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EXISTENCE AND UNIQUENESS OF MILD INTEGRABLE

SOLUTIONS TO SOME QUASILINEAR CAUCHY PROBLEMS

FOR NONLOCAL FRACTIONAL INTEGRODIFFERENTIAL

EQUATIONS

MOHAMED A. E. HERZALLAH, ASHRAF H. A. RADWAN

Abstract. The purpose of this paper is to discuss the existence and unique-

ness of mild L1-solutions to some quasilinear Cauchy problems for Caputo
fractional integrodifferential equations with nonlocal conditions. The nonlin-

ear term of the considered problem contains a fractional derivative or fractional

integral. Illustrative examples will be given.

1. Introduction

In this paper, we discuss the existence and uniqueness of mild integrable solutions
to the quasilinear Cauchy problems

cDαu(t) = A(t, u)u(t) + f(t, u(t), Iαu(t)), a.e., t ∈ J (1)

and
cDαu(t) = A(t, u)u(t) + f(t, u(t), cDαu(t)), a.e., t ∈ J (2)

each together with the nonlocal condition
m∑
k=1

ak u(tk) = u0 (3)

where u0 ∈ D(A),
∑m
k=1 ak 6= 0 and J = [0, T ], T < ∞. cDα, Iα denote the

Caputo derivative and fractional integral of order α ∈ (0, 1), respectively. A(t, u)
is a bounded linear operator. tk satisfy 0 < t1 < t2 < .. < tm < T, k = 1, 2, ..,m.
Our results are based upon the contraction mapping principle and Krasnoselskii’s
fixed-point theorem.

In fact, papers on integrable solutions for fractional-order integrodifferential
equations are limited, see for instance: El-Sayed and Abd El-Salam [10, 11], Ben-
chohra and Souid [2, 3, 4, 5], Gaafer [15] and Souid [30]. Integrodifferential equa-
tions of fractional-order have affirmed to be valuable tools in modelling of many
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phenomena in various fields of science and engineering. For the history, appli-
cations and significant results on fractional derivatives and integrals, we refer to
[1, 17, 19, 23, 25, 27, 31]. Many author’s are interested in investigating the ex-
istence and uniqueness of solutions to quasilinear fractional Cauchy problems in
Banach spaces, see [26, 28, 29]. A lot of papers contain a fractional derivative or
integral in the nonlinear term of the considered Cauchy problem, see [4, 18, 22].
The existence of solutions for abstract Cauchy differential equations with nonlocal
condition in a Banach space has been considered first by Byszewski [7]. Deng [9]
indicated that the nonlocal condition, as a generalization of the classical condition,
gives more precise measurements, accurate results and better effect for describing
natural phenomena. For different forms of nonlocal conditions, see [12, 16].

This paper is organized as follows: In section 2, Some notations, main definitions
and theorems, which are used through out the paper, will be given. In section 3,
we will study the existence and uniqueness of mild L1-solutions to the quasilinear
problem (1) with the nonlocal condition (3). A clarifying example will be given. In
section 4, we will investigate the existence and uniqueness of mild L1-solutions to
the nonlocal quasilinear problem (2)-(3) with giving an illustrative example.

2. Preliminaries

Here, we introduce some notations, main definitions and theorems which are
crucial in what follows.

As usual, let R be the set of real numbers. AC(J,R) be the space of functions
which are absolutely continuous on J , L1(J,R) be the class of Lebesgue inte-
grable functions v : J → R with the norm ‖v‖L1=

∫
J
|v(t)|dt, and B(L1(J,R))

be the set of all bounded linear operators from L1(J,R) into itself with the norm
‖A‖B = sup‖u‖=1{‖Au(t)‖, u ∈ L1(J,R)}.

Definition 1 [19, 24] The fractional integral of order α ∈ R+ with the lower
limit 0 of a function u ∈ L1(J,R) is defined by

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

where Γ(.) is the Euler gamma function.

If v ∈ L1(J,R) and α > 0, the integral Iαv(t) exists for almost every t ∈ J .
Moreover, the function Iαv itself is also an element of L1(J,R).

Definition 2 [19, 24] The fractional derivative of order α where 0 < α < 1 with
the lower limit 0 of a function u ∈ AC(J,R) is defined by

cDαu(t) =
1

Γ(α)

∫ t

a

(t− s)α−1u′(s)ds

where the prime sign denotes the usual first derivative.

For the Caputo fractional derivative and the fractional integral, we have

cDαIαu(t) = u(t) and Iα cDαu(t) = u(t)− u(0), α ∈ (0, 1).
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The Kolmogorov compactness criterion [4, 8, 20] gives the necessary and sufficient
conditions in order to the set ψ of functions in Lp(J,R) be relatively compact.
Theorem 1 Let ψ ⊆ Lp(J,R), 1 ≤ p ≤ ∞. If

(a) ψ is bounded in Lp(J,R), and

(b) yh := 1
h

∫ t+h
t

y(s)ds→ y as h→ 0 uniformly with respect to y ∈ ψ,

then ψ is relatively compact in Lp(J,R).

The results of Schauder’s fixed point theorem and the contraction mapping prin-
ciple are combined into the following result by M.A. Krasnoselskii [13, 21, 32].
Theorem 2 Let Q be a nonempty, closed and convex subset of a Banach space X.
Suppose that A : Q→ X and B : Q→ X satisfy the following properties:

(a) Ax+By ∈ Q for all x, y ∈ Q;
(b) A is continuous and compact;
(c) B is a contraction mapping.

Then, there exists q ∈ Q such that Aq +Bq = q.

3. Nonlocal quasilinear fractional integrodifferential equation

This section deals with investigating the existence and uniqueness of mild L1-
solutions to the quasilinear problem (1) with the nonlocal condition (3).

We introduce the following assumptions:

(H1) A(t, u) is a bounded linear operator on L1(J,R), for each t ∈ J and u ∈
L1(J,R), and there exist constants a, b > 0 such that for all t ∈ J and
u, v ∈ L1(J,R)

‖A(., u)−A(., v)‖ ≤ a‖u− v‖L1
and b = max

t∈J
‖A(t, 0)‖.

(H2) f : J × R2 → R is measurable in t ∈ J , for any (u, v) ∈ R2 and continuous
in (u, v) ∈ R2, for almost all t ∈ J ;

(H3) There exists a constant q > 0 such that:

|f(t, u2, v2)− f(t, u1, v1)| ≤ q ( |u2 − u1|+ |v2 − v1| ) ,

where (t, ui, vi) ∈ J × R2, i = 1, 2 and there exists a positive function
ω(t) ∈ L1(J,R) such that for all t ∈ J ,

|f(t, 0, 0)| ≤ ω(t).

Consider the nonempty, convex, bounded and closed set Br such that

Br =
{
u ∈ L1(J,R) : ‖u‖L1 ≤ r, r > 0

}
. (4)

To facilitate the next discussion, let

γ1 :=
Tα

Γ(α+ 1)
, γ2 :=

Tα

Γ(α+ 1)
+

T 2α

Γ(2α+ 1)
and ρ :=

1∑m
k=1|ak|

.

Now, we give some assistant calculations.
From (H1), we get

‖A(., u)‖ ≤ ‖A(., u)−A(., 0)‖+ ‖A(., 0)‖
≤ a‖u‖L1 + b. (5)
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Moreover,

‖A(., u)u−A(., v)v‖L1 ≤ ‖A(., u)u−A(., u)v‖L1 + ‖A(., u)v −A(., v)v‖L1

≤ ‖A(., u)‖‖u− v‖L1 + ‖A(., u)−A(., v)‖‖v‖L1

≤ (a‖u‖L1 + b)‖u− v‖L1 + a‖u− v‖L1‖v‖L1

≤ [a(‖u‖L1 + ‖v‖L1) + b] ‖u− v‖L1 . (6)

From (H3), we obtain

|f(t, u, v)| ≤ |f(t, u(t), v(t))− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ q ( |u(t)|+ |v(t)| ) + ω(t), (7)

then

‖f(., u, v)‖L1 ≤
∫ T

0

[ q ( |u(t)|+ |v(t)| ) + ω(t) ] dt

≤ q (‖u‖L1 + ‖v‖L1) + ‖ω‖L1 . (8)

Moreover,

‖f(., u2, v2)− f(., u1, v1)‖L1 =

∫ T

0

|f(t, u2(t), v2(t)− f(t, u1(t), v1(t)| dt

≤
∫ T

0

q ( |u2(t)− u1(t)|+ |v2(t)− v1(t)| ) dt

≤ q ( ‖u2 − u1‖L1 + ‖v2 − v1‖L1) . (9)

Consider the integral∫ t

0

sα(t− s)α−1ds = tα−1

∫ t

0

sα
(
1− st−1

)α−1
ds

= t2α
∫ 1

0

(z)α (1− z)α−1
dz

=
Γ(α+ 1)Γ(α)

Γ(2α+ 1)
t2α. (10)

Using (7), (10) and Young’s convolution inequality [6], we obtain

‖Iαf(., u(.), Iαu(.))‖L1

=

∫ T

0

|Iαf(t, u(t), Iαu(t))| dt

≤
∫ T

0

∫ t

0

(t− s)α−1

Γ(α)
|f(s, u(s),

∫ s

0

(s− τ)α−1

Γ(α)
u(τ) dτ )| ds dt

≤
∫ T

0

∫ t

0

(t− s)α−1

Γ(α)

[
q

(
|u(s)|+

∫ s

0

(s− τ)α−1

Γ(α)
|u(τ)| dτ

)
+ |w(s)|

]
ds dt

≤ qγ2 ‖u‖L1
+ γ1 ‖ω‖L1

. (11)
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Applying (H3), (10) and Young’s convolution inequality, we get

‖Iα [f(., u(.), Iαu(.))− f(., v(.), Iαv(.))] ‖L1

=

∫ T

0

| Iα [f(t, u(t), Iαu(t))− f(t, v(t), Iαv(t))] | dt

≤
∫ T

0

∫ t

0

(t− s)α−1

Γ(α)

∣∣∣∣f(s, u(s),

∫ s

0

(s− τ)α−1

Γ(α)
u(τ) dτ )

−f(t, v(t),

∫ s

0

(s− τ)α−1

Γ(α)
v(τ) dτ )

∣∣∣∣ dsdt
≤
∫ T

0

∫ t

0

(t− s)α−1

Γ(α)
q

(
|u(s)− v(s)|+

∫ s

0

(s− τ)α−1

Γ(α)
|u(τ)− v(τ)| dτ

)
ds dt

≤ qγ2 ‖u− v‖L1
. (12)

From (5),

‖IαA(., u)u(.)|‖L1 ≤ γ1 (a‖u‖L1
+ b) ‖u‖L1

. (13)

From (6),

‖Iα [A(., u)u(.)−A(., v)v(.)] ‖L1
≤ γ1 [a(‖u‖L1 + ‖v‖L1) + b] ‖u− v‖L1 . (14)

We need the following lemma to give the main results.
Lemma 1 The solution of the quasilinear problem (1) with the nonlocal condition
(3) can be expressed by the integral equation

u(t) =
u0∑m
k=1 ak

− 1∑m
k=1 ak

m∑
k=1

ak I
αA(t, u)u(t)|t=tk

− 1∑m
k=1 ak

m∑
k=1

ak I
αf(t, u(t), Iαu(t))|t=tk

+ IαA(t, u)u(t) + Iαf(t, u(t), Iαu(t)). (15)

Proof
Let u(t) be a solution of problem (1) together with condition (3). Operating Iα

on (1), we have

u(t) = u(0) + IαA(t, u)u(t) + Iαf(t, u(t), Iαu(t)). (16)

Putting t = tk in (16) and using (3), we have

u0 =

m∑
k=1

ak u(tk)

=

m∑
k=1

ak u(0) +

m∑
k=1

ak I
αA(t, u)u(t)|t=tk +

m∑
k=1

ak I
αf(t, u(t), Iαu(t))|t=tk ,

then

u(0) =
u0∑m
k=1 ak

− 1∑m
k=1 ak

m∑
k=1

ak I
αA(t, u)u(t)|t=tk

− 1∑m
k=1 ak

m∑
k=1

ak I
αf(t, u(t), Iαu(t))|t=tk . (17)



JFCA-2020/11(2) EXISTENCE AND UNIQUENESS OF MILD INTEGRABLE SOLUTIONS 213

Substituting (17) into (16), we get the required.

By a mild integrable solution of the quasilinear problem (1) with the nonlocal
condition (3), we mean a function u ∈ L1(J,R) such that

∑m
k=1 ak u(tk) =

u0,
∑m
k=1 ak 6= 0 and u(t) satisfies (15).

The following theorem gives the uniqueness result.
Theorem 3 Let the assumptions (H1)-(H3) be satisfied. Then, the quasilinear
problem (1) with the nonlocal condition (3) has a unique mild solution u ∈ L1(J,R)
if for λ1 := bγ1 + qγ2 ∈ (0, 1

2 ), we have

aγ1[ ρ‖u0‖L1
+ 2γ1‖ω‖L1

] ≤ 1

8
(1− 2λ1)2 and r <

1− 2λ1

4aγ1

where r > 0 is the solution of the quadratic equation

2aγ1 r
2 + [2 (bγ1 + qγ2)− 1] r + ρ‖u0‖L1 + 2γ1‖ω‖L1 = 0. (18)

Proof
Suppose that the operator K : L1(J,R)→ L1(J,R) is defined by

Ku(t) =
u0∑m
k=1 ak

− 1∑m
k=1 ak

m∑
k=1

ak I
αA(t, u)u(t)|t=tk

− 1∑m
k=1 ak

m∑
k=1

ak I
αf(t, u(t), Iαu(t))|t=tk + IαA(t, u)u(t)

+ Iαf(t, u(t), Iαu(t)). (19)

The proof will be given in two steps.
Step 1. (KBr ⊂ Br)

Let u be an arbitrary element in Br.
Using (19) with applying (11) and (13), we have

‖Ku‖L1 =

∫ T

0

‖Ku(t)‖dt

≤ ρ
∫ T

0

‖u0‖dt+ ρ

m∑
k=1

|ak|
∫ T

0

‖IαA(t, u)u(t)|t=tk‖ dt

+ ρ

m∑
k=1

|ak|
∫ T

0

‖Iαf(t, u(t), Iαu(t))|t=tk‖ dt

+

∫ T

0

‖IαA(t, u)u(t)‖ dt+

∫ T

0

‖Iαf(t, u(t), Iαu(t))‖ dt

≤ ρ‖u0‖L1 + ρ

m∑
k=1

|ak| ‖IαA(t, u)u(t)|t=tk‖L1

+ ρ

m∑
k=1

|ak| ‖Iαf(t, u(t), Iαu(t))|t=tk‖L1

+ ‖IαA(., u)u(.)|‖L1 + ‖Iαf(., u(.), Iαu(.))‖L1 ,
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‖Ku‖L1

≤ ρ‖u0‖L1 + ργ1(a‖u‖L1 + b)‖u‖L1

m∑
k=1

|ak| + ρ [qγ2‖u‖L1 + γ1‖ω‖L1 ]

m∑
k=1

|ak|

+ γ1(a‖u‖L1 + b)‖u‖L1 + qγ2‖u‖L1 + γ1‖ω‖L1 ,

then

‖Ku‖L1 ≤ r

where r satisfies the quadratic equation (18). Therefore, K maps Br into itself.
Step 2. (K is a contraction mapping)

Using (19) with applying (12) and (14), we have

‖Ku(t)−Kv(t)‖ ≤ ρ

m∑
k=1

|ak| ‖Iα [A(t, u)u(t)−A(t, v)v(t)] |t=tk‖

+ ρ

m∑
k=1

|ak| ‖Iα [f(t, u(t), Iαu(t))− f(t, v(t), Iαv(t))] |t=tk‖

+ ‖Iα [A(., u)u(.)−A(., v)v(.)] ‖
+ ‖Iα [f(t, u(t), Iαu(t))− f(t, v(t), Iαv(t))] ‖,

then

‖Ku−Kv‖L1

≤ ργ1 [a(‖u‖L1 + ‖v‖L1) + b] ‖u− v‖L1

m∑
k=1

|ak|+ ρqγ2 ‖u− v‖L1

m∑
k=1

|ak|

+ γ1 [a(‖u‖L1 + ‖v‖L1) + b] ‖u− v‖L1 + qγ2 ‖u− v‖L1

For u, v ∈ Br, we get

‖Ku−Kv‖L1 ≤ 2(2aγ1r + bγ1 + qγ2) ‖u− v‖L1 (20)

Since 2(2aγ1r + bγ1 + qγ2) < 1, K is a contraction mapping [13, 14] and it
has a unique fixed point which is the unique solution of the integral equation (15).
Therefore, by lemma 1, the quasilinear problem (1) with the nonlocal condition (3)
has a unique mild solution u ∈ Br ⊂ L1(J,R). This completes the proof.

For the existence result, we give the following theorem.
Theorem 4 Let the assumptions (H1)-(H3) are satisfied. The quasilinear problem
(1) with the nonlocal condition (3) has at least one mild integrable solution u ∈
L1(J,R) if for λ1 ∈ (0, 1

2 ), we have

aγ1[ ρ‖u0‖L1
+ 2γ1‖ω‖L1

] ≤ 1

8
(1− 2λ1)2 and r <

1 + 2(qγ2 − λ1)

4aγ1

where r > 0 is the solution of the quadratic equation (18).
Proof

Suppose that the operator K is defined by Ku(t) = K1u(t) +K2u(t), where

K1u(t) = Iαf(t, u(t), Iαu(t))− 1∑m
k=1 ak

m∑
k=1

ak I
αf(t, u(t), Iαu(t))|t=tk , (21)
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and

K2u(t) =
u0∑m
k=1 ak

− 1∑m
k=1 ak

m∑
k=1

ak I
α(A(t, u)u(t))|t=tk + Iα(A(t, u)u(t)).

(22)

The proof will be given in four steps.
Step 1. (K1u+K2v ∈ Br whenever u, v ∈ Br)

Using (21) and (22) with applying (11) and (13), we obtain

‖K1u(t) +K2v(t)‖

≤ ‖Iαf(t, u(t), Iαu(t))‖+ ρ

m∑
k=1

|ak| ‖Iαf(t, u(t), Iαu(t))|t=tk‖

+ ρ‖u0‖ + ρ

m∑
k=1

|ak| ‖IαA(t, v)v(t)|t=tk‖+ ‖IαA(., v)v(.)|‖,

then

‖K1u+K2v‖L1

≤ qγ2‖u‖L1 + γ1‖ω‖L1 + ρ[qγ2‖u‖L1 + γ1‖ω‖L1 ]

m∑
k=1

|ak|

+ ρ‖u0‖L1 + ργ1(a‖v‖L1 + b)‖v‖L1

m∑
k=1

|ak|+γ1(a‖v‖L1 + b)‖v‖L1 .

For u, v ∈ Br, we get

‖K1u+K2v‖L1 ≤ r,

where r is the solution of the quadratic equation (18).
Therefore, K1u+K2v ∈ Br whenever u, v ∈ Br.
Step 2. (K1 is continuous)

Let {un}∞n=1 be a sequence in L1(J,R) such that un → u ∈ L1(J,R) as n → ∞
for all t ∈ J .
By using (21) and applying (12), we have

‖K1un(t)−K1u(t)‖
≤ ‖Iα (f(t, un(t), Iαun(t))− f(t, u(t), Iαu(t))) ‖

+ ρ

m∑
k=1

|ak| ‖Iα (f(t, un(t), Iαun(t))− f(t, u(t), Iαu(t))) |t=tk‖,

then

‖K1un −K1u‖L1
≤ qγ2 ‖un − u‖L1 + ρqγ2 ‖un − u‖L1

m∑
k=1

|ak|

≤ 2qγ2 ‖un − u‖L1 . (23)

Letting n → ∞, the right hand side of (23) tends to zero. Therefore, K1 is
continuous.
Step 3. (K1 is a compact operator)

Clearly that K1Br is bounded in L1(J,R) which is the first condition of Kol-
mogorov compactness criterion (Theorem 1).
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Firstly, we prove the continuity of K1u for all u ∈ Br. For 0 ≤ t1 < t2 ≤ T , we
have

‖K1u(t2)−K1u(t1)‖ ≤
∫ t1

0

(
(t2 − s)α−1

Γ(α)
− (t1 − s)α−1

Γ(α)

)
‖f(s, u(s), Iαu(s))‖ ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
‖f(s, u(s), Iαu(s))‖ ds,

then

‖K1u(t2)−K1u(t1)‖L1 ≤ (qγ2 r + ‖ω‖L1)

∫ t1

0

(
(t2 − s)α−1

Γ(α)
− (t1 − s)α−1

Γ(α)

)
ds

+ (qγ2 r + ‖ω‖L1)

∫ t2

t1

(t2 − s)α−1

Γ(α)
ds

≤ qγ2 r + ‖ω‖L1

Γ(α+ 1)
(tα2 − tα1 ).

As t2 → t1, we obtain ‖K1u(t2) − K1u(t1)‖L1 → 0. This shows that K1u is
continuous.

Now, we have to show that (K1u)h → (K1u) in L1(J,R) for each u ∈ Br.
Consider then,

‖(K1u)h − (K1u)‖L1 =

∫ T

0

|(K1u)h(t)− (K1u)(t)| dt

=

∫ T

0

∣∣∣∣∣ 1h
∫ t+h

t

(K1u)(s)ds− (K1u)(t)

∣∣∣∣∣ dt. (24)

Since K1u is continuous on J for all u ∈ Br, then lim
h→0

1
h

∫ t+h
t

(K1u)(s)ds =

(K1u)(t). That is, the right hand side of (24) tends to zero as h → 0 and
1
h

∫ t+h
t

(K1u)(s)ds → (K1u) uniformly. Then, by Kolmogorov compactness cri-
terion, {K1u(t)} is relatively compact. Therefore, K1 is a compact operator.
Step 4. (K2 is a contraction mapping)

Using (22) and (14), we have

‖K2u(t)−K2v(t)‖ ≤ ρ
m∑
k=1

|ak| ‖Iα(A(t, u)u(t)−A(t, v)v(t))|t=tk‖

+ ‖Iα(A(., u)u(.)−A(., v)v(.))‖,

then for u, v ∈ Br with applying (6), we get

‖K2u(t)−K2v(t)‖L1 ≤ ργ1(2ar + b)‖u− v‖L1

m∑
k=1

|ak|+ γ1(2ar + b)‖u− v‖L1

≤ 2γ1(2ar + b)‖u− v‖L1 . (25)

Since 2γ1(2ar + b) < 1, K2 is a contraction mapping. As a consequence of
Kranoselskii’s fixed point theorem, K has at least one fixed point. Then, the
quasilinear problem (1) with condition (3) has at least one mild solution u ∈ Br ⊂
L1(J,R). Therefore, the proof is completed.
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Example 1 Consider the following fractional nonlocal problem{
cD

2
5x(t) = 10−3e−t sin(x(t)) x(t) + 1

(et+9)(1+|x(t)|+|Iαx(t)|) , t ∈ [0, 1];∑2
k=1 4 x(tk) = 1, 0 < t1 < t2 < 1.

(26)

Set

A(t, x) = 10−3e−t sin(x(t)) I, (t, x) ∈ [0, 1]× R
and

f(t, x, y) =
1

(et + 9)(1 + |x|+ |y|)
, (t, x, y) ∈ [0, 1]× R× R.

Then,

‖A(t, x1)−A(t, x2)‖ =
∥∥10−3e−t (sin(x1(t))− sin(x2(t)))

∥∥
≤ 10−3e−t ‖x1 − x2‖
≤ 10−3 ‖x1 − x2‖,

and

|f(t, x1, y1)− f(t, x2, y2)| =
∣∣∣∣ 1

(et + 9)

(
1

1 + |x1|+ |y1|
− 1

1 + |x2|+ |y2|

)∣∣∣∣
=

∣∣∣∣ |x2| − |x1|+ |y2| − |y1|
(et + 9)(1 + |x1|+ |y1|)(1 + |x2|+ |y2|)

∣∣∣∣
≤ |x1 − x2|+ |y1 − y2|

(et + 9)(1 + |x1|+ |y1|)(1 + |x2|+ |y2|)

≤ 1

et + 9
(|x1 − x2|+ |y1 − y2|)

≤ 1

10
(|x1 − x2|+ |y1 − y2|) .

So, we have
T = 1, α = 2

5 , m = 2, q = ‖ω‖L1 = 1
10 ,

∑m
k=1 ak = 8 6= 0, u0 = 1, a = 10−3, b =

0, ρ = 1
8 , γ1 = 1

Γ(1.4) , γ2 = 1
Γ(1.8) + 1

Γ(1.4) and λ1 = 11
50 ∈ (0, 1

2 ).

The quadratic equation will be

0.002254 r2 − 0.5598 r + 1.5504 = 0

which gives r = 2.8 . Therefore, all conditions of Theorem 3 are satisfied. Then,
problem (26) has a unique mild solution x ∈ B2.8 ⊂ L1([0, 1],R).

4. Nonlocal quasilinear fractional implicit differential equation

In this section, we investigate the existence and uniqueness of mild integrable
solutions to the nonlocal problem (2)-(3).

Let y(t) be a solution of the integral equation

y(t) = A(t, u) (Vy + Iαy(t)) + f(t, Vy + Iαy(t), y(t)), (27)

where for brevity,

Vy :=
u0∑m
k=1 ak

− 1∑m
k=1 ak

m∑
k=1

ak I
αy(t)|t=tk , (28)
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Lemma 2 Let u(t) be a solution of the nonlocal quasilinear problem (2)-(3). Then,
u(t) is a solution of the integral equation

u(t) = Vy + Iαy(t). (29)

Proof
Let u(t) be a solution of the nonlocal quasilinear problem (2)-(3) and

cDαu(t) = y(t). (30)

Operating Iα on both sides of (30), we get

u(t) = u(0) + Iαy(t). (31)

Putting t = tk in (31) and using condition (3), we obtain

u0 =

m∑
k=1

ak u(tk) =

m∑
k=1

aku(0) +

m∑
k=1

ak I
αy(t)|t=tk ,

then

u(0) =
u0∑m
k=1 ak

− 1∑m
k=1 ak

m∑
k=1

ak I
αy(t)|t=tk = Vy. (32)

Substituting (32) into (31), we get the required.

By a mild integrable solution of the nonlocal quasilinear problem (2)-(3), we
mean a function u ∈ L1(J,R) such that

∑m
k=1 ak u(tk) = u0,

∑m
k=1 ak 6= 0 and

u(t) satisfies the integral equation (29).

Consider the nonempty, convex, bounded and closed set Bσ such that

Bσ =
{
y ∈ L1(J,R) : ‖y‖L1 ≤ σ, σ > 0

}
. (33)

In what follows, we display some useful calculations.
For y ∈ L1(J,R),

‖Iαy‖L1 ≤ γ1 ‖y‖L1 . (34)

Using (28) and (34), we obtain

‖Vy‖L1 ≤ ρ‖u0‖L1 + ρ

m∑
k=1

|ak| ‖Iαy(t)|t=tk‖L1

≤ ρ‖u0‖L1 + γ1‖y‖L1 . (35)

From (29),

‖u‖L1 ≤ ‖Vy‖L1 + ‖Iαy‖L1

≤ ρ‖u0‖L1 + 2γ1‖y‖L1 . (36)

Applying (H1) with (36), we get

‖A(., u)‖L1
≤ ‖A(., u)−A(., 0)‖L1

+ ‖A(., 0)‖L1

≤ a‖u‖L1
+ b

≤ a (ρ‖u0‖L1 + 2γ1‖y‖L1) + b. (37)
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Moreover, as in (6), we get

‖A(., u)u−A(., v)v‖L1 ≤ (a(‖u‖L1 + ‖v‖L1) + b) ‖u− v‖L1

≤ [2a(ρ‖u0‖L1 + 2γ1‖y‖L1) + b] ‖u− v‖L1 . (38)

Applying (H3), (34) and (35), we obtain

‖f (., Vy + Iαy(.), y(.)) ‖L1
≤ q [‖u‖L1 + ‖y‖L1 ] + ‖ω‖L1

≤ q(ρ‖u0‖L1 + (2γ1 + 1)‖y‖L1) + ‖ω‖L1 . (39)

Moreover,

‖f (., Vy2 + Iαy2(.), y2(.))− f (., Vy1 + Iαy1(.), y1(.)) ‖L1

≤ ρ q
m∑
k=1

|ak| ‖Iα (y2(t)− y1(t)) |t=tk‖L1 + q ‖Iα (y2 − y1) ‖L1 + q ‖y2 − y1‖L1

≤ q(2γ1 + 1) ‖y2 − y1‖L1
. (40)

The following theorem shows the uniqueness result.
Theorem 5 Let the assumptions (H1)-(H3) be satisfied. The nonlocal quasilinear
problem (2)-(3) has a unique mild solution u ∈ L1(J,R) if for λ2 := γ1(2aρ‖u0‖L1 +
b+ q) + q ∈ (0, 1

2 ), we have

aγ2
1 [ρ‖u0‖L1(aρ‖u0‖L1 +b+q)+‖ω‖L1 ] ≤ 1

16
(1−λ2)2 and σ <

1− [(b+ q) γ1 + λ2]

4aγ2
1

where σ > 0 is the solution of the quadratic equation

4aγ2
1σ

2+{[2γ1(2aρ‖u0‖L1 +b+q)+q]−1}σ+ρ‖u0‖L1(aρ‖u0‖L1 +b+q)+‖ω‖L1 = 0.
(41)

Proof
Suppose that the operator G : L1(J,R)→ L1(J,R) is defined by

Gy(t) = A(t, u) (Vy + Iαy(t)) + f (t, Vy + Iαy(t), y(t)) . (42)

We divide the proof into two steps.
Step 1. (GBσ ⊂ Bσ)

Using (42) for y ∈ L1(J,R), we have

‖Gy(t)‖ ≤ ‖A(., u)‖ ( ‖Vy‖+ ‖Iαy(t)‖) + ‖f(t, Vy + Iαy(t), y(t))‖.

Then, for y ∈ Bσ, by using (34),(35),(37) and (39), it is easy to see that ‖Gy‖L1 ≤ σ
where σ > 0 is the solution of the quadratic equation (41). Thus, G maps Bσ into
itself.
Step 2. (G is a contraction mapping)

Using (42) for all y, z ∈ L1(J,R), we have

‖Gy(t)−Gz(t)‖

≤ ‖A(., u)‖

(
ρ

m∑
k=1

|ak| ‖Iα(y(t)− z(t))|t=tk‖+ ‖Iα(y(t)− z(t))‖

)
+ ‖f (t, Vy + Iαy(t), y(t))− f (t, Vz + Iαz(t), z(t)) ‖.

For y, z ∈ L1(J,Bσ) with using (34), (37) and (40), one can get

‖Gy −Gz‖L1 ≤ {2γ1 [a(ρ‖u0‖L1 + 2σγ1) + b+ q] + q} ‖y − z‖L1 .
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Since 2γ1 [a(ρ‖u0‖L1 + 2σγ1) + b+ q] + q < 1, G is a contraction mapping and
it has a unique fixed point u ∈ Bσ ⊂ L1(J,R) which is, by Lemma 2, the unique
mild solution of the nonlocal quasilinear problem (2)-(3).

What follows deals with the existence result.
Theorem 6 Let the assumptions (H1)-(H3) be satisfied. Then, the nonlocal quasi-
linear problem (2)-(3) has at least one mild solution u ∈ L1(J,R) if for λ2 ∈ (0, 1

2 ),
we have

aγ2
1 [ρ‖u0‖L1(aρ‖u0‖L1 + b+ q) + ‖ω‖L1 ] ≤ 1

16
(1− λ2)2

and

σ <
1− [2γ1 (aρ‖u0‖L1 + b)]

4aγ2
1

where σ > 0 is the solution of the quadratic equation (41).
Proof
Suppose that the operator G is defined such that Gy(t) = G1(t) +G2(t) where

G1y(t) = f(t, Vy + Iαy(t), y(t)), (43)

and
G2y(t) = A(t, u) (Vy + Iαy(t).) (44)

The proof will be given in four steps.
Step 1. (G1y +G2z ∈ Bσ whenever y, z ∈ Bσ)

From (43) and (44),

‖G1y(t) +G2z(t)‖ ≤ ‖f(t, Vy + Iαy(t), y(t))‖+ ‖A(., u)‖ ( ‖Vz‖+ ‖Iαz(t)‖) .

For y, z ∈ Bσ, by using (34), (35), (37) and (39), we get that ‖G1y+G2z‖L1 ≤ σ
where where σ > 0 is the solution of the quadratic equation (41). Thus, G1y+G2z ∈
Bσ whenever y, z ∈ Bσ.
Step 2. (G1 is continuous)

Assumption (H2) implies that G1 is continuous.
Step 3. (G1 is compact)

Clearly that G1Br is bounded in L1(J,R) which is the first condition of Kol-
mogorov compactness criterion. Let y ∈ Bσ. Using (43) with applying Theorem 1,
we have

‖(G1y)h − (G1y)‖L1

=

∫ T

0

|(G1y)h(t)−G1y(t)|dt

=

∫ T

0

| 1
h

∫ t+h

t

(G1y)h(s)ds−G1y(t)|dt

≤
∫ T

0

{
1

h

∫ t+h

t

|(G1y)h(s)−G1y(t)|ds

}
dt

≤
∫ T

0

(
1

h

∫ t+h

t

|f(s, Vy + Iαy(t)|t=s, y(s))− f(t, Vy + Iαy(t), y(t))| ds

)
dt.

Since y ∈ Bσ ⊂ L1(J,R) and assumption (H3) holds which implies f ∈ L1(J,R),
the right hand side of the above inequality tends to zero as h tends to zero. Thus,
(G1y)h → (G1y) uniformly as h→ 0. Then, by Kolmogorov compactness criterion,
the class of {G1y(t)} is relatively compact and therefore G1 is a compact operator.
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Step 4. (G2 is a contraction mapping)
Let y, z ∈ Bσ. Using (44), we have

‖G2y(t)−G2z(t)‖

≤ ‖A(., u)‖

(
ρ

m∑
k=1

|ak| ‖Iα(y(t)− z(t))|t=tk‖+ ‖Iα(y(t)− z(t))‖

)
then

‖G2y −G2z‖L1 ≤ 2γ1[a(ρ‖u0‖L1 + 2σγ1) + b] ‖y − z‖L1 .

Since 2γ1[a(ρ‖u0‖L1 + 2σγ1) + b] < 1, G1 is a contraction mapping.
As a consequence of Kranoselskii’s fixed point theorem, G has at least one fixed

point in Bσ. Thus, the nonlocal quasilinear problem (2)-(3) has at least one solution
in Bσ. Therefore, the proof is completed.
Example 2 Consider the following fractional nonlocal problem{

cD
1
4x(t) = 2−3e−t

(99+et)(1+|x(t)|) x(t) + 1
(49+et)(1+|x(t)|+|cDαx(t)|) , t ∈ [0, 1];∑2

k=1 10−2x(tk) = 1, 0 < t1 < t2 < 1.
(45)

Set

A(t, x) =
2−3e−t

(99 + et)(1 + |x|)
I, (t, x) ∈ [0, 1]× R

and

f(t, x, y) =
1

(49 + et)(1 + x+ y)
, (t, x, y) ∈ [0, 1]× R× R.

Then,

‖A(t, x1)−A(t, x2)‖ =

∥∥∥∥2−3e−t

99 + et

(
1

1 + |x1|
− 1

1 + |x2|

)∥∥∥∥
≤ 2−3e−t

99 + et
‖|x2| − |x1|‖

≤ 2−3e−t

99 + et
‖x1 − x2‖

≤ 1

800
‖x1 − x2‖,

and similar to Example 1, we obtain

|f(t, x1, y1)− f(t, x2, y2)| ≤ 1

50
(|x1 − x2|+ |y1 − y2|) .

So, we have
T = 1, α = 1

4 , m = 2, q = ‖ω‖L1 =
∑m
k=1 ak = 1

50 , u0 = 1, a = 1
800 , b = 0, ρ =

50, γ1 = 1
Γ( 5

4 )
, γ2 = 1

Γ( 5
4 )

+ 1
Γ( 3

2 )
and λ2 = 9

50 ∈ (0, 1
2 ). The quadratic equation

will be

0.00608 σ2 − 0.66013 σ + 4.145 = 0.

Therefore, all conditions of Theorem 5 are satisfied. Then, problem (45) has a
unique mild solution x ∈ B6.7 ⊂ L1([0, 1],R).
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