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GENERALIZED RELATIVE TYPE (α, β) AND GENERALIZED

RELATIVE WEAK TYPE (α, β) ORIENTED SOME GROWTH

PROPERTIES OF COMPOSITE ENTIRE FUNCTION

TANMAY BISWAS, CHINMAY BISWAS, BISWAJIT SAHA

Abstract. The main aim of this paper is to prove some results related to

the growth rates of composite entire functions on the basis of their generalized
relative type (α, β) and generalized relative weak type (α, β) where α and β

are continuous non-negative functions defined on (−∞,+∞).

1. Introduction

We denote by C the set of all finite complex numbers. Let f be an entire

function defined on C. The maximum modulus function Mf (r) of f =
∞∑
n=0

anz
n on

|z| = r is defined as Mf = max
|z|=r
|f(z)|. Moreover, if f is non-constant entire then

Mf (r) is also strictly increasing and continuous function of r. Therefore its inverse

M−1f : (Mf (0),∞) → (0,∞) exists and is such that lim
s→+∞

M−1f (s) = ∞. We use

the standard notations and definitions of the theory of entire functions which are
available in [8] and [9], and therefore we do not explain those in details.

Now let L be a class of continuous non-negative functions α defined on
(−∞,+∞) such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞
and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. We say that α ∈ L0, if α ∈ L
and α(cx) = (1 + o(1))α(x) as x0 ≤ x→ +∞ for each c ∈ (0,+∞), i.e., α is slowly
increasing function. Clearly L0 ⊂ L.

Further we assume that throughout the present paper α, α1, α2, β, β1 and
β2 always denote the functions belonging to L0. The value

ρ(α,β)[f ] = lim sup
r→+∞

α(logMf (r))

β(log r)
(α ∈ L, β ∈ L)

is called [7] generalized order (α, β) of an entire function f .
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Now Biswas et al.[3] rewrote the definitions of the generalized order (α, β)
and generalized lower order (α, β) of an entire function after giving a minor mod-
ification to the original definition of generalized order (α, β) of an entire function
(see [7]).

Definition 1. [3] The generalized order (α, β) denoted by ρ(α,β)[f ] and generalized
lower order (α, β) denoted by λ(α,β)[f ] of an entire function f are defined as:

ρ(α,β)[f ] = lim sup
r→+∞

α(Mf (r))

β(r)
and λ(α,β)[f ] = lim inf

r→+∞

α(Mf (r))

β(r)
.

In order to refine the growth scale namely the generalized order (α, β) of an
entire function, Biswas et al.[4] have introduced the definitions of another growth
indicators, called generalized type (α, β) and generalized lower type (α, β) respec-
tively of an entire function which are as follows:

Definition 2. [4] The generalized type (α, β) denoted by σ(α,β)[f ] and generalized
lower type (α, β) denoted by σ(α,β)[f ] of an entire function f having finite positive
generalized order (α, β) (0 < ρ(α,β)[f ] <∞) are defined as :

σ(α,β)[f ] = lim sup
r→+∞

exp(α(Mf (r)))

(exp(β(r))ρ(α,β)[f ]
and σ(α,β)[f ] = lim inf

r→+∞

exp(α(Mf (r)))

(exp(β(r))ρ(α,β)[f ]
.

It is obvious that 0 ≤ σ(α,β)[f ] ≤ σ(α,β)[f ] ≤ ∞.

Analogously, to determine the relative growth of two entire functions having
same non zero finite generalized lower order (α, β), one can introduce the definitions
of generalized weak type (α, β) and generalized upper weak type (α, β) of an entire
function f of finite positive generalized lower order (α, β), λ(α,β)[f ] in the following
way:

Definition 3. [4] The generalized upper weak type (α, β) denoted by τ(α,β)[f ] and
generalized weak type (α, β) denoted by τ (α,β)[f ] of an entire function f having
finite positive generalized lower order (α, β) (0 < λ(α,β)[f ] <∞) are defined as :

τ(α,β)[f ] = lim sup
r→+∞

exp(α(Mf (r)))

(exp(β(r)))λ(α,β)[f ]
and τ (α,β)[f ] = lim inf

r→+∞

exp(α(Mf (r)))

(exp(β(r)))λ(α,β)[f ]
.

It is obvious that 0 ≤ τ (α,β)[f ] ≤ τ(α,β)[f ] ≤ ∞.

Mainly the growth investigation of entire functions has usually been done
through their maximum moduli function in comparison with those of exponential
function. But if one is paying attention to evaluate the growth rates of any entire
function with respect to a new entire function, the notions of relative growth indi-
cators (see [1, 2]) will come. Now in order to make some progresses in the study of
relative order, Biswas et al.[5] have introduced the definitions of generalized relative
order (α, β) and generalized relative lower order (α, β) of an entire function with
respect to another entire function in the following way:

Definition 4. [5] The generalized relative order (α, β), denoted by ρ(α,β)[f ]g and
generalized relative lower order (α, β), denoted by λ(α,β)[f ]g of an entire function
f with respect to an entire function g are defined as:

ρ(α,β)[f ]g = lim sup
r→+∞

α(M−1g (Mf (r)))

β(r)
and λ(α,β)[f ]g = lim inf

r→+∞

α(M−1g (Mf (r)))

β(r)
.
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Now in order to refine the above growth scale, Biswas et al.[5] have intro-
duced the definitions of other growth indicators, such as generalized relative type
(α, β) and generalized relative lower type (α, β) of entire function with respect to
an entire function which are as follows:

Definition 5. [5] The generalized relative type (α, β), denoted by σ(α,β)[f ]g and
generalized relative lower type (α, β), denoted by σ(α,β)[f ]g of an entire function f
with respect to an entire function g having non-zero finite generalized relative order
(α, β) are defined as:

σ(α,β)[f ]g = lim sup
r→+∞

exp(α(M−1g (Mf (r))))

(exp(β(r)))ρ(α,β)[f ]g

and σ(α,β)[f ]g = lim inf
r→+∞

exp(α(M−1g (Mf (r))))

(exp(β(r)))ρ(α,β)[f ]g
.

Analogously, to determine the relative growth of an entire function f having
same non-zero finite generalized relative lower order (α, β) with respect to an entire
function g, Biswas et al.[5] have introduced the definitions of generalized relative
upper weak type (α, β) denoted by τ(α,β)[f ]g and generalized relative weak type
(α, β) denoted by τ (α,β)[f ]g of f with respect to g of finite positive generalized
relative lower order (α, β) in the following way:

Definition 6. [5] The generalized relative upper weak type (α, β), denoted by τ(α,β)[f ]g
and generalized relative weak type (α, β), denoted by τ (α,β)[f ]g, of an entire func-
tion f with respect to an entire function g having non-zero finite generalized relative
lower order (α, β) are defined as:

τ(α,β)[f ]g = lim sup
r→+∞

exp(α(M−1g (Mf (r))))

(exp(β(r)))λ(α,β)[f ]g

and τ (α,β)[f ]g = lim inf
r→+∞

exp(α(M−1g (Mf (r))))

(exp(β(r)))λ(α,β)[f ]g
.

In this paper we wish to prove some results related to the growth rates of
composite entire functions on the basis of their generalized relative order (α, β),
generalized relative type (α, β) and generalized relative weak type (α, β) where α
and β are continuous non-negative functions defined on (−∞,+∞).

2. Main results

In this section first we present two lemmas which will be needed in the
sequel.

Lemma 1. [6] Let f and g are any two entire functions with g(0) = 0. Also let b

satisfy 0 < b < 1 and c(b) = (1−b)2
4b . Then for all sufficiently large values of r,

Mf (c(b)Mg(br)) ≤Mf(g)(r) ≤Mf (Mg(r)).

In addition if b = 1
2 , then for all sufficiently large values of r,

Mf(g)(r) ≥Mf

(1

8
Mg

(r
2

))
.

Lemma 2. [2] Suppose f is an entire function and a > 1, 0 < b < a. Then for all
sufficiently large r,

Mf (ar) ≥ bMf (r).
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Now we present the main results of the paper.

Theorem 1. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
ρ(α1,β1)[f ]h <∞ and σ(α2,β2)[g] <∞ where β1(r) ≤ exp(α2(r)). Then

lim sup
r→+∞

α1(M−1h (Mf(g)(r)))

α1(M−1h (Mf (β−11 (exp(β2(r)))ρ(α2,β2)[g])))
≤
σ(α2,β2)[g] · ρ(α1,β1)[f ]h

λ(α1,β1)[f ]h
.

Proof. In view of Lemma 1 it follows that, for all sufficiently large values of r,

α1(M−1h (Mf(g)(r))) ≤ α1(M−1h (Mf (Mg(r))))

i.e., α1(M−1h (Mf(g)(r))) ≤ (ρ(α1,β1)[f ]h + ε)β1(Mg(r)).

Since β1(r) ≤ exp(α2(r)), we get from above that, for all sufficiently large values of
r,

α1(M−1h (Mf(g)(r))) ≤ (ρ(α1,β1)[f ]h + ε) exp(α2(Mg(r)))

i.e., α1(M−1h (Mf(g)(r))) ≤ (ρ(α1,β1)[f ]h + ε)(σ(α2,β2)[g] + ε)(exp(β2(r)))ρ(α2,β2)[g].
(1)

Now from the definition of λ(α1,β1)[f ]h, we obtain for all sufficiently large values
of r that

α1(M−1h (Mf (β−11 (exp(β2(r)))ρ(α2,β2)[g]))) ≥ (λ(α1,β1)[f ]h − ε)(exp(β2(r)))ρ(α2,β2)[g].
(2)

Therefore from (1) and (2), it follows for all sufficiently large values of r that

α1(M−1h (Mf(g)(r)))

α1(M−1h (Mf (β−11 (exp(β2(r)))ρ(α2,β2)[g])))

≤
(ρ(α1,β1)[f ]h + ε)(σ(α2,β2)[g] + ε)(exp(β2(r)))ρ(α2,β2)[g]

(λ(α1,β1)[f ]h − ε)(exp(β2(r)))ρ(α2,β2)[g]

i.e., lim sup
r→+∞

α1(M−1h (Mf(g)(r)))

α1(M−1h (Mf (β−11 (exp(β2(r)))ρ(α2,β2)[g])))
≤
σ(α2,β2)[g] · ρ(α1,β1)[f ]h

λ(α1,β1)[f ]h
.

Thus the theorem is established. �

Remark 1. In Theorem 1, if we replace “σ(α2,β2)[g]” by “σ(α2,β2)[g]”, then Theo-
rem 1 remains valid with “limit inferior” in place of “limit superior”.

Remark 2. In Theorem 1, if we replace the condition “0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h <
∞” by “ρ(α1,β1)[f ]h <∞, λ(α2,β2)[g]k > 0” where k is an entire function and other
conditions remain same, then Theorem 1 remains valid with
“α2(M−1k (Mg(β

−1
2 (exp(β2(r)))ρ(α2,β2)[g])))” and “λ(α2,β2)[g]k” in place of

“α1(M−1h (Mf (β−11 (exp(β2(r)))ρ(α2,β2)[g])))” and “λ(α1,β1)[f ]h” respectively.

Remark 3. In Remark 2, if we replace “σ(α2,β2)[g]” by “σ(α2,β2)[g]”, then Remark
2 remains valid with “limit inferior” in place of “limit superior”.

Remark 4. We remark that in Remark 2, if we replace the condition “ρ(α1,β1)[f ]h <
∞” by “λ(α1,β1)[f ]h <∞”, then

lim inf
r→+∞

α1(M−1h (Mf(g)(r)))

α2(M−1k (Mg(β
−1
2 (exp(β2(r)))ρ(α2,β2)[g])))

≤
σ(α2,β2)[g] · λ(α1,β1)[f ]h

λ(α2,β2)[g]k
. (3)
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Remark 5. In Remark 4, if we replace the conditions “ λ(α2,β2)[g]k > 0 and
λ(α1,β1)[f ]h <∞” by “ρ(α2,β2)[g]k > 0 and ρ(α1,β1)[f ]h <∞” respectively, then the
same replacement is need to go in right part of (3).

Remark 6. In Theorem 1, if we replace the condition “σ(α2,β2)[g] < ∞” by
“τ(α2,β2)[g] <∞”and other conditions remain same, then Theorem 1 remains valid
with “λ(α2,β2)[g]” and “τ(α2,β2)[g]” in place of “ρ(α2,β2)[g]” and “σ(α2,β2)[g]” respec-
tively.

Remark 7. We remark that in Remark 6, if we replace the condition “ 0 <
λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < ∞ and τ(α2,β2)[g] < ∞” by “ 0 < λ(α1,β1)[f ]h < ∞ or
0 < ρ(α1,β1)[f ]h <∞ and σ(α2,β2)[g] <∞”, then

lim inf
r→+∞

α1(M−1h (Mf(g)(r)))

α1(M−1h (Mf (β−11 (exp(β2(r)))ρ(α2,β2)[g])))
≤ σ(α2,β2)[g].

Remark 8. In Remark 7, if we replace the condition “σ(α2,β2)[g] <∞” by “τ(α2,β2)[g] <
∞”and other conditions remain same, then Remark 7 remains valid with “λ(α2,β2)[g]”
and “τ(α2,β2)[g]” in place of “ρ(α2,β2)[g]” and “σ(α2,β2)[g]”.

Remark 9. In Remark 2, if we replace the condition “σ(α2,β2)[g] <∞” by “τ(α2,β2)[g] <
∞”and other conditions remain same, then Remark 2 remains valid with
“α2(M−1k (Mg(β

−1
2 (exp(β2(r)))λ(α2,β2)[g])))” and “τ(α2,β2)[g]” in place of

“α2(M−1k (Mg(β
−1
2 (exp(β2(r)))ρ(α2,β2)[g])))” and “σ(α2,β2)[g]” respectively where k

is an entire function.

Remark 10. In Theorem 1, if we replace the condition “σ(α2,β2)[g] < ∞” by
“τ (α2,β2)[g] <∞” and other conditions remain same, then Theorem 1 remains valid
with “limit inferior”, “λ(α2,β2)[g]”, and “τ (α2,β2)[g]” in place of “limit superior”,
“ρ(α2,β2)[g]” and “σ(α2,β2)[g]” respectively.

Now we state the following theorem without its proof as it can easily be
carried out in the line of Theorem 1.

Theorem 2. Let f , g, h and k be any four entire functions such that ρ(α1,β1)[f ]h <
∞, λ(α2,β2)[g]k > 0 and τ (α2,β2)[g] <∞ where β1(r) ≤ exp(α2(r)). Then

lim inf
r→+∞

α1(M−1h (Mf(g)(r)))

α2(M−1k (Mg(β
−1
2 (exp(β2(r)))λ(α2,β2)[g])))

≤
τ (α2,β2)[g] · ρ(α1,β1)[f ]h

λ(α2,β2)[g]k
.

Remark 11. We remark that in Theorem 2, if we replace the condition “ρ(α1,β1)[f ]h <
∞ and τ (α2,β2)[g] <∞” by “λ(α1,β1)[f ]h <∞ and τ(α2,β2)[g] <∞”, then Theorem
2 remains valid with “τ(α2,β2)[g]” and “λ(α1,β1)[f ]h” in place of “τ (α2,β2)[g]”, and
“ρ(α1,β1)[f ]h” respectively.

Remark 12. In Remark 11, if we replace the conditions “λ(α2,β2)[g]k > 0 and
λ(α1,β1)[f ]h < ∞” by “ρ(α2,β2)[g]k > 0 and ρ(α1,β1)[f ]h < ∞” respectively, then it
is needed to go the same replacement in right part of the inequality in Remark 11.

Theorem 3. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
ρ(α1,β1)[f ]h < ∞ and σ(α2,β2)[g] < ∞ where β1(r) ≥ exp(α2(r)). Then for any
η > 16

lim inf
r→+∞

α1(M−1h (Mf(g)(ηr)))

α1(M−1h (Mf (β−11 (exp(β2(r)))ρ(α2,β2)[g])))
≥
σ(α2,β2)[g] · λ(α1,β1)[f ]h

ρ(α1,β1)[f ]h
.
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Proof. In view of Lemma 1 and Lemma 2, we get that, for any η > 16 and all
sufficiently large values of r,

α1(M−1h (Mf(g)(ηr))) ≥ α1(M−1h (Mf (Mg(r))))

i.e., α1(M−1h (Mf(g)(ηr))) ≥ (λ(α1,β1)[f ]h − ε)β1(Mg(r)).

Since β1(r) ≥ exp(α2(r)), we get that, from above for all sufficiently large values
of r,

α1(M−1h (Mf(g)(ηr))) ≥ (λ(α1,β1)[f ]h − ε) exp(α2(Mg(r)))

i.e., α1(M−1h (Mf(g)(ηr)))

≥ (λ(α1,β1)[f ]h − ε)(σ(α2,β2)[g]− ε)(exp(β2(r)))ρ(α2,β2)[g]. (4)

Now from the definition of ρ(α1,β1)[f ]h, we obtain that, for all sufficiently large
values of r,

α1(M−1h (Mf (β−11 (exp(β2(r)))ρ(α2,β2)[g]))) ≤ (ρ(α1,β1)[f ]h + ε)(exp(β2(r)))ρ(α2,β2)[g].
(5)

Therefore from (4) and (5), it follows that, for all sufficiently large values of r,

α1(M−1h (Mf(g)(ηr)))

α1(M−1h (Mf (β−11 (exp(β2(r)))ρ(α2,β2)[g])))

≥
(λ(α1,β1)[f ]h − ε)(σ(α2,β2)[g]− ε)(exp(β2(r)))ρ(α2,β2)[g]

(ρ(α1,β1)[f ]h + ε)(exp(β2(r)))ρ(α2,β2)[g]

i.e., lim inf
r→+∞

α1(M−1h (Mf(g)(ηr)))

α1(M−1h (Mf (β−11 (exp(β2(r)))ρ(α2,β2)[g])))
≥
σ(α2,β2)[g] · λ(α1,β1)[f ]h

ρ(α1,β1)[f ]h
.

Thus the theorem is established. �

Remark 13. In Theorem 3, if we replace “σ(α2,β2)[g]” by “σ(α2,β2)[g]”, then The-
orem 3 remains valid with “limit superior” instead of “ limit inferior”.

Remark 14. We remark that in Theorem 3, if we replace the condition “ 0 <
λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < ∞” by “ 0 < λ(α1,β1)[f ]h < ∞ or 0 < ρ(α1,β1)[f ]h <
∞”, then Theorem 3 remains valid with “limit superior” instead of “limit inferior”
as well as right hand side is replaced by “σ(α2,β2)[g]”.

Now we state the following theorem without its proof as it can easily be
carried out in the line of Theorem 3.

Theorem 4. Let f , g, h and k be any four entire functions such that λ(α1,β1)[f ]h >
0, ρ(α2,β2)[g]k < ∞ and σ(α2,β2)[g] < ∞ where β1(r) ≥ exp(α2(r)). Then for any
η > 16

lim inf
r→+∞

α1(M−1h (Mf(g)(ηr)))

α2(M−1k (Mg(β
−1
2 (exp(β2(r)))ρ(α2,β2)[g])))

≥
σ(α2,β2)[g] · λ(α1,β1)[f ]h

ρ(α2,β2)[g]k
.

Remark 15. In Theorem 4, if we replace “σ(α2,β2)[g]” by “σ(α2,β2)[g]”, then The-
orem 4 remains valid with “ limit inferior” replaced by “limit superior”.

Remark 16. We remark that in Theorem 4, if we replace the condition “ ρ(α2,β2)[g]k <
∞” by “λ(α2,β2)[g]k <∞”, then

lim sup
r→+∞

α1(M−1h (Mf(g)(ηr)))

α2(M−1k (Mg(β
−1
2 (exp(β2(r)))ρ(α2,β2)[g])))

≥
σ(α2,β2)[g] · λ(α1,β1)[f ]h

λ(α2,β2)[g]k
. (6)
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Remark 17. In Remark 16, if we replace the conditions “ 0 < λ(α1,β1)[f ]h and
λ(α2,β2)[g]k <∞” by “0 < ρ(α1,β1)[f ]h and ρ(α2,β2)[g]k <∞” respectively, then the
inequality (6) is true if we replace “λ(α1,β1)[f ]h” and “λ(α2,β2)[g]k” in right part of
(6) by “ρ(α1,β1)[f ]h” and “ρ(α2,β2)[g]k” respectively.

Using the concept of generalized weak type (α, β) of an entire function, we
may state the subsequent two theorems without their proofs since those can be
carried out in the line of Theorem 3 and Theorem 4 respectively.

Theorem 5. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
ρ(α1,β1)[f ]h < ∞ and τ (α2,β2)[g] < ∞ where β1(r) ≥ exp(α2(r)). Then for any
η > 16

lim inf
r→+∞

α1(M−1h (Mf(g)(ηr)))

α1(M−1h (Mf (β−11 (exp(β2(r)))λ(α2,β2)[g])))
≥
τ (α2,β2)[g] · λ(α1,β1)[f ]h

ρ(α1,β1)[f ]h
.

Remark 18. In Theorem 5, if we replace “τ (α2,β2)[g]” by “τ(α2,β2)[g]”, then The-
orem 5 remains valid with “limit superior” instead of “limit inferior”.

Remark 19. We remark that in Theorem 5, if we replace the condition “ 0 <
λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < ∞” by “0 < λ(α1,β1)[f ]h < ∞ or 0 < ρ(α1,β1)[f ]h <
∞”, then

lim sup
r→+∞

α1(M−1h (Mf(g)(ηr)))

α1(M−1h (Mf (β−11 (exp(β2(r)))λ(α2,β2)[g])))
≥ τ (α2,β2)[g].

Theorem 6. Let f , g, h and k be any four entire functions such that λ(α1,β1)[f ]h >
0, ρ(α2,β2)[g]k < ∞ and τ (α2,β2)[g] < ∞ where β1(r) ≥ exp(α2(r)). Then for any
η > 16

lim inf
r→+∞

α1(M−1h (Mf(g)(ηr)))

α2(M−1k (Mg(β
−1
2 (exp(β2(r)))λ(α2,β2)[g])))

≥
τ (α2,β2)[g] · λ(α1,β1)[f ]h

ρ(α2,β2)[g]k
.

Remark 20. In Theorem 6, if we replace “τ (α2,β2)[g]” by “τ(α2,β2)[g]”, then The-
orem 6 remains valid with “limit superior” instead of “limit inferior”.

Remark 21. We remark that in Theorem 6, if we replace the condition “ 0 <
λ(α1,β1)[f ]h” by “ 0 < ρ(α1,β1)[f ]h”, then

lim sup
r→+∞

α1(M−1h (Mf(g)(ηr)))

α2(M−1k (Mg(β
−1
2 (exp(β2(r)))λ(α2,β2)[g])))

≥
τ (α2,β2)[g] · ρ(α1,β1)[f ]h

ρ(α2,β2)[g]k
. (7)

Remark 22. In Remark 21, if we replace the conditions “ 0 < ρ(α1,β1)[f ]h and
0 < ρ(α2,β2)[g]k” by “0 < λ(α1,β1)[f ]h and 0 < λ(α2,β2)[g]k”, then is need to go the
same replacement in right part of (7).

Theorem 7. Let f , g and h be any three entire functions such that 0 < ρ(α1,β1)[f ]h <
∞, ρ(α1,β1)[f ]h = ρ(α2,β2)[g], σ(α2,β2)[g] < ∞ and 0 < σ(α1,β1)[f ]h < ∞ where
β1(r) ≤ exp(α2(r)). Then

lim inf
r→+∞

α1(M−1h (Mf(g)(r)))

exp(α1(M−1h (Mf (β−11 (β2(r))))))
≤
ρ(α1,β1)[f ]h · σ(α2,β2)[g]

σ(α1,β1)[f ]h
. (8)

Proof. In view of the condition ρ(α1,β1)[f ]h = ρ(α2,β2)[g], we obtain that, from (1)
for all sufficiently large values of r,

α1(M−1h (Mf(g)(r))) ≤ (ρ(α1,β1)[f ]h + ε)(σ(α2,β2)[g] + ε)(exp(β2(r)))ρ(α1,β1)[f ]h . (9)
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Now using the definition of σ(α1,β1)[f ]h, we get from above that, for a sequence
of values of r tending to infinity,

exp(α1(M−1h (Mf (β−11 (β2(r)))))) ≥ (σ(α1,β1)[f ]h − ε)(exp(β2(r)))ρ(α1,β1)[f ]h . (10)

Now from (9) and (10), it follows that, for a sequence of values of r tending to
infinity,

α1(M−1h (Mf(g)(r)))

exp(α1(M−1h (Mf (β−11 (β2(r))))))

≤
(ρ(α1,β1)[f ]h + ε)(σ(α2,β2)[g] + ε)(exp(β2(r)))ρ(α1,β1)[f ]h

(σ(α1,β1)[f ]h − ε)(exp(β2(r)))ρ(α1,β1)[f ]h
.

Since ε(> 0) is arbitrary, it follows from above that

lim inf
r→+∞

α1(M−1h (Mf(g)(r)))

exp(α1(M−1h (Mf (β−11 (β2(r))))))
≤
ρ(α1,β1)[f ]h · σ(α2,β2)[g]

σ(α1,β1)[f ]h
.

�

Remark 23. In Theorem 7, if we replace the conditions “ σ(α2,β2)[g] < ∞” and
“0 < σ(α1,β1)[f ]h < ∞” by “σ(α2,β2)[g] < ∞” and “0 < σ(α1,β1)[f ]h < ∞”, then is
need to go the same replacement in right part of (8).

Remark 24. If we replace the conditions 0 < ρ(α1,β1)[f ]h <∞ and 0 < σ(α1,β1)[f ]h <
∞ of Theorem 7 by 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < ∞ and 0 < σ(α1,β1)[f ]h < ∞
respectively, then Theorem 7 remains valid with “λ(α1,β1)[f ]h”, and “σ(α1,β1)[f ]h”
in place of “ρ(α1,β1)[f ]h” and “σ(α1,β1)[f ]h” respectively.

Remark 25. If we replace the condition 0 < σ(α1,β1)[f ]h < ∞ of Theorem 7 by
0 < σ(α1,β1)[f ]h < ∞, then Theorem 7 remains valid with “limit superior” and
“σ(α1,β1)[f ]h” instead of “limit inferior” and “σ(α1,β1)[f ]h”.

Remark 26. In Theorem 7, if we replace the condition “ρ(α1,β1)[f ]h = ρ(α2,β2)[g],
σ(α2,β2)[g] < ∞” and “0 < σ(α1,β1)[f ]h < ∞” by “λ(α1,β1)[f ]h = λ(α2,β2)[g],
τ(α2,β2)[g] < ∞” and “0 < τ(α1,β1)[f ]h < ∞” and other conditions remain same,
then Theorem 7 remains valid with “τ(α2,β2)[g]” and “τ(α1,β1)[f ]h” in place of
“σ(α2,β2)[g]” and “σ(α1,β1)[f ]h” respectively.

Remark 27. In Theorem 7, if we replace the condition “ρ(α1,β1)[f ]h = ρ(α2,β2)[g],
σ(α2,β2)[g] < ∞” and “0 < σ(α1,β1)[f ]h < ∞” by “λ(α1,β1)[f ]h = λ(α2,β2)[g],
τ (α2,β2)[g] < ∞” and “0 < τ (α1,β1)[f ]h < ∞” and other conditions remain same,
then Theorem 7 remains valid with “τ (α2,β2)[g]” and “τ (α1,β1)[f ]h” in place of
“σ(α2,β2)[g]” and “σ(α1,β1)[f ]h” respectively.

Remark 28. If we replace the conditions 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h <∞ and
0 < τ(α1,β1)[f ]h <∞ of Remark 26 by 0 < λ(α1,β1)[f ]h <∞ and 0 < τ (α1,β1)[f ]h <
∞ respectively, then Remark 26 remains valid with “λ(α1,β1)[f ]h”, “τ(α2,β2)[g]”
and “τ (α1,β1)[f ]h” in place of “ρ(α1,β1)[f ]h”, “σ(α2,β2)[g]” and “σ(α1,β1)[f ]h” re-
spectively.

Remark 29. If we replace the condition 0 < τ(α1,β1)[f ]h < ∞ of Remark 26 by
0 < τ (α1,β1)[f ]h < ∞, then Remark 26 remains valid with “limit superior” instead
of “limit inferior”.
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Remark 30. If we replace the conditions 0 < ρ(α1,β1)[f ]h < ∞, ρ(α1,β1)[f ]h =
ρ(α2,β2)[g] and 0 < σ(α1,β1)[f ]h <∞ of Theorem 7 by 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h <
∞, λ(α1,β1)[f ]h = ρ(α2,β2)[g] and 0 < τ(α1,β1)[f ]h <∞ respectively, then Theorem 7
remains valid with “τ(α1,β1)[f ]h” in place of “σ(α1,β1)[f ]h”.

Remark 31. If we replace the condition 0 < τ(α1,β1)[f ]h < ∞ of Remark 30 by
0 < τ (α1,β1)[f ]h < ∞, then Remark 30 remains valid with “limit superior” instead
of “limit inferior”.

Remark 32. In Remark 30, if we replace the conditions “ σ(α2,β2)[g] < ∞” and
“0 < τ(α1,β1)[f ]h < ∞” by “σ(α2,β2)[g] < ∞” and “0 < τ (α1,β1)[f ]h < ∞”, then
the conclusion of Theorem 7 remains valid with “σ(α2,β2)[g]” and “τ (α1,β1)[f ]h” in
place of “σ(α2,β2)[g]” and “σ(α1,β1)[f ]h” respectively.

Remark 33. If we replace the conditions 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h <∞ and
0 < τ(α1,β1)[f ]h <∞ of Remark 30 by 0 < λ(α1,β1)[f ]h <∞ and 0 < τ (α1,β1)[f ]h <
∞ respectively, then the conclusion of Theorem 7 remains valid with “λ(α1,β1)[f ]h”
and “τ (α1,β1)[f ]h” in place of “ρ(α1,β1)[f ]h” and “σ(α1,β1)[f ]h” respectively.

Remark 34. If we replace the conditions ρ(α1,β1)[f ]h = ρ(α2,β2)[g] and σ(α2,β2)[g] <
∞ of Theorem 7 by ρ(α1,β1)[f ]h = λ(α2,β2)[g] and τ(α2,β2)[g] <∞ respectively, then
Theorem 7 remains valid with “τ(α2,β2)[g]” in place of “σ(α2,β2)[g]”.

Remark 35. If we replace the condition 0 < σ(α1,β1)[f ]h < ∞ of Remark 34 by
0 < σ(α1,β1)[f ]h < ∞, then the conclusion of Theorem 7 remains valid with “limit
superior”, “σ(α1,β1)[f ]h” and “τ(α2,β2)[g]” in place of “limit inferior”, “σ(α1,β1)[f ]h”
and “σ(α2,β2)[g]” respectively.

Remark 36. If we replace the conditions 0 < ρ(α1,β1)[f ]h <∞ and 0 < σ(α1,β1)[f ]h <
∞ of Remark 34 by 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < ∞ and 0 < σ(α1,β1)[f ]h < ∞
respectively, then the conclusion of Theorem 7 remains valid with “λ(α1,β1)[f ]h”,
“τ(α2,β2)[g] < ∞” and “σ(α1,β1)[f ]h” in place of “ρ(α1,β1)[f ]h”, “σ(α2,β2)[g]” and
“σ(α1,β1)[f ]h”.

Remark 37. If we replace the conditions ρ(α1,β1)[f ]h = ρ(α2,β2)[g], σ(α2,β2)[g] <∞
and 0 < σ(α1,β1)[f ]h < ∞ of Theorem 7 by ρ(α1,β1)[f ]h = λ(α2,β2)[g], τ (α2,β2)[g] <
∞ and 0 < σ(α1,β1)[f ]h < ∞ respectively, then Theorem 7 remains valid with
“τ (α2,β2)[g] <∞” and “σ(α1,β1)[f ]h” in place of “σ(α2,β2)[g]” and “σ(α1,β1)[f ]h”.

Theorem 8. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
ρ(α1,β1)[f ]h < ∞, ρ(α1,β1)[f ]h = ρ(α2,β2)[g], σ(α2,β2)[g] < ∞ and 0 < σ(α1,β1)[f ]h <
∞ where β1(r) ≥ exp(α2(r)). Then for any η > 16

lim sup
r→+∞

α1(M−1h (Mf(g)(ηr)))

exp(α1(M−1h (Mf (β−11 (β2(r))))))
≥
λ(α1,β1)[f ]h · σ(α2,β2)[g]

σ(α1,β1)[f ]h
. (11)

Proof. In view of the condition ρ(α1,β1)[f ]h = ρ(α2,β2)[g], we obtain from (4) that,
for all sufficiently large values of r,

α1(M−1h (Mf(g)(ηr)))

≥ (λ(α1,β1)[f ]h − ε)(σ(α2,β2)[g]− ε)(exp(β2(r)))ρ(α1,β1)[f ]h . (12)

Further in view of definition of σ(α1,β1)[f ]h, we get that, for a sequence of values
of r tending to infinity,

exp(α1(M−1h (Mf (β−11 (β2(r)))))) ≥ (σ(α1,β1)[f ]h + ε)(exp(β2(r)))ρ(α1,β1)[f ]h . (13)
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Now from (12) and (13), it follows that for a sequence of values of r tending
to infinity,

α1(M−1h (Mf(g)(ηr)))

exp(α1(M−1h (Mf (β−11 (β2(r))))))

≥
(λ(α1,β1)[f ]h − ε)(σ(α2,β2)[g]− ε)(exp(β2(r)))ρ(α1,β1)[f ]h

(σ(α1,β1)[f ]h + ε)(exp(β2(r)))ρ(α1,β1)[f ]h
.

Since ε(> 0) is arbitrary, it follows from above that

lim sup
r→+∞

α1(M−1h (Mf(g)(ηr)))

exp(α1(M−1h (Mf (β−11 (β2(r))))))
≥
λ(α1,β1)[f ]h · σ(α2,β2)[g]

σ(α1,β1)[f ]h
.

�

Remark 38. In Theorem 8, if we replace the conditions “ σ(α2,β2)[g] < ∞” and
“0 < σ(α1,β1)[f ]h < ∞” by “σ(α2,β2)[g] < ∞” and “0 < σ(α1,β1)[f ]h < ∞”, then is
need to go the same replacement in right part of (11).

Remark 39. If we replace the conditions 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h <∞ and
0 < σ(α1,β1)[f ]h <∞ of Theorem 8 by 0 < ρ(α1,β1)[f ]h <∞ and 0 < σ(α1,β1)[f ]h <
∞ respectively, then Theorem 8 remains valid with “ρ(α1,β1)[f ]h” and “σ(α1,β1)[f ]h”
in place of “λ(α1,β1)[f ]h” and “σ(α1,β1)[f ]h”. Further if we replace the condition
0 < σ(α1,β1)[f ]h < ∞ of Theorem 8 by 0 < σ(α1,β1)[f ]h < ∞, then the conclusion
of Theorem 8 remains valid with “limit inferior” replaced by “limit superior”.

Remark 40. If we replace the conditions 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < ∞,
ρ(α1,β1)[f ]h = ρ(α2,β2)[g], σ(α2,β2)[g] < ∞ and 0 < σ(α1,β1)[f ]h < ∞ of Theo-
rem 8 by 0 < λ(α1,β1)[f ]h < ∞, λ(α1,β1)[f ]h = λ(α2,β2)[g], τ (α2,β2)[g] < ∞ and
0 < τ (α1,β1)[f ]h <∞ respectively and other conditions remain same, then the con-
clusion of Theorem 8 remains valid with “τ (α2,β2)[g]” and “τ (α1,β1)[f ]h” in place of
“σ(α2,β2)[g]” and “σ(α1,β1)[f ]h” respectively.

Remark 41. In Remark 40, if we replace the conditions “ τ (α2,β2)[g] < ∞” and
“0 < τ (α1,β1)[f ]h <∞” by “τ(α2,β2)[g] <∞” and “0 < τ(α1,β1)[f ]h <∞”, then Re-
mark 40 remains valid with “τ(α2,β2)[g]” and “τ(α1,β1)[f ]h” in place of “τ (α2,β2)[g]”
and “τ (α1,β1)[f ]h” respectively.

Remark 42. If we replace the conditions 0 < λ(α1,β1)[f ]h <∞ and 0 < τ (α1,β1)[f ]h <
∞ of Remark 40 by 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < ∞ and 0 < τ(α1,β1)[f ]h < ∞
respectively, then the conclusion of Theorem 8 remains valid with “ρ(α1,β1)[f ]h”,
“τ (α2,β2)[g]” and “τ(α1,β1)[f ]h” in place of “λ(α1,β1)[f ]h”, “σ(α2,β2)[g]” and “σ(α1,β1)[f ]h”
respectively.

Remark 43. If we replace the condition 0 < τ (α1,β1)[f ]h < ∞ of Remark 40 by
0 < τ(α1,β1)[f ]h < ∞, then the conclusion of Theorem 8 remains valid with “limit
inferior”, “τ (α2,β2)[g]” and “τ(α1,β1)[f ]h” in place of “limit superior”, “σ(α2,β2)[g]”
and “σ(α1,β1)[f ]h” respectively.

Remark 44. If we replace the conditions 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < ∞,
ρ(α1,β1)[f ]h = ρ(α2,β2)[g] and 0 < σ(α1,β1)[f ]h <∞ of Theorem 8 by 0 < λ(α1,β1)[f ]h <
∞, λ(α1,β1)[f ]h = ρ(α2,β2)[g] and 0 < τ (α1,β1)[f ]h < ∞ respectively and other con-
ditions remain same, then Theorem 8 remains valid with “τ (α1,β1)[f ]h” in place of
“σ(α1,β1)[f ]h”.
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Remark 45. In Remark 44, if we replace the conditions “ σ(α2,β2)[g] < ∞” and
“0 < τ (α1,β1)[f ]h < ∞” by “σ(α2,β2)[g] < ∞” and “0 < τ(α1,β1)[f ]h < ∞”, then
the conclusion of Theorem 8 remains valid with “σ(α2,β2)[g]” and “τ(α1,β1)[f ]h” in
place of “σ(α2,β2)[g]” and “σ(α1,β1)[f ]h” respectively.

Remark 46. If we replace the conditions 0 < λ(α1,β1)[f ]h <∞ and 0 < τ (α1,β1)[f ]h <
∞ of Remak 44 by 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < ∞ and 0 < τ(α1,β1)[f ]h < ∞
respectively, then the conclusion of Theorem 8 remains valid with “ρ(α1,β1)[f ]h” and
“τ(α1,β1)[f ]h” in place of “λ(α1,β1)[f ]h” and “σ(α1,β1)[f ]h” respectively.

Remark 47. If we replace the condition 0 < τ (α1,β1)[f ]h < ∞ of Remak 44 by
0 < τ(α1,β1)[f ]h < ∞, then the conclusion of Theorem 8 remains valid with “limit
inferior” and “τ(α1,β1)[f ]h” in place of “limit superior” and “σ(α1,β1)[f ]h” respec-
tively.

Remark 48. If we replace the conditions ρ(α1,β1)[f ]h = ρ(α2,β2)[g] and σ(α2,β2)[g] <
∞ of Theorem 8 by ρ(α1,β1)[f ]h = λ(α2,β2)[g] and τ (α2,β2)[g] < ∞ respectively and
other conditions remain same, then Theorem 8 remains valid with “τ (α2,β2)[g]” in
place of “σ(α2,β2)[g]”.

Remark 49. In Remark 48, if we replace the conditions “τ (α2,β2)[g] < ∞” and
“0 < σ(α1,β1)[f ]h <∞” by “τ(α2,β2)[g] <∞” and “0 < σ(α1,β1)[f ]h <∞”, then Re-
mark 48 remains valid with “τ(α2,β2)[g]” and “σ(α1,β1)[f ]h” in place of “τ (α2,β2)[g]”
and “σ(α1,β1)[f ]h” respectively.

Remark 50. If we replace the conditions 0 < λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h <∞ and
0 < σ(α1,β1)[f ]h <∞ of Remark 48 by 0 < ρ(α1,β1)[f ]h <∞ and 0 < σ(α1,β1)[f ]h <
∞ respectively, then Remark 48 remains valid with “ρ(α1,β1)[f ]h” and “σ(α1,β1)[f ]h”
in place of “λ(α1,β1)[f ]h” and “σ(α1,β1)[f ]h” respectively.

Remark 51. If we replace the condition 0 < σ(α1,β1)[f ]h < ∞ of Remark 48 by
0 < σ(α1,β1)[f ]h < ∞, then the conclusion of Theorem 8 remains valid with “limit
inferior”, “τ (α2,β2)[g]” and “σ(α1,β1)[f ]h” in place of “limit superior”, “σ(α2,β2)[g]”
and “σ(α1,β1)[f ]h” respectively.
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