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SOME PROPERTIES OF VARIABLE-ORDER FRACTIONAL
CALCULUS

SHUQIN ZHANG AND LEI HU

ABSTRACT. The topic of fractional calculus ( derivatives and integrals of ar-
bitrary orders) is enjoying growing interest not only in Mathematics, but also
in Physics, Engineering and Mathematical Biology (see [?]-[?] for example).
In this paper we are concerned with the fractional-order differential equations
describe Games with non-uniform interaction rate [?] and Asymmetric games
[?]. Existence, uniqueness and stability of the solutions of these systems are
studied.

ABSTRACT. The operators of variable-order, which fall into a more complex
category, are the derivatives and integrals whose orders are the functions of
certain variables. In this work, we discuss some properties of variable-order
fractional calculus.

1. INTRODUCTION

Recently, operators and differential equations of variable-order have been consid-
ered, see [2]-[29]. In these works, authors considered the applications of derivative of
variable-order in various science such as anomalous diffusion modeling, mechanical
applications, multi-fractional Gaussian noises. Among of these, there have many
works dealing with numerical methods for some class of variable-order fractional
differential equations, for instance, [8], [10], [16], [17], [18], [19], [22], [23], [26].
Moreover, a physical experimental study of variable-order operators has been con-
sidered in [15]. A comparative study of constant-order and variable-order models
have been considered in [13]. The fractional differential equations are the general-
ization of differential equations of integer order. The fractional operators (fractional
derivatives and integrals) are the generalization of integer-order differential and in-
tegral operators. It is well known that the motivation for those works rises from
both the development of the theory of fractional calculus itself and the applications
of such constructions in various sciences such as physics, chemistry, aerodynamics,
electro-dynamics of complex medium, polymer rheology, and so on.
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In view of the Laplace transform, semigroup property of the constant order
fractional integration operators and some other properties of fractional derivatives
and integrals, the fractional differential equations can be transformed into their
equivalent integral equations. However, we notice that there has few results for the
variable-order fractional integrals and derivatives. Therefore, the main contribution
of this paper is to show that the variable-order fractional integrals do not have
semigroup properties, and that there is no explicit connection between the Laplace
transforms of function z(t) and variable-order integrals and derivatives to x(t).

2. PRELIMINARIES

We give several definitions of variable-order fractional integrals and derivatives,
which can be found in [10]. We let —0co < a < b < 0.

Definition 2.1 ([I0]). Let p : [a,b] x R — (0,+400), the left Riemann-Liouville
fractional integral of order p(¢,x(¢t)) for function z(t) are defined as the following
two types

Pty — [ (= 8)”“ PO e £ a

Ia+ (t) 7/(1 (p( )) ( )d ) t> ) (21)
_ gypls.a(s)

Ig_(:’m(t))x(t) = /a M (S)dS, t>a. (22)

Definition 2.2 ([I0]). Let p : [a,b] x R — (0,400), the left Riemann-Liouville
fractional derivative of order p(t,z(t)) for function z(t) are defined as the following

two types
d n t (t o S)nfp(t,:r(t))fl
prita(, / ds. 1 9

d\" [t (t— s)nplsz())-1
prite®) oy _ (L / 9.4
a+t x(t) 7 T = (5, 209))) x(s)ds, t > a, (2.4)

where n € N satisfies n — 1 < p(¢,z(t)) < n for all (¢,z) € [a,b] x R.
Obviously, the Riemann-Liouville fractional integral I° oy and derivative D? o4 of
function z(t) are particular cases of (2.1),(2.2) and (2.3), (2.4) (see [1]), i.e.

Ig+x(t) = ﬁ/ﬂ (t —5)° ta(s)ds, t>a,

Dbt = (4) i = s () [ s 1>

where n € N satisfies n — 1 < p(t, z(t)) < n for all (¢,z) € (0,400) xR
The following are some properties for the Riemann-Liouville fractional integral
and derivative, which can be founded in [1].

Proposition 2.1 ([I]). The Riemann-Liouville fractional integral defined for func-
tion z(t) € L(a,b) exists almost everywhere.

Proposition 2.2 ([1]). The equality 1], I, f(t) = I3, I f(t) = I;’Iéf(t), v,0 >0
holds for f € L(a,

b).
Proposition 2.3 ([I]). The equality D) I), f(t) = f(t),n—1 <~y <n(ne NT)
holds for f € L(a,b).
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Proposition 2.4 ([1]). Let n—1 < a < n(n € N1), then the differential equation
D u=0
has a unique solution
u(t) =ci(t —a)* P Hea(t —a)* 4 Fep(t—a)* " €R.

Proposition 2.5 ([1]). Let n —1 < a < n(n € NT), u € L(a,b), D u € L(a,b).
Then the following equality holds

I DX ut) =ult) +ct—a)*  +ea(t—a)* >+ +en(t—a)* ", €R

Proposition 2.6 ( [I]). Assume the Riemann-Liouville fractional integral I3, (§ >
0) and Laplace transform of function f(¢) exist, then the Laplace transform of the
Riemann-Liouville fractional integral I3, f(t) is

L{Ig+f; s} =s7°F(s),
where F'(s) is Laplace transform of function f(t).

Proposition 2.7 ([1]). Let the Riemann-Liouville fractional derivative D, (n —
1 < a<n,n€ NT)and Laplace transform of function f(¢) exist, then the Laplace
transform of the Riemann-Liouville fractional derivative D, f(t) is

n—1
L{D}, f;s} = s"F(s) = Y s" " 'DM(Ig7° F(0+)),
k=0

where F'(s) is Laplace transform of function f(t).

3. SOME FACTS FOR VARIABLE-ORDER FRACTIONAL CALCULUS

We first consider existence result for variable-order fractional integrals defined
by (2.1) and (2.2).

Lemma 3.1. Let p: [a,b] x R — [p*,q*] (0 < p* < ¢* < +00) be a real function.
Then for z € L(a,b), variable-order fractional integrals (2.1) and (2.2) exist almost
everywhere, provided that function m is bounded.

Proof. We only verify the result for variable-order fractional integral (2.2). The
proof for variable-order fractional integral (2.1) is similar to it.

By the bounded assumption of m, letting L, = sup,<;<y |m|
For a < s <t <b, when p* < p(s,z(s)) < ¢*, we have known that

if 0<t—=s<1, then (t—s)P&=EN"1 < (¢ — 5P L (3.1)
if 1<t—s<+4o0, then (t— P2~ < (3 —g)7 1, (3.2)

Thus, from (3.1), (3.2), for a < s <t < b, we have
(t— 5P <max{(t —s)P 7 (E— )T T = (E—8) T, (3.3)

where o denotes p* or ¢*.
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Thus, for z € L(a,b), by the definition of variable-order fractional integral (2.2),
using (3.3), we have

p(s,x(s))—1
\Ip(tm(t ‘/ BN ————————x(s)ds

IN

L, / (t — 5PNz (s)|ds

a

< Lp/ (t — 5)*|a(s)|ds.

It follows from Proposition 2.1 that

/ (t - )°a(s)|ds = T(a) T2, |2 (1)),

which implies that variable-order fractional integral (2.2) exists almost everywhere
for x € L(a,b). Thus we complete the proof. O

Remark 3.1. If p : [a,b] — (0,1) is a real continuous function. Then for z €
Crla,b] = {z(t) € C(a,b],t"x(t) € Cla,b]} (0 < r < min,<;<p [p(t)]), then variable-
order fractional integrals (2.1) and (2.2) exist for any points on [a, b].

In fact, it follows from the continuity of function I'(p(¢)) that L, = max,<i<p \%|
exists.

Let S = ming<;<p p(t), then, for a < s <t < b, when 8 < p(s,z(s)) < 1, we
have known that

if 0<t—s<1, then (t— )Pt < (t—s)1 (3.4)
if 1<t—s<-+o0, then (t—s)P71 <1, (3.5)

Thus, from (3.4), (3.5), for a < s <t < b, we have
(t —s)P ™t < max{(t — s)# 1, 1}. (3.6)

For z € C,[a, b], by the definition of variable-order fractional integral (2.2), using
(3.6), we have

|Ip(t )] < L /t(t — 5)P) Y (s)|ds
= P
t
= Lp/ (t —5)P~1s7 s | (s)|ds
t
< L, Oril?gbth(tﬂ/ (t —s)P~ts"ds
_ Lymaxoqsp t"l2(t)|(t — )’ T(B)T(1 - 1)
B L(1—7r+p)
o Lpymaxoqsp t'a(®)|(b - a)* "T(BT( — 1)
- ri—r+23) ’
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or
t
W a(r)] < Lp/ (t — 5)PO~1a(s)|ds
t
= Lp/ (t—s)PLs7"s"|x(s)|ds
t
< r —Tr
< L, Onglilécbt |z (t)] /a s "ds
B L, maxo<i<p t"|x(t)|(t —a)' "
B 1—r
< L, maxg<i<p t"|z(t)|(b — a)t ="

1—r ’

both the two estimations imply that variable-order fractional integral (2.2) exists
everywhere for z € C,[a,b]. The proof for variable-order fractional integral (2.1) is
similar to that.

Example 3.1 Let x(t) = 3, p(t,a(t)) = % + (2(t))? + 0.5sin(rt) = 3 +¢ +
0.5sin(7t), 0 < ¢t < 1, we will calculate the variable order integral Ig(f’x(t))x(t)
defined in (2.1).

By (2.1), for 0 < ¢ <1, we obtain that

1

/t(t_s)t+0-5sin(7rt)§5§d5: [(3)gl+tH0-5sin(mt)
L'(3 +t+ 0.5sin(nt)) Jo ['(2+t+0.5sin(rt))’

g1y =

r g)t1+t+0.5 sin(mt)

obviously, (

TOTiT055m D) is bounded for ¢ € [0, 1].

Example 3.2 Let z(t) = t3, p(t,z(t)) = i+ (z(t))? + 0.5sin(mt) = T+t
0.5sin(wt), 0 < t < 1, we will calculate the variable order integral Igf’w(t))x(t)
defined in (2.2).

By (2.2), we obtain that

t
t —

Pt gy / (

o+ ®) o I'(3 + s+ 0.5sin(rs))

s)s+0.551n(ﬂ's)7§ g

s3ds,0 <t < 1.

It follows from the continuity of Gamma function, we know that m

is bounded for s € [0,1], denoted by Mr. Moreover, for 0 < s < ¢t < 1, (¢t —
§)sTOBsin(ms) =% < (t — §)=% as a result, we have that

t
Igf)w(t))x(t)’ < MF/ (t _ S)s+0.5sin(ws)7%$%ds
0

t
< M [ (-9 stds = (UG < MET(IC).
o 3773 3773

which implies that Ig_(:’z(t))x(t) is bounded for ¢ € [0, 1].
The followi for variable-order integral I2(()) () = TDET o2
€ roliowing are curves 101 variable-order immtegra. 0+ x( ) = m,
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t (¢ g)ero 5sin(ms)— 2

p(t #(t) z
0 <t < 1defined in 2.1, and variable-order integral I f mssda 0<
t <1 defined in 2.2.

0.4 .
=== 1M %(1) in (2.1) K
,
—1/""x(1) in (2.2) y
0.3
d
'l
e i
= J
S 021 e
= .
&
N .
r"
0.1 JPtaad
00 T T T T It
0.0 0.2 0.4 0.6 0.8 1.0

FiGURE 1. 12" (t), where x(t) = 3, p(t,a(t) = & +¢ +
0.5sin(nt), 0 <t < 1.

Now, let’s take an example to consider results of Proposition 2.2 for variable-
order fractional integrals 2.1 and 2.2.

Let p(t,z(t)) = p(t),q(t,x(t)) = q(t) be not constant functions, for p,q €
C10,0],0 < b < +oo, f(t) =1,t € [0,T], we calculate Io+)Ig(+t)f( t) and I} tH_q(t)f( t).

First, according to (2.1), we have

g~ [ it i = T)(“SH F(r)drds
)
(

T(p(1)) T(q(s))
t(t—g)p®-1 ps (o ryals)—1
/0 ( r<p)<t>> / ( T(q(s))
Lt —s)p®)—t 5(s)
= | o tara®
Lgp()ta(ts) gp(ts) (1 — 5)p(t)—1
- / TN +qlts)

pOta() oy [ —s)POFAO-T B a()
Ioy f(t)—/o TG00 + 4(0) ds_F(1+p(t)+q(t))'

Thus, for f(t) =1, we see that, if
/1 tP(B)Falts) gp(ts) (1 — g)p(t)=1 P +a(t)
s = ,
o T®)(1+q(ts)) I(1+p(t) +q(t))

V)

drds

(3.7)

then we could obtain
Igf)lg_(:)f(t) _ Ig_(:)+q(t)f(t).
However, we can’t assert (3.7) holds. We only get
1 tp(t)-I-q(t)sp(t)(l — s)p®-1 p(®)+a(t)
/o CEOTL+g(®)  TA+p)+a)
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Second, according to (2.2), we have

t — g (s)—1 S(g—r (r)—1
B0 = [ [ S s
)

p(s))
I e N L
= / () / M)
B bt —s)p)=1 L galsm) (1 — g)alsm—1 )
- / N0) / FaGs)

tPOT) (1 — )P =1 (gpyaltrm) (1 — g)a(ter) =1
// (U

D(g(tpr))
tp(tr)+q(tw") 1 — p)P@r) =1 pq(trp) (1 — ) )q(tpr)—1
/ / PO (et
(p(tr)) I(q(tpr))

Ip(t)+q(t)f(t) _ /t (t — s)p(s)tals)=1 F(s)ds = /1 gp(tr)+altr) (1 — r)f’(f’")ﬂ(tr)—ldr-
o o Lp(s)+als)) 0 T (p(tr) + q(tr))

Thus, for f(t) =1, we see that, if

/1 tpUr)ta(tur) (1 — pyp(tr) =1 pa(tra) (1 — pyaltur) =1 Pt Fa(tr) (1 — gyp(tr)ta(tr)—1
0

T (i) Plaar)) M= TG rar)
(3.8)
then we could obtain

01 p(t) = 1500 p ).

However, we can’t assert (3.8) holds. We only get

Lgpltr)tatr) (] — pyptr)—a(tr) =1 p(tr) =11 _ ya(tr)=1 tp(r)+atr) (1 — pyp(tr)+altr)—1
/
0

L(p(tr)) I(q(tr)) [(p(tr) + q(tr))

Therefore, from the above arguments, we could obtain the following result.

Lemma 3.2. Let x(t),p(¢t, z(t)), q(t, z(t)) be real functions on finite interval [0, T},

assume that variable-order fractional integrals Ip(t 2(®)) z(t), Ig_(:’m(t))x(t) and Igg_t’w(t))ﬂ(t’m(t))x(t)

defined by (2.1), (2. 2) exist. In general case, we could claim that

Ip(t) I(t)IQ(t ’ ( ) # Ip(t (®)Fa(t.e(t)) x(t), for some points in [0, T.

In particular, for general functions 0 < p(t,x(t)) < 1 and x(t), we have
Igf’w(t))Ié;p(t’z(t))x(t) =+ Ig_(:,z(t))ﬂfp(t@(t))x(t) = I, z(t), for some points in [0, 7.

In order to demonstrate the claim of Lemma 3.2, we give the following two ex-
amples about variable order fractional integrals (2.1) and (2.2).

Example 3.3 Let p(t) =¢,0 <t <3, q(t) = £+ 3, f(t) =1,0 <t < 3. Now,
we calculate Ip(t)Iq(t) f(t)|t=2 and Igf)+q(t)|t:2 defined in (2.1).
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We see that

pt) a(t) _ bt — s)PD=1 [ (5 pyals)-1 o
Ioy 1oy f(t) = /O @) /O Ta() f(r)drd

tp_ \t=1 s (o V5431
= / (t=s) / G s
0 t) o T(5+3)

—

_ /2 (t— S)ZIS%:% ds + /t (t— s)ilséjéds
o LOT(E+3) 2 L(OT(5+3)

We set M; = maxo<i<3 |F p(t))‘ and My = maxo<s<3 |F7+)‘ For 2 <t <3, it
follows from

t l s l_;,_i
/ (t— ) Ssads / |3t 1| t 1’ 5343 __ds
> TOT(5+%) rers+3)
<M M, | 3371 (L2224
<My M, / (=)
t
t_
ngMQ/ 322" %24
9 3
_ 3M Myt (t — 2)?
N 2
that . .
t— t—1.x+%2
[t
2 TOT(5+3) =2
So, we get
_ 14 s
Ip(t)Iq(t) ( )|t_ /2 (2 — 3)2 l1g5+3 ds ~ 1.79
0 F(Q)F(%‘f‘%)
and
2 p(2)+q(2)—-1 2p(2)+4(2) 4
Ié’f’*““fa)h:f/ ot == el
o T'(p(2)+4q(2) I(1+p(2) +4q(2) 3
Therefore,

IO FOlims # 10T ()] =2
Example 3.4 Let p(t ) =t q(t) =1, f(t) = 1,0 <t < 3. Now, we calculate
18D £(#)],=y and 12990 £(1)),_ defined in (2.2).

La—s)s=t ¢ (s — 7)1 ! (1—s)*"1s
PO £,y = / ( / drds = / ) P s~ 0.472.
bl SOl = f T ) T o T

and
1 1
1—s)* (1-s)°
PO ey :/ d-s, :/ L5 45 ~ 0.686.
0+ F®)le=1 Tt D) s ST (s) S
Therefore,

£ rq(t Dtqlt
Igi)fgi) J(t)]e=1 # I(I])i) at )f(t)|t:1
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Remark 3.2. According to Lemma 3.2, we could claim that variable-order calculus
of non-constant functions p(¢, z(t)) for x(t) defined by (2.1),(2.2) don’t have the
properties like Propositions 2.3-2.5.

Integral and derivative of variable-order (2.1), (2.2) and (2.3), (2.4), defined on a
finite interval [a, b] of the real line R, are naturally extended to the half-axis on R™.
The variable-order integration and differentiation constructions, corresponding to
the ones in (2.1),(2.2) and (2.3), (2.4), having the following forms

t(p_ g)p(ta(t)—1
() = /O M x(s)ds, t >0, (3.9)
_ )p(s,a(s)—1
ot d s\ p(t z(t))—1
DR (1) = (dt) /0 (F(n) p(t,x(t))) x(s)ds, t >0, (3.11)

(txan d\" t(t——s)”‘?@#dsn—lx "
=) = (dt) /0 T(n — p(s,z(s))) (s)ds, ¢ > 0. (3.12)

Let L[z(t); s], L[Ip() (t); s], L[Dg_(:)x(t);s] denote the Laplace transforms of
functions x(t), If} (®) x(t) and Dg_(,_t)m(t). We find that there there is no explicit
connection between L[z(t); s] and L[Ig_(:)x(t); s, as a result, there is also no explicit
connection between L[z(t); s] and L[Dg_(f)a:(t); s].

Lemma 3.3. Let x(t), p(t, z(t)) be real functions, assume that variable-order frac-
tional integrals If} (t.(8)) x(t) defined by (3.3) exists, and the Laplace transform-
s L[x(t);s] and L[Ip(t (1)) x(t); s] exist. There is no explicit connection between

Llz(t); s] and L[IZ" (1) s].

Proof. By definitions of variable-order fractional integral (3.9) and Laplace trans-
form, we get

_ P(tf(t)) 1
LI (e / / 1) oty

/ / 7)P(te(t) = ( \dtd
CToam)
/ 7S(T+T)/ rtrretrtn)” x(7)drdr
0 0 T(p(7+7"796(7+7“)))
o oo Tp('r-&-r,m(r—i—r))—l
= /0 e ST:E(T)/O e STF(p(T—F’/‘,JZ(T-I—T)))drdT
— /Oo e_STOC(T)L[ pp(rtma(ttn)) -1 s} dr.
o Clp(r+7),z(r+71))’

pplrtra(t4) —1
T(p(r+7),z(r+71)) )

Since we couldn’t know what L{ ] equals to, this implies that

we couldn’t know the explicit connection between L[z(t); s] and L[Igg’x(t))x(t); s].

Thus, we complete the proof. (I
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Example 3.5 We consider the Laplace transforms of functions t*, A > —1 and

t t2—1
t—s) L1+ e
Ip(t)t,\:/ ( Ads — 2N
0+ o T T T T+ a+e)

We could know

o 1+ A
L[t*; s] :/0 e Sthdt = 7(81: ),

© T4
I Ip(t) . :/ st 24 1
[Toy 't 8] ; e 7I‘(1+)\+t2)t dt, (3.13)
L[Ip(t)t)"s] = /OO e~ st /t t-—n= T)tzilTAdet
o 0 o T(?)

Il
S—
8
I
2
S~
3
—
oy
—| |
|2
O~
|
AR
\]
>
joH
o
ISH
\]

/OO 7S(T+T) /Oo T(T+T)271 )\d d
= € — 57 arart
0 o D((r+7)?)
o 0 (74+7)%2-1
—S8T A —sr T
e Tt e ' ———drdr
/0 /0 I'((r+7)?)
0 (r+7)%-1
—ST,__\ r
e "L | =——; s|dr.
/0 [F((T+T)2) ]

By (3.13) and (3.14), we could assure that there is no explicit connection between
L[z(t); s] and L[Igf’m(t))x(t);s].

By the similar arguments, we could get the same result as Lemma 3.2 for variable-
order fractional integral defined by (3.10).

Lemma 3.4. Let x(t), p(t,z(t)) be real functions, assume that variable-order frac-
tional integrals Igf’x(t))x(t) defined by (3.4) exists, and the Laplace transform
Llz(t); s] and L[Igg’x(t))x(t);s] exist. There is no explicit connection between
Llz(t); s] and L[IZ" () o).

(3.14)
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Proof. By definition of variable-order fractional integral (3.10) and Laplace trans-
form, we get that

i t_ Jpl(ra(m)-1
Lt at = [T [

_ / et / p(m(;)))) " o(r)dtdr

_s(‘r—i—r) /OO ’I“p(T (7))—1 ( )d d
- &\7)arart
o Dlp(r, (7))

] x(7) / e ST (M) =L gy
0

- N e R TR
|ty oH ol

e T,
- [ s pH) ;

sp(T,2(7))

= / e*STs*p(T’w(T))x(T)dT.

0

These imply that we couldn’t know explicit connection between L[z(t);s] and
L[Igg_t’z(t))x(t); s]. Thus, we complete the proof. O

Example 3.6 We consider the Laplace transforms of functions t*, A > —1 and

I t)tA fo tr‘?Q) s*ds. We could know

o) t t— 7_)7'2—1
LIt s = / et / (Ul M v
[ o+ ] 0 0 r(r?)

_ T 21
/ _“/ (t—7) ~ L dtdr

oo 7.72—1
—G(T+T) o )\d d
/0 F(TZ)T raTt

T)‘L[rTz_l; sldr
T

e~ ST
I'(72?)
7575772

M. (3.15)

/e
-

|

0
By (3.13) and (3.15), we could assure that there is no explicit connection between
Llz(t); s] and LIZ (1) s].

In view of Lemmas 3.2-3.3 and the connection between Laplace transforms of
function z(t) and its derivative z'(t), we couldn’t obtain the Laplace transform
formula for variable-order fractional derivatives (3.11) and (3.12).
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Lemma 3.5. Let x(t), p(t, z(t)) be real functions, assume that variable-order frac-
tional derivatives Dg(f’w(t))x(t) defined by (3.11), (3.12) exist, and the Laplace trans-
form L[x(t); s] and L[Dggf’w(t))x(t); s] exist. There is no obvious connection between
L[Dggf’x(t))x(t); s] and L[xz(t); s].

(1]
2]
(3]
(4]
(5]
(6]
(7]

(14]

(15]

[16]

(17)

(18]

(19]
20]

21]

(22]

REFERENCES

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential
Equations, Elsevier B. V., Amsterdam, 2006.

A. Razminia, A.F. Dizaji, V.J. Majd, Solution existence for non-autonomous variable-order
fractional differential equations, Mathematical and Computer Modelling, 55(2012) 1106-1117.
S.G.Samko, Fractional integration and differentiation of variable order, Analysis Mathemat-
ica, 21(1995) 213-236.

S.G.Samko, B.Boss, Integration and differentiation to a variable fractional order, Integral
Transforms and Special Functions, 1(4)(1993) 277-300.

C.C.Tseng, Series expansion design for variable fractional order integrator and Differentiator
using logarithm, Signal Processing, 88(2008) 278-2292.

C.F.M. Coimbra, Mechanics with variable-order differential operators, Annalen der Physik,
12(2003) 692-703.

C.F. Lorenzo, T.T. Hartley, Variabe order and distributed order fractional operators, Non-
linear Dynamics, 29(2002) 57-98.

C.H. Chan, J.J. Shyu, R. H.H. Yang, An iterative method for the design of variable fractional-
order FIR differintegrators, Signal Processing, 89(2009) 320-327.

C.H. Chan, J.J. Shyu, R.H.H. Yang, A new structure for the design of wideband variable
fractional-order FIR differentiator, Signal Processing, 90(2010) 2594-2604.

D Valerio, J.S. Costa, Variable-order fractional derivatives and their numerical approxima-
tions. Signal Processing, 91(2011)470-483.

C.H. Chan, J.J.Shyu, R.H.H. Yang , Iterative design of variable fractional-order IIR differin-
tegrators, Signal Processing, 90(2010) 670-678.

H.G. Sun, W. Chen, Y.Q. Chen, Variable-order fractional differential operators in anomalous
diffusion modeling, Physica A, 388(2009) 4586-4592.

H.G. Sun, W. Chen, H. Wei, Y.Q. Chen, A comparative study of constant-order and variable-
order fractional models in characterizing memory property of systems, The European Physical
Journal Special Topics, 193(2011) 185-192.

H. Sheng, H.G. Sun, Y.Q. Chen, T. Qiu, Synthesis ofmultifractional Gaussian noises based
on variable-order fractional operators, Signal Processing, 91(2011) 1645-1650.

H. Sheng, H.G. Sun, C. Coopmans, Y.Q. Chen, G.W. Bohannan, Physical experimental
study of variable-order fractional integrator and differentiator, in: Proceedings of the 4th
IFAC Workshop on Fractional Differentiation and its Applications(FDA’10), 2010.

R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference
approximation for the variable-order nonlinear fractional diffusion equation, Applied Mathe-
matics and Computation, 2(2009) 435-445.

X.Y. Li, B. Wu, A numerical technique for variable fractional functional boundary value
probems, Applied Mathematics Letters, 43(2015) 108-113.

Y.M. Chen, Y.Q. Wei, D.Y, Liu, H.Yu, Numberical solution for a class of nonlinear variable
order fractional differential equations with Legendre Wavalets, Applied Mathematics Letters,
46(2015) 83-88.

Y. Jia, M. Xu, Y.Z. Lin, A numberical solution for variable order fractional functional differ-
ential equations, Applied Mathematics Letters, 64(2017) 125-130.

X. Yang, J. A. Tenreiro Machado, A new fractional operator of variable order: Application
in the description of anomalous diffusion, Physica A, 481(2017) 276-283.

G.Pang, P.Perdikaris, W.Cai, G.E.Karniadakis, Discovering variable fractional orders of
advection-dispersion equations from field date using multi-fidelity Bayesan optimization,
Journal of Computational Physicis, 348(2017) 694-714.

H.Sun, X.Liu, Y.Zhang, G.Pang, R.Garrard, A fast semi-discrete Kansa method to solve
the two-dimensional spatiotemporal fractional diffusion equation, Journal of Computational
Physicis, 345(2017) 74-90.



JFCA-2020/11(2) SOME PROPERTIES OF VARIABLE-ORDER FRACTIONAL 185

[23] J. Yang, H. Yao, B. Wu, An efficient numberical method for variable order fractional func-
tional differential equation, Applied Mathematics Letters, 76(2018) 221-226.

[24] J. Vanterler da C.Sousa, E. Capelas de Oliverira, Two new fractional derivatives of vari-
able order with non-singular kernel and fractional differential equation, Computational and
Applied Mathematics, 37(4) (2018) 5375-5394.

[25] Y. Kian, E. Sorsi, M. Yamamoto, On time-fractional diffusion equations with space-dependent
variable order, Annales Henri Poincaré, 19 (2018) 3855-3881.

[26] W. Malesza, M. Macias, D. Sierociuk, Analysitical solution of fractional variable order differ-
ential equations, Journal of Computational and Applied Mathematics, 348 (2019) 214-236.

[27] M. Hajipour, A. Jajarmi, D. Baleanu, H. Sun, On an accurate discretization of a variable-
order fractional reaction-diffusion equation, Commun Nonlinear Sci Numer Simulat, 69(2019)
119-133.

(28] S. Zhang, S. Li, L. Hu, The existeness and uniqueness result of solutions to initial value
problems of nonlinear diffusion equations involving with the conformable variable derivative,
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matemdticas,
(2018) https://doi.org/10.1007/513398-018-0572-2.

[29] S. Zhang, The uniqueness result of solutions to initial value problems of differential equations
of variable-order, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie
A. Matemaéticas, 112(2018) 407-423.

SHUQIN ZHANG
SCHOOL OF SCIENCE, CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING, CHINA
E-mail address: zsqjk@163.com

LEI Hu
SCHOOL OF SCIENCE, SHANDONG JIAOTONG UNIVERSITY, JINAN, 250357, CHINA
E-mail address: huleimath@163.com



	1. Introduction
	2. Preliminaries
	3.  Some Facts for variable-order fractional calculus
	References

