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ANALYSIS ON STABILITY OF FUZZY FRACTIONAL DELAYED

PREDATOR PREY SYSTEM

S. PRIYADHARSINI

Abstract. In this paper a fuzzy fractional delay predator prey (FFDPP)
system is investigated by adopting fuzzy parameter in delay predator-prey

system. Based on the concept of eigenvalue, the linear stability of FFDPP

and steady state are discussed. Here, certain conditions were used to find the
trivial steady state for all integer value of delays. Meanwhile same conditions

assures the locally asymptotic stability of non-trivial steady state for particular
values of delay. Sufficient conditions are presented to ensure the stability of

FFDPP system. Further Numerical steady state fuzzy numbers are used to

verify the results.

1. Introduction

Fractional calculus has started to attract increasing attention of many authors
because of its applications in various fields in recent years. Mainly Kilbas[17] and
Podulbny [21] studied various fractional differential systems. In the 18th century,
Laplace and Condorcet were introduced Delay differential equations, also known as
difference differential equations. The basic concepts concerning stability of systems
described by equations was developed by Pontryagin in 1942. Delay differential
equations are a type of differential equation where the time derivatives at the current
time depend on the solution, and possibly its derivatives, at previous times.

In [1] Abbas studied the existence results for the fractional system. In 2014,
Eloe and Neugebauer [13] explained the existence of a fractional boundary value
problem by using eigenvalues. Also, in [5] Ammi studied the existence of fractional
functional differential equations. Many works for the solution of fractional system
can be seen in [2, 16, 22, 25, 27] which includes fixed point analysis and Lyapunov
inequality and etc. Ahmad et.al [3], Lin et.al [18] and Priyadharsini [24] analyzed
the asymptotic behavior of a fractional integro-differential equations. In 2010, El-
sayed et.al [12] showed a stability for a fractional order system with delays. In
[6] Asl et.al analyzed the linear delay fractional dynamical system and Bhat [8]
investigated the controllability of a delay system. In [11] El. Sayed studied the
stability of fractional mackey glass equation with chos control. There are many

2010 Mathematics Subject Classification. 93B05, 34A08, 33E12.
Key words and phrases. Asymptotic stability, Fractional delay systems, fuzzy delay equation,

predator prey model.
Submitted April 25, 2018. Revised May 26, 2019.

151



152 S. PRIYADHARSINI JFCA-2020/11(1)

contribution from Forde [14] and Ibrahim [15], who studied different fractional
delay systems.

In the literature, Predator-prey model is one of the most popular in mathematical
ecology, which is used to represent the basis of models in the analysis of population
dynamics. This model have been studied heavily during last four decades which
includes the contributions of Bellman [7] and Lotka [19]. In real life, most of us
accepted the fact of delayed uncertainty, which is very important study in most
applications. Chanjin et. al [9] studied the two delayed predator prey model and
Elttreby [10] investigated the functional order predator prey model.

The area of fuzzy is a very broad field of study. It is used to model the exact
phenomena under the condition uncertainty. The concept of fuzzy set and system
was introduced by Zadeh [31] and its development has been growing rapidly to var-
ious situation of theory and application including the stability theory of differential
equations with uncertainty. Stefaninia et. al [28] introduced the parametric repre-
sentation of fuzzy number. In [4] fractional differential equation with fuzzy initial
condition is basically solved by Arshad and Lupulescu. Maan et.al [20] studied the
steady state stability of fuzzy delay predator prey system. In [23, 26] includes the
method of finding solution of fuzzy differential equations. It may be noted that
Toaha [29] investigated the Stability of Harvesting model with delay and Yuan [30]
studied the numerical solution of stability of brusselator chemical reaction system.

This paper is outlined as follows: In section 2, some basic definitions and results
were given. In section 3, fractional delay predator-prey system is analyzed generally.
Section 4 includes the numerical examples in order to provide the effectiveness of
the proposed theory.

2. Preliminaries

Basic definitions regarding the fractional derivatives, fuzzy number,steady states
and characteristic equations are presented in this section.

Definition 1. The Riemann-Liouville fractional integral operator of order q > 0
of a function x ∈ L1(R+) is defined by

t0I
q
t f(t) =

1

Γ(α)

∫ t

t0

(t− s)q−1f(s)ds, (1)

where Γ(.) is the Euler’s Gamma function.

Definition 2. The Riemann-Liouville fractional derivative of order p > 0, n− 1 <
p < n, n ∈ N, is defined as

t0D
pf(t) =

1

Γ(n− p)

(
d

dt

)n ∫ t

0

(t− s)n−α−1f(s)ds, (2)

where Dn is the ordinary differential operator and the function f(t) has absolutely
continuous derivative up to order (n− 1).

Definition 3. The Caputo fractional derivative of order p > 0, n− 1 < p < n, n ∈
N, is defined as

C
t0D

pf(t) =
1

Γ(n− p)

∫ t

0

(t− s)n−p−1fn(s)ds, (3)

where the function f(t) has absolutely continuous derivative up to order (n− 1).
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Definition 4. A fuzzy number is a function such as u : R → [0, 1] satisfying the
following properties:

(1) u is normal, i.e ∃x0 ∈ R with u(x0) = 1
(2) u is a convex fuzzy set i.e u (λ x + (1- λ)y)≥ minu {(x), u(y)} , ∀ x, y ∈

R, λ ∈[0, 1].
(3) u is upper semi-continuous on R.

(4) {x ∈ R : u(x) > 0} is compact where A denotes the closure of A.

Definition 5. A fuzzy number u is completely determined by any pair u = (u, u)
of functions u(α), u(α) : [0, 1]→ R satisfying the three conditions:

(1) u(α), u(α) is a bounded, monotonic, (nondecreasing, non increasing) left-
continuous function for all α ∈ (0, 1] and right-continuous for α = 0.

(2) For all α ∈ (0, 1] we have: u(α) ≤ u(α).
For every u = (u, u), v = (v, v) and k > 0, (u+ v)(α) = u(α) + v(α),

(u+ v)(α) = u(α) + v(α), (ku)(α) = ku(α), (ku)(α)) = ku(α)

Fuzzy sets is a mapping from a universal set into [0, 1]. Conversely, every function
µ : X → [0, 1] can be represented as a fuzzy set [31] .

Definition 6. We can define a set F1 = {x∈ <, is about a2} with triangular
membership function as below

µF1(x) =


x−a1
a2−a1 , x ∈ [a1, a2)

1 x = a2
−x+a3
a3−a2 x ∈ (a2, a3]

0 otherwise

So the Fuzzy set F can be written as any ordinary function F = (x, µF (x)) : x ∈ X.

Fuzzy Fractional Delay System. Consider the linear fractional fuzzy delay sys-
tem as follows:

C
t0D

p
t xα(t) = Aαxα(t) +Bαxα(t− τ) (4)

C
t0D

p
t xα(t) = Aαxα(t) +Bαxα(t− τ), 0 ≤ α ≤ 1 (5)

xα(t) = xα0

xα(t) = xα0

Suppose (aij)α = [(aij)
−
α , (aij)

+
α ], Aα = [A−

α , A
+
α ] where A−

α = [(aij)
−
α ]n×n, A+

α =
[(aij)

+
α ]n×n and (bij)α = [(bij)

−
α , (bij)

+
α ] ,Bα = [B−

α , B
+
α ] where B−

α = [(bij)
−
α ]n×n,

B+
α = [(bij)

+
α ]n×n.

Let introduce the following definitions :

Definition 7. Let A(µ, α) = [aij(µ, α)]n×n = (1−µ)A−
α+µA+

α , B(µ, α) = [bij(µ, α)]n×n =
(1 − µ)B−

α + µB+
α , for µ ∈ [0, 1]. The solution of (4-5) is (xα(t), xα(t)) is also a

solution of the problem given below.
C
t0D

p
t xα(t) = ∪1µ=0C(µ, α)xα(t) + ∪1µ=0D(µ, α)xα(t− τ),

C
t0D

p
t xα(t) = ∪1µ=0C(µ, α)xα(t) + ∪1µ=0D(µ, α)xα(t− τ),

xα(t) = xα0
xα(t) = xα0

The elements of the matrices C and D are determined from of A(µ, α) and B(µ, α)as
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follows:

cij =

{
eaij(µ, α), aij ≥ 0
gaij(µ, α), aij < 0

and

dij =

{
ebij(µ, α), bij ≥ 0
gbij(µ, α), bij < 0

where e is the identity operation and g corresponds to negative value in < and ∀
z,w∈ <,
e:(z,w)→(z,w),
g:(z,w)→(w,z).

3. Fractional Fuzzy Delay Predator-Prey System

Very recently, Normah Mann et al. [20] investigated the stability of ordinary
fuzzy delay predator prey system. Motivated by the above research paper, this
paper will deal with the model of the form

C
t0D

p
t x(t) = x(t)(1− x(t))− dx(t) + be−cτx(t− τ), 0 ≤ p ≤ 1 (6)

Here b(x) is a continuous, positive, decreasing function, i.e., the per capita growth
rate of the population decreased with increase in population levels. The delay in
this instance can indicates a gestation or maturation period, so the number of indi-
viduals entering the population depends on the levels of the population at a previous
instance of time. The function d(x) is a nondecreasing and positive function. This
represents the per capita death rate. Here we concentrate on fuzzification, steady
states and stability.

3.1. Linear Fuzzification. Let fuzzify the linear part of the system (6) by triangu-
lar fuzzy number, which is symmetric and let x(t)is a non negative fuzzy functions.
Let

1̃ = (1− (1− α)σ1, 1 + (1− α)σ1)

d̃ = (d− (1− α)σ1, d+ (1− α)σ1)

By using Definition 5 system (6) can be written as follows:[
C
t0D

p
t xα(t)

C
t0D

p
t xα(t)

]
=

[
a1 − a2 0

0 a1 − a2

] [
xα
xα

]
+

[
−x2α(t) + be−cτxα(t− τ)
−x2α(t) + be−cτxα(t− τ)

]
(7)

where

a1 = (1− µ)(1− (1− α)σ1) + µ(1 + (1− α)σ1),

a2 = (1− µ)(d− (1− α)σ1) + µ(d+ (1− α)σ1),

0 ≤ µ ≤ 1 and 0 ≤ p ≤ 1
Then (7) is known as fuzzy fractional delay predator-prey (FDPP) system.
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3.2. Steady States. To find the steady states of the system (7), assume that the
constant (x∗, x∗)α, is a solution and our aim is to determine the values of these
constant. The equations for determining steady states are

xα((a1 − a2)− xα + be−cτ ) = 0 (8)

xα((a1 − a2)− xα + be−cτ ) = 0 (9)

If xα = 0 and xα = 0 then the first and the second equations of (8-9) are satisfied.
Here (0,0) α is trivial steady state.
If xα and xα are not equal zero then the steady state equations are:

(a1 − a2)− xα + be−cτ = 0 (10)

(a1 − a2)− xα + be−cτ = 0 (11)

where a1 = (1 − (1 − α)σ1) and a1 = 1 + (1 − α)σ1) So, if the equation (10-11)
are satisfied, then the system (7) has a nontrivial steady state(x∗, x∗)α. Thus, the
system (7) has the steady state solutions such that ;(0, 0)α and the nontrivial steady
state (x∗, x∗)α

3.3. Linear Stability. The linearization of the fuzzy system (7) about the trivial
steady state (0, 0)α is[
C
t0D

p
t xα(t)

C
t0D

p
t xα(t)

]
=

[
a1 − a2 0

0 a1 − a2

] [
xα
xα

]
+

[
0 0
0 0

] [
xα(t)
xα(t)

]
where xtα = xα(t− τ). The characteristic equation is obtained as

λ = a1 − a2 (12)

If a1 < a2 → stable, a1 > a2 → un stable.
Proposition 1

A trivial steady state (0, 0)α with characteristic equation (12) is stable or unstable
using some condition for all value delay.
Similarly, for the non trivial steady state (a1 − a2, a1 − a2)
consider (a1 − a2, a1 − a2)=(a, a)[

C
t0D

p
t xα(t)

C
t0D

p
t xα(t)

]
=

[
a− 2a 0

0 a− 2a

] [
xα
xα

]
+

[
be−cτ 0

0 be−cτ

] [
xα(t)
xα(t)

]
(13)

The characteristic equation for (13) is

(λ2 +Aλ+B) + e−(c+λ)τ (Cλ+D) + e−2(c+λ)t(E) = 0 (14)

where
A = −2(a1 − a2) + 2(a+ a)
B = (a1 − a2)2 + 4aa− 2(a1 − a2)(a+ a)
C = −2b
D = 2b(a1 − a2 − (a+ a))
E = b2

The steady state is stable in the absence of delay if the roots of λ2 + (A + C)λ +
(B +D + E) = 0 have negative real parts. This occurs if and only if

(A+ C) > 0, (B +D + E) > 0 (15)

The steady state (a, a) is stable in the absence of delay if and only if (15) are satis-
fied. Now for increasing τ, τ 6= 0, we first assume that the root of the characteristic
equation (14) is λ = iµ and µ > 0. Substitute λ = iµ in (14), we obtain,
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(−µ2+Aiµ+B)+e−Cτ (cos(µτ)−isin(µτ))(Ciµ+D)+e−2Cτ (cos(2µτ)−isin(2µτ)) =
0

Separating the real and imaginary parts, we get

µ2 −B = e−Cτ (Dcos(µτ) + Cµsin(µτ)) + e−2cτ (cos(2µτ)),

Aµ = e−Cτ (Dsin(µτ)− Cµcos(µτ)) + e−2cτ (sin(2µτ)).

Squaring and adding both sides gives the polynomial of degree four as follows:

(µ2 −B)2 + (Aµ)2 =(e−Cτ (Dcos(µτ) + Cµsin(µτ)) + e−2cτ (cos(2µτ)))2

+ (e−Cτ (Dsin(µτ)− Cµcos(µτ)) + e−2cτ (sin(2µτ)))2 (16)

As τ →∞, the right hand side of (16)→0 and let γ = µ2 the equation (16) can be
written in terms of γ as follows:

S(γ) = γ2 + (A2 − 2B)γ +B2 = 0 (17)

This can be simplified by substituting the known values of A,and B. For the γ
coefficient, we have

A2 − 2B = (−2(a1 − a2) + 2(a+ a))2 − 2(a1 − a2)2 + 4aa− 2(a1 − a2)(a+ a)

= (2(a1 − a2))2 − 2(a1 − a2)2 = 2(a1 − a2)2 ≥ 0 (18)

which is always positive. Equation (18) are positive coefficient if the right hand
side of (18) are greater than zero for certain value of α. Finally, the constant term
B2 is always positive.

Therefore all the coefficients of the polynomial (17) are positive and it has no
positive real roots. In other words iµ is not a root of the characteristic equation
(14) for increasing delay. Hence, the system (7) cannot lead to a bifurcation. It
means that the non trivial steady state is locally asymptotically stable for all values
of delay . We conclude the following proposition:

Proposition 2
A non-trivial steady state (a, a) with characteristic equation (14) is locally asymp-

totically stable for all values of delay if and only if

• (A+ C) > 0, (B +D + E) > 0, where A,B,C,D,E are previously given.
• (2(a1 − a2)− 4d+ 4)2 + 2((a1 − a2)2 − 4a+ 4ad+ 4[(1− (1− α)σ1)− (d−

(1− α)σ2)][(1 + (1− α)σ1)− (d+ (1− α)σ2)]) > 0 for certain value of α

4. Numerical Examples

Example 4.1. Consider the problem without (7) fuzzy and an ordinary system.
Let τ = 0. That is the given system will turn into an ordinary system with constant
co-efficients.

C
t0D

p
t x(t) = x(t)(1− x(t))− dx(t) + b ∗ x(t) (19)

Case 1: If we fix the parameter as b=0.1, d=1.4 with the initial conditions
x(0) = 1. Then it is possible to analyze the give system by using the concept
of characteristic polynomial and eigen values. For this problem eigen value is -0.3,
which has the negative real part,also,the non negative term satisfies the condition
f(t, 0) = 0 For details see [20]. Hence the given system is asymptotically stable.
See Fig 1
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Case 2: If we fix the parameter as b=0.1, d=0.4 with the initial conditions x(0) =
1. Same way one may find an eigen value as 0.7, which does not the negative real
part, hence it is not asymptotically stable. See Fig 2
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Example 4.2. Consider the model (7) with α = 1 and τ = 1.

Since α = 1, the given system will turn into a ordinary system with delay. Lets
fix the parameter as b=0.1, c=0.5, d=0.4, with the initial condition(xα, xα) =
(m1 − (1− α)σ4,m1 + (1− α)σ5) with m1 = 2, σ4 = 0.2, σ5 = 0.2, . For α = 1 and
τ = 1,the non-trivial steady state of the model is given by (0.6607,0.6607)
Straight forward computation gives A = 1.4428, B = 0.5204, C = −0.2000, D =
−0.1443, E = 0.0100, A + C = 1.2428 ≥ 0, B + D + E = 0.3861 ≥ 0. Eigen values
are given by −0.6276 and −0.6152. It may be noted that eigenvalues satisfies the
necessary condition, that is negativity of a real part. Hence the given system is
asymptotically stable, one can see in the Fig 3.
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Fig.3

Example 4.3. Consider the model (7) with α = 1/2 and τ = 1.

Since α 6= 1, we may fuzzify the given system. Lets fix the parameter as b=0.1,
c=0.5, d=0.4, σ1 = 1.4, σ2 = 0.1, σ3 = 0.4, σ4 = −1.0, σ5 = 2.0, µ=1 with the
initial conditions (xα, xα) = (m1 − (1− α)σ4,m1 + (1− α)σ5) where m1 = 1. For
α = 1/2 and τ = 1,the non-trivial steady state of the model is (0.6226,2.1652).
Straight forward computation gives A = 1.4756, B = 1.8353, C = −0.2000, D =
0.1476, E = 0.0100, A+ C = 1.2756 ≥ 0, B +D +E = 1.9930 ≥ 0. Eigenvalues are
given by −0.6378± 1.2594i. It may be noted that eigenvalues has the negative real
part. Hence the given system is asymptotically stable, one can see in the Fig 4.
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Example 4.4. Consider the model (7) with α = 0.8 and τ = 5.

Since α 6= 1, we may fuzzify the given system. Lets fix the parameter as b=-0.01,
c=0.5, d=0.4, σ1 = 1.4, σ2 = 0.1, σ3 = 0.4, σ4 = 5.0, σ5 = −5.0, µ=1 with the
initial conditions (xα, xα) = (m1 − (1− α)σ4,m1 + (1− α)σ5) where m1 = 3. For
α = 0.8 and τ = 5,the non-trivial steady state of the model is (1.0854,1.7025).
Straight forward computation gives A = 2.2558, B = 0.8913, C = 0.0200, D =
0.0226, E = 1.0000e−004, A+C = 2.2758 ≥ 0, B+D+E = 0.9140 ≥ 0. Furthrmore,
eignvalues are −1.7552 and −0.5206. Hence the given system is asymptotically
stable, one can see in the Fig 5.
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5. Conclusion

The main part of this work deals with stability criteria for time-delay systems.
A system of fuzzy delay predator-prey (FDPP) equations analyzed by using fuzzy
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number. The FDPP system has trivial, and nontrivial steady states. In this case
the characteristic equation is of degree 2. The fuzzy system proposed leads to
the difficulty of locating the roots of the characteristic equation since the system
becomes larger compare with the crisp system. Generally, the situation is more
complex to arrive at general conditions on the coefficients of characteristic equation
such that it describes a locally asymptotically stable for non trivial steady state for
all values of delay, and the trivial steady state is stable or unstable using certain
condition. Examples are given to illustrate the efficiency of the proposed method.
In that the given system without delay is compared with different values of delay,
also, different values of α are considered, especially when α = 1,the system will
turn into a crisp system, when α 6= 1, the given system may be fuzzified. It may
be noted that from example , particularly when b = 0.4 the given system is not
asymptotically stable with out delay, but in presence of delay, the same system is
asymptotically stable. This shows the efficiency of the proposed system. Finally,
the results are concluded in Propositions 1 and 2.
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