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CONVEXITY OF CERTAIN INTEGRAL OPERATOR DEFINED
BY MITTAG-LEFFLER FUNCTIONS

MURAT ÇAĞLAR, SAIP EMRE YILMAZ

Abstract. Recently, there has been a vivid interest on special functions from
the point of view of geometric function theory. Geometric properties of special
functions like univalency, starlikeness and convexity appear in works of many
mathematicians. In this paper, firstly, we obtain a new family of integral
operators involving normalized Mittag-Leffl er functions. Then, we give various
suffi cient conditions for convexity of this integral operator in the open unit disk.
Several consequences of the main results are also shown.

1. Introduction and Preliminaries

Let A be the class of analytic functions of the form

f(z) = z +

∞∑
n=2

anz
n (1)

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}
and satisfy the usual normalization condition

f(0) = f ′(0)− 1 = 0.

We denote by S the subclass of A consisting of the functions which are also
univalent in U .
A function f ∈ A is said to be starlike of order α (0 ≤ α < 1) if and only if

Re

(
zf ′(z)

f(z)

)
> α, z ∈ U. (2)

We denote by S∗(α) the class of all such functions. Also, we note that S∗ =
S∗(0) is the usual class of starlike functions in U.
A function f ∈ A is said to be starlike of order α (0 ≤ α < 1) if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U. (3)
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We denote by K(α) the class of all such functions. Also, we note that K = K(0)
is the usual class of convex functions in U.
The theory of fractional calculus has been applied in the theory of analytic func-

tions. The classical concepts of a fractional differential operator and a fractional
integral operator and their generalizations have fruitfully been employed in find-
ing, for example, the characterization properties, coeffi cients estimate [7], distor-
tion inequalities [24] and convolution properties for difference subclasses of analytic
functions.
The classical Mittag-Leffl er functions have already proved their effi ciency as so-

lutions of fractional-order differential and integral equations and thus have become
important elements of the fractional calculus’theory and applications. The Mittag-
Leffl er function arises especially in the investigations of fractional generalization of
kinetic equation, random walks, Levy flights, super-diffusive transport and in the
study of complex systems. The most essential properties of these entire functions,
investigated by many mathematicians, can be found in [11], [12].
The function Eλ(z) defined by the following infinite series

Eλ(z) =

∞∑
n=0

zn

Γ(λn+ 1)
, Re(λ) > 0, λ, z ∈ C, (4)

was introduced by Mittag-Leffl er [17] and is, therefore, known as the Mittag-Leffl er
function. It is an entire function of z with order [Re(β)]−1. A more general function
Eλ,µ(z), generalizing Eλ(z), is defined by

Eλ,µ(z) =

∞∑
n=0

zn

Γ(λn+ µ)
, Re(λ) > 0, λ, µ, z ∈ C. (5)

Note that Mittag-Leffl er function Eλ,µ(z), defined by (5) does not belong to the
class A. Thus, it is natural to consider the following normalization of the Mittag-
Leffl er function:

Ẽλ,µ(z) := Γ(µ)zEλ,µ(z) = z +

∞∑
n=2

Γ(µ)zn

Γ(λ(n− 1) + µ)
, (6)

(
Re(λ) > 0, λ, µ, z ∈ C, µ ∈ Z−0

)
where Z−0 = {0,−1,−2, ....− n, ...}. Whilst formula (6) holds for complex-valued
λ, µ and z ∈ C, however in this paper, we shall restrict our attention to the case
of real-valued λ, µ and z ∈ U . Observe that the function Ẽλ,µ(z) contains many
well-known functions as its special case, for example,

Ẽ0,1(z) = z
1−z ;

Ẽ1,1(z) = zez;

Ẽ2,1(z) = z cosh(
√
z);

Ẽ2,2(z) =
√
z sinh(

√
z).

(7)

Geometric properties including starlikeness, convexity and close-to-convexity for
the Mittag-Leffl er function Ẽλ,µ(z) were recently investigated by Bansal and Pra-
japat [1]. Raducanu [21], investigated the ratio of the normalized Mittag-Leffl er
function. Srivastava et al. [23] found suffi cient conditions for univalence of integral
operators involving the normalized Mittag-Leffl er function.
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In this paper, we give various suffi cient conditions for convexity of integral op-
erator

Gβλ,µ(z) =

{
β

∫ z

0

tβ−2Ẽλ,µ(t)dt

}1/β

, z ∈ U, β ∈ C/ {0} (8)

which involve the normalized form of the Mittag-Leffl er function Ẽλ,µ(z).
In recent years, the problem of geometric properties (such as univalence, star-

likeness and convexity) of some integral operators discussed by many authors (see
[2]-[6], [8]-[10], [13]-[16], [18]-[20], [22]).
In our investigation, we shall need the following results.

Lemma 1 Let λ ≥ 1 and µ > µ0 where µ0
∼= 1.618 is the root of the equation

µ2 − µ− 1 = 0. (9)

Then the following inequality holds for all z ∈ U∣∣∣∣∣∣∣
z
(
Ẽλ,µ(z)

)′
Ẽλ,µ(z)

− 1

∣∣∣∣∣∣∣ ≤
2µ+ 1

µ2 − µ− 1
. (10)

Proof. By using the definition of the normalized Mittag-Leffl er function Ẽλ,µ(z)
for all z ∈ U , we obtain∣∣∣∣∣∣∣

z
(
Ẽλ,µ(z)

)′
Ẽλ,µ(z)

− 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
z
(
Ẽλ,µ(z)

)′
− Ẽλ,µ(z)

Ẽλ,µ(z)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑∞
n=2

(n−1)Γ(µ)
Γ(λ(n−1)+µ)z

n

z +
∑∞
n=2

Γ(µ)
Γ(λ(n−1)+µ)z

n

∣∣∣∣∣∣
≤

∑∞
n=2

(n−1)Γ(µ)
Γ(λ(n−1)+µ)

1−
∑∞
n=2

Γ(µ)
Γ(λ(n−1)+µ)

. (11)

Under hypothesis λ ≥ 1, the inequality Γ(n − 1 + µ) ≤ Γ(λ(n − 1) + µ), n ∈ N
holds, which is equivalent to

Γ(µ)

Γ(λ(n− 1) + µ)
≤ 1

(µ)n−1
, n ∈ N (12)

where (µ)n = Γ(n + µ)/Γ(µ) = µ(µ + 1) · · · (µ + n − 1), (µ)0 = 1 is Pochhammer
(or Appell) symbol, defined in terms of Euler gamma function.
Using (12) we obtain

∞∑
n=2

(n− 1)Γ(µ)

Γ(λ(n− 1) + µ)
≤
∞∑
n=2

n− 1

(µ)n−1
=

∞∑
n=1

n

(µ)n
=

1

µ
+

∞∑
n=2

n

(µ)n
. (13)

Further, for all n ∈ N/ {1} and µ ≥ 1 the inequality

n

(µ)n
≤ 1

µ(µ+ 1)n−2
(14)
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holds true. If we use (14) in (13), we get

∞∑
n=2

(n− 1)Γ(µ)

Γ(λ(n− 1) + µ)
≤ 1

µ
+

∞∑
n=2

1

µ(µ+ 1)n−2

=
1

µ
+

1

µ

∞∑
n=0

1

(µ+ 1)n

=
2µ+ 1

µ2
. (15)

Similarly, we have

∞∑
n=2

Γ(µ)

Γ(λ(n− 1) + µ)
≤
∞∑
n=2

1

(µ)n−1
.

Further, the inequality

(µ)n−1 = µ(µ+ 1) · · · (µ+ n− 2) ≥ µ(µ+ 1)n−2, n ∈ N (16)

is true, which is equivalent to 1/(µ)n−1 ≤ 1/µ(µ + 1)n−2, n ∈ N. Using (16), we
get

∞∑
n=2

Γ(µ)

Γ(λ(n− 1) + µ)
≤
∞∑
n=2

1

µ(µ+ 1)n−2
=

1

µ

∞∑
n=0

1

(µ+ 1)n
=
µ+ 1

µ2
. (17)

From (17), (15) and (11), we obtain∣∣∣∣∣∣∣
z
(
Ẽλ,µ(z)

)′
Ẽλ,µ(z)

− 1

∣∣∣∣∣∣∣ ≤
2µ+ 1

µ2 − µ− 1
.

Thus, the proof of Lemma 1 is completed.

2. Main Result

On the convexity of the function Gβλ,µ(z), we give the following theorem.

Theorem 1 Let λ ≥ 1, β be a complex number such that
β /∈ Z−0 = {0,−1,−2, ...,−n, ...} and µ > µ0 where µ0

∼= 1.618 is the root of the
equation (9). Then, the function Gβλ,µ : U → C defined by (8) belongs to the class
K(α) if the following condition is satisfied:

(1− α)µ2 − (3 + |β − 1| − α)µ− (2 + |β − 1| − α) ≥ 0. (18)

Proof. Since Ẽλ,µ ∈ A, clearly Gβλ,µ ∈ A, G
β
λ,µ(0) = Gβλ,µ

′
(0) − 1 = 0. From the

definition, a function Gβλ,µ ∈ A belongs to the class K(α) if and only if

Re

1 +
z
(
Gβλ,µ

)′′
(z)(

Gβλ,µ

)′
(z)

 > α, z ∈ U. (19)



JFCA-2020/12(2) CONVEXITY OF CERTAIN INTEGRAL OPERATOR 145

It suffi ces to show that∣∣∣∣∣∣∣
z
(
Gβλ,µ

)′′
(z)(

Gβλ,µ

)′
(z)

∣∣∣∣∣∣∣ ≤ 1− α, z ∈ U. (20)

On the other hand, it is easy to see that(
Gβλ,µ

)′′
(z)(

Gβλ,µ

)′
(z)

=

(
1− β
β

)
zβ−2Ẽλ,µ(z)∫ z

0
tβ−2Ẽλ,µ(t)dt

+

(
Ẽλ,µ(t)

)′
Ẽλ,µ(z)

+
β − 2

z

and

z
(
Gβλ,µ

)′′
(z)(

Gβλ,µ

)′
(z)

=

(
1− β
β

)
zβ−1Ẽλ,µ(z)∫ z

0
tβ−2Ẽλ,µ(t)dt

+
z
(
Ẽλ,µ(t)

)′
Ẽλ,µ(z)

+ (β − 2)

=

(
1− β
β

)
zβ−1Ẽλ,µ(z)∫ z

0
tβ−2Ẽλ,µ(t)dt

+ (β − 1) +
z
(
Ẽλ,µ(t)

)′
− Ẽλ,µ(z)

Ẽλ,µ(z)
.

From (6), we write

z
(
Gβλ,µ

)′′
(z)(

Gβλ,µ

)′
(z)

=

∑∞
n=2

(
β

n+β−1 − 1
)

(β−1)Γ(µ)
Γ(λ(n−1)+µ)z

n+β−1

zβ +
∑∞
n=2

β
n+β−1

Γ(µ)
Γ(λ(n−1)+µ)z

n+β−1
+

∑∞
n=2

(n−1)Γ(µ)
Γ(λ(n−1)+µ)z

n

z +
∑∞
n=2

Γ(µ)
Γ(λ(n−1)+µ)z

n
.

Hence,∣∣∣∣∣∣∣
z
(
Gβλ,µ

)′′
(z)(

Gβλ,µ

)′
(z)

∣∣∣∣∣∣∣ ≤
∑∞
n=2

(
1−

∣∣∣ β
n+β−1

∣∣∣) |β−1|Γ(µ)
Γ(λ(n−1)+µ)

1−
∑∞
n=2

∣∣∣ β
n+β−1

∣∣∣ Γ(µ)
Γ(λ(n−1)+µ)

+

∑∞
n=2

(n−1)Γ(µ)
Γ(λ(n−1)+µ)

1−
∑∞
n=2

Γ(µ)
Γ(λ(n−1)+µ)

.

Also, we can write∣∣∣∣∣∣∣
z
(
Gβλ,µ

)′′
(z)(

Gβλ,µ

)′
(z)

∣∣∣∣∣∣∣ ≤
∑∞
n=2 ((n− 1) + |β − 1|) Γ(µ)

Γ(λ(n−1)+µ)

1−
∑∞
n=2

Γ(µ)
Γ(λ(n−1)+µ)(n−1)!

=

∑∞
n=2

(n−1)Γ(µ)
Γ(λ(n−1)+µ) +

∑∞
n=2

|β−1|Γ(µ)
Γ(λ(n−1)+µ)

1−
∑∞
n=2

Γ(µ)
Γ(λ(n−1)+µ)

and from (15) and (17)∣∣∣∣∣∣∣
z
(
Gβλ,µ

)′′
(z)(

Gβλ,µ

)′
(z)

∣∣∣∣∣∣∣ ≤
2µ+1
µ2 + |β − 1| µ+1

µ2

1− µ+1
µ2

=
2µ+ 1 + |β − 1| (µ+ 1)

µ2 − µ− 1
.

Thus, from the last inequality we see that the inequality (20) is true if the last
expression is bounded by (1− α), which is equivalent to

(1− α)
(
µ2 − µ− 1

)
− |β − 1| (µ+ 1)− (2µ+ 1) ≥ 0.

With this, the proof of Theorem 1 is completed.
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By setting α = 0 in Theorem 1, we arrive at the following corollary.

Corollary 1 Let λ ≥ 1, β be a complex number such that
β /∈ Z−0 = {0,−1,−2, ...,−n, ...} and µ > µ0 where µ0

∼= 1.618 is the root of the
equation (9). Then, the function Gβλ,µ : U → C defined by (8) belongs to the class
K if the following condition is satisfied:

µ2 − (3 + |β − 1|)µ− (2 + |β − 1|) ≥ 0.

For β = 0 in Corollary 1, we have the following corollary.

Corollary 2 Let λ ≥ 1 and µ > µ0 where µ0
∼= 1.618 is the root of the equa-

tion (9). Then, the function G1
λ,µ : U → C defined by (8) belongs to the class K if

the following condition is satisfied:

µ2 − 3µ− 2 ≥ 0.
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