then

- PP 202 {2pb — 5[1 + Ap(p + 1)]}
[p+10p+2 = apys] < ‘ 1024[1 + Mp(p + D2+ Mp + 1)(p + 2)](p + )1 (p + 20)¢

pt+lb
10243 + A(p +2)(p + 3)|(p + 36)*

[pb{2pb —5[1+ Ap(p+ D]} —5pb[2 + A(p + 1)(p + 2)] 7] ‘ — s
2+ Ap+1)(p+2)][1+ Ap(p+1)] 3

Proof. The proof is similar to that of the Theorem 4.4.

5.5 Third Hankel determinant

Theorem 5.5 If f(z) € A,, of the form (2) is belonging to GL(0,t;p, A; b, @py.0),

then

(71)

|H3(p)| < dids + dads + d3d,
where dy,ds,ds, ds, ds and dg are given by (64), (65), (66), (68), (70) and (71) re-
spectively.
Proof. The proof of the result is obvious.
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