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FRACTIONAL VECTOR TAYLOR AND CAUCHY MEAN VALUE

FORMULAS

JINFA CHENG, WEIZHONG DAI

Abstract. By defining fractional integrals and fractional derivatives along
directed line segments that correspond to multivariable, we derive fractional
vector Taylor formulas and fractional vector Cauchy mean value formulas in
the sense of the Riemann-Liouville fractional derivative, the Caputo fractional

derivative, and the sequential fractional derivative, respectively. These for-
mulas can be reduced to some well-known results and classical formulas in
calculus. Several examples are given to verify and illustrate the Taylor and
Cauchy mean value formulas as well as test the applicability of the new direc-

tional fractional derivatives to the solution of fractional differential equations.

1. Introduction

Fractional vector calculus, which includes fractional differential operators (gra-
dient, divergence, curl), fractional integral operations (flux, circulation), and frac-
tional formulas of Taylor, Green, Gauss, Stokes, etc., as well as fractional calculus,
fractionnal differential equations and fractional variational principle, has attracted
great attentions (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] for example).
This is because it is an important tool for describing processes in complex media,
non-local materials and distributed systems in multi-dimensional space [8, 11, 12]
and for solving fractional partial differential equations (see [6, 10, 13] for example).
For this reason, in this study we focus on the development of the fractional Taylor
formula and the fractional Cauchy mean value formula for multivariable functions
in the sense of the Riemann-Liouville fractional order derivative, the Caputo frac-
tional order derivative, and the sequential fractional order derivative, respectively,
where the fractional order α is in 0 < α ≤ 1. In particular, the Caputo frac-
tional derivative is usually convenient for dealing with the initial conditions which
are given in terms of the field variables and their integer orders in most physical
processes [16, 17].

It is noted that the fractional Taylor formulas for the single variable case have
been obtained by many researchers, such as [18, 19, 20, 21, 22, 23, 24, 25, 26], in
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various expressions for solving fractional order differential equations. Among them,
Trujillo et al. [21] derived a fractional Taylor formula with a remainder in the form
of fractional order derivative as

f(x) =

n∑
j=0

cj
Γ((j + 1)α)

(x− a)
(j+1)α−1

+
1

Γ((n+ 1)α)

∫ x

a

(x− t)(n+1)α−1D(n+1)α
a f(t)dt,

(1)
and a Taylor mean value expression

f(x) =
n∑
j=0

cj
Γ((j + 1)α)

(x− a)
(j+1)α−1

+
(D

(n+1)α
a f)(ξ)

Γ((n+ 1)α+ 1)
(x− a)(n+1)α, (2)

as well as a Cauchy mean value equation

f(x)−
n∑
j=0

cj
Γ((j+1)α) (x− a)

(j+1)α−1

g(x)−
n∑
j=0

dj
Γ((j+1)α) (x− a)

(j+1)α−1
=

(D
(n+1)α
a f)(ξ)

(D
(n+1)α
a g)(ξ)

. (3)

Here, a ≤ ξ ≤ x, D
(n+1)α
a g(x) ̸= 0, and 0 < α ≤ 1, cj = Γ(a)[(x− a)1−αDjα

a f ](a+),
dj = Γ(a)[(x− a)1−αDjα

a g](a+), j = 0, 1, ..., n, where a+ denotes the limit obtained
based on x approaching to a from the right-hand-side of a, and Dnα

a denotes the se-
quential fractional Riemann-Liouville derivative that is defined asDnα

a = Dα
a · · ·Dα

a

repeating n times.
Odibat and Shawagfeh [22] obtained another fractional Taylor formula with a

remainder in the form of fractional order derivative

f(x) =
n∑
j=0

(x− a)
jα

Γ(jα+ 1)
(CDjα

a f)(a)+
1

Γ((n+ 1)α)

∫ x

a

(x− t)(n+1)α−1[CD(n+1)α
a f ](t)dt,

(4)
and

f(x) =

n∑
j=0

(x− a)
jα

Γ(jα+ 1)
(CDjα

a f)(a) +
(
C
D

(n+1)α
a f)(ξ)

Γ((n+ 1)α+ 1)
(x− a)(n+1)α, (5)

as well as a Cauchy mean value equation

f(x)−
n∑
j=0

(x−a)jα
Γ(jα+1) (

CDjα
a f)(a)

g(x)−
n∑
j=0

(x−a)jα
Γ(jα+1) (

CDjα
a g)(a)

=
(
C
D

(n+1)α
a f)(ξ)

(
C
D

(n+1)α
a g)(ξ)

, (6)

where a ≤ ξ ≤ x, D
(n+1)α
a g(x) ̸= 0, and CDjα

a denotes the sequential fractional
Caputo derivative that is defined as CDjα

a = CDα
a · · · CDα

a repeating j times.
In vector calculus, the classical Taylor formula can be expressed as

f(x+ h)− f(x) =
m−1∑
k=1

1

k!
(h1∂1 + · · ·+ hn∂n)

kf(x) + rm−1(x,h), (7)

where x = (x1, . . . , xn),x+ h = (x1 + h1, . . . , xn + hn), and

rm−1(x,h) =
1

(m− 1)!

∫ 1

0

(1− t)m−1(h1∂1 + · · ·+ hn∂n)
mf(x+ th)dt. (8)
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Here, ∂i is the partial derivative operator corresponding to the ith variable of f(x).
Furthermore, when lim

m→∞
rm−1(x,h) = 0, the formula becomes

f(x+ h) =
∞∑
k=0

1

k!
(h1∂1 + · · ·+ hn∂n)

kf(x). (9)

To our best knowledge, only few references [27, 28, 29] have generalized the
multivariate Taylor formula to the multivariable fractional case.

Jumarie [27] presented a fractional Taylor formula with two variables as

f(x1 + h1, x2 + h2) = Eα(h
α
1 ∂

α
1 )Eα(h

α
2 ∂

α
2 )f(x1, x2)

= Eα(h2
α∂α2 )Eα(h

α
1 ∂

α
1 )f(x1, x2)

= Eα[(h1∂1+h2∂2)
α]f(x1, x2), (10)

where ∂α1 and ∂α2 are Riemann-Liouville fractional partial derivatives of order α
with respect to the first and second variables of function f(x1, x2), respectively,
and Eα(x) denotes the Mittage-Leffler function given by the expression [15, 17, 30,
31, 32, 33, 34]:

Eα(t) =
∞∑
k=0

tk

Γ(αk + 1)
, (11)

implying

f(x1 + h1, x2 + h2) =
∞∑
k=0

1

Γ(αk + 1)
(h1∂1+h2∂2)

αkf(x1, x2). (12)

However, Eq. (10) seems not quite right since Eα[(u+ v)α] ̸= Eα(u
α)Eα(v

α) except
α = 1. This may lead to Eq. (12) to be correct only when α = 1.

Furthermore, Anastassiou [28, 29] obtained a fractional vector Taylor formula
with the remainder consisting of two Riemann-Liouville fractional integrals as fol-
lows:

f(y) = f(x) +

n∑
i=1

[yi − xi]
∂f(x)

∂xi
+

m−1∑
l=2

1

l!

(
n∑
i=1

{[yi − xi]
∂

∂xi
}lf

)
(x)

+
1

Γ(γ)

∫ 1

0

(1− t)γ−1D
−(m−γ)
0

(
n∑
i=1

{[yi − xi]
∂

∂xi
}mf

)
(x+t(y−x))dt. (13)

From our view, Eq. (13) is the first correct and significant generalization of the
classical multivariate Taylor formula. The only drawback seems that the expression
is not concise as desired and its proof is a little tediou, and in addition, Eq. (13)
was given based on the Caputo fractional derivative, and on the other hand, Cauchy
mean value formulas were not given there. Thus, simplifying the expression in Eq.
(13) and further obtaining multivariate fractional Taylor formulas based on other
definitions such as the Riemann-Liouville derivative and the sequential fractional
derivative, as well as obtaining multivariate fractional Cauchy mean value formulas
are interesting and could be useful for the reason aforementioned. For this purpose,
in our manuscript, the novelty idea is that we firstly define fractional integrals and
fractional derivatives along directed line segments which correspond to multivari-
able and then we find that it is very convenient to use them to derive fractional
vector Taylor formulas and fractional vector Cauchy mean value formulas in the
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sense of the Riemann-Liouville fractional order derivative, the Caputo fractional
order derivative, and the sequential fractional order derivative, respectively, where
the fractional order α is in 0 < α ≤ 1. Several examples are given to verify and
illustrate Taylor and Cauchy mean value formulas as well as test the applicability
of the new directional fractional derivatives to the solution of fractional differential
equations.

2. Definitions and Lemmas

We start with some fundamental fractional definitions. For the detailed infor-
mation on them, we refer the readers to these articles and books in the literature
[3, 5, 15, 17, 21, 29, 30, 31, 32, 33, 34].

Definition 2.1 [21, 22] A function φ(s)(s ≥ 0) is said to be in the space Cv(ν ∈
R) if it can be written as φ(s) = spφ1(s) for p > ν where φ1(s) is continuous in

[0,∞), and it is said to be in the space C
(m)
ν if ν(m) ∈ Cν ,m ∈ N.

Definition 2.2 [17, 32, 33] Assume φ(s) ∈ Cν(a,∞). The Riemann-Liouville
integral operator of order ν > 0 is defined as

(D−ν
a φ)(s) =

1

Γ(ν)

∫ s

a

(s− t)
ν−1

φ(t)dt, s > a. (14)

Definition 2.3 [17, 32, 33] The Riemann-Liouville fractional derivative of φ(s)
of order µ > 0 is defined as

(Dµ
aφ)(s) =

dm

dsm
(Dµ−m

a φ)(s) =
dm

dsm
[

1

Γ(m− µ)

∫ s

a

φ(t)

(x− t)
µ+1−m dt] (15)

for m− 1 < µ ≤ m,m ∈ N, s ≥ a.
Definition 2.4 [17, 32, 33] The Caputo fractional derivative of φ(s) of order

µ > 0 is defined as

(CDµ
aφ)(s) = (Dµ−m

a φ(m))(s) =
1

Γ(m− µ)

∫ s

a

φ(m)(t)

(x− t)
µ+1−m dt (16)

for m− 1 < µ ≤ m,m ∈ N, s ≥ a.
The fractional Taylor formulas, Taylor mean value theorems, and Cauchy mean

value theorems in one variable have been developed by many researchers in various
expressions. Here, we list some important results for reference and comparison
later.

Theorem 2.1 [32, 33] (Univariate fractional Taylor theorem with Riemann-
Liouville derivative). Assume ν > 0, m is the smallest integer exceeding ν, and
φ ∈ Ck([a, b]). Then

φ(b) =
m∑
j=1

Dν−j
a φ(a)

Γ(ν − j + 1)
(b− a)ν−j +D−ν

a [Dν
aφ(t)]

=
m∑
k=0

Dν−j
a φ(a)

Γ(ν − j + 1)
(b− a)ν−j +

1

Γ(ν)

∫ b

a

(b− t)ν−1Dν
0φ(t)dt. (17)

Theorem 2.2 [32, 33] (Univariate fractional Taylor theorem with Caputo
derivative). Assume ν > 0, m is the smallest integer exceeding ν, and φ ∈
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Ck([a, b]). Then

φ(b) =

m−1∑
k=0

φ(k)(a)

k!
(b− a)k +D−ν

a [CDν
aφ(t)]

=
m−1∑
k=0

φ(k)(a)

k!
(b− a)k

1

Γ(ν)

∫ s

0

(s− t)ν−1[CDν
0φ(t)]dt. (18)

Using the classical Cauchy integral mean value theorem and the Lagrange mean
value theorem together with Eq. (17), one may easily obtain the following corollary.

Corollary 2.1 [32, 33] (Univariate fractional Taylor and Cauchy mean
formulas with Riemann-Liouville derivative). Assume ν > 0 and m is the
smallest integer exceeding ν. Then, there exists ξ ∈ (a, b) such that

φ(b) =

m∑
j=1

Dν−j
a φ(a)

Γ(ν − j + 1)
(b− a)ν−j +

Dν
0φ(ξ)

Γ(ν + 1)
(b− a)ν , (19)

and

φ(b)−
m∑
j=1

Dν−j
a φ(a)

Γ(ν−j+1) (b− a)ν−j

ψ(b)−
m∑
j=1

Dν−j
a ψ(a)

Γ(ν−j+1) (b− a)ν−j
=
Dν

0φ(ξ)

Dν
0ψ(ξ)

, (20)

where CDν
0ψ(x) ̸= 0.

Corollary 2.2 [32, 33] (Univariate fractional Taylor and Cauchy mean
formulas with Caputo derivative). Assume ν > 0 and m is the smallest integer
exceeding ν. Then, there exists ξ ∈ (a, b) such that

φ(b) =

m−1∑
k=0

φ(k)(a)

k!
(b− a)k +

CDν
0φ(ξ)

Γ(ν + 1)
(b− a)ν , (21)

and

φ(b)−
m−1∑
k=0

φ(k)(a)
k! (b− a)k

ψ(b)−
m−1∑
k=0

ψ(k)(a)
k! (b− a)k

=
CDν

0φ(ξ)
CDν

0ψ(ξ)
, (22)

where CDν
0ψ(x) ̸= 0.

3. Fractional Vector Taylor and Cauchy formulas

In order to derive fractional vector Taylor formulas and Cauchy mean value for-
mulas, we first give some related definitions about fractional integral and derivative
corresponding to multivariable.

Consider two points P0 : x = (x1, ..., xn) and P1 : y = (y1, ..., yn) in Ω, where
Ω ⊂ Rn is a compact and convex domain. Let h = y − x = (h1, ..., hn). For any
0 ≤ s ≤ 1, denote Ps : z = x + sh, and assume f(z) ∈ C(Ω). It can be seen that
every point Ps is in the directed line segment P0P1. Define

φ(s) = f(x+ sh), 0 ≤ s ≤ 1. (23)
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Then, for ν > 0, Definition 2.2 gives

(D−ν
0 φ)(s) =

1

Γ(ν)

∫ s

0

(s− t)
ν−1

φ(t)dt

=
1

Γ(ν)

∫ s

0

(s− t)
ν−1

f(x+ th)dt. (24)

From Eq. (24), we can define the Riemann-Liouville fractional integral of f(z) of
order ν > 0 along the directed line segment P0Ps.

Definition 3.1. For fixed points P0 : x = (x1, ..., xn), P1 : y = (y1, ..., yn) in
Ω and for any point Ps : z = x + sh,assume f(z) ∈ C(Ω). Define the Riemann-
Liouville fractional integral of f(z) of order ν along the directed line segment P0Ps

as

(D−ν
x f)(x+sh) =

1

Γ(ν)

∫ s

0

(s− t)
ν−1

f(x+ th)dt, (25)

where h = y − x and 0 ≤ s ≤ 1. In particular, when s = 1, it gives

(D−ν
x f)(y) =

1

Γ(ν)

∫ 1

0

(1− t)
ν−1

f(x+ th)dt. (26)

Remark 3.1. If hi = yi − xi ̸= 0, h1 = · · · = hi−1 = hi+1 = · · · = hn = 0, then
Eq. (26) can be reduced to

(D−ν
x f)(y) =

1

Γ(ν)

∫ 1

0

(1− t)ν−1f(x1, ..., xi−1, xi + t(yi − xi), xi+1,..., xn)dt

= (yi − xi)
−ν 1

Γ(ν)

∫ yi

xi

(y − τ)ν−1f(x1, ..., xi−1, τ, xi+1, ..., xn)dτ

= (yi − xi)
−ν [D−ν

xi
f ](x1, ..., xi−1, yi, xi+1,..., xn).

From Eqs. (23)-(26), one may obtain the following lemma.
Lemma 3.1. For fixed vectors x,y ∈ Ω ⊂ Rn and any vector z = x+ sh, (0 ≤

s ≤ 1), assume f(z) ∈ C(Ω). Then it holds

(D−ν
x f)(x+sh) = (D−v

0 φ)(s), 0 ≤ s ≤ 1, (27)

and

(D−ν
x f)(y) = (D−v

0 φ)(1), (D−ν
x f)(x) = (D−v

0 φ)(0). (28)

Lemma 3.2. For α, β > 0 and fixed vectors x,y ∈ Ω ⊂ Rn, and for any vector
z = x+ sh, (0 ≤ s ≤ 1), assume f(z) ∈ C(Ω). Then it holds

D−α
x D−β

x f(x+ sh) = D−(α+β)
x f(x+ sh), (29)

and

D−α
x D−β

x f(y) = D−(α+β)
x f(y). (30)
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Proof. By Definition 3.1 and Lemma 3.1, we obtain

D−α
x D−β

x f(x+ sh) =
1

Γ(α)

∫ s

0

(s− t)
α−1

D−β
x f(x+ th)dt

=
1

Γ(α)

∫ s

0

(s− t)
α−1

D−β
0 φ(t)dt

= D−α
0 D−β

0 φ(s)

= D
−(α+β)
0 φ(s)

= D−(α+β)
x f(x+ sh).

When s = 1,the above equation becomes

D−α
x D−β

x f(y) = D−(α+β)
x f(y),

which completes the proof.
Again, from φ(s) = f(x + sh), 0 ≤ s ≤ 1,we may obtain the derivative of φ(s)

of order k ∈ N as

φ(k)(s) = (h1∂1 + · · ·+ hn∂n)
kf(x+ sh), (31)

and by Definition 2.2 and Definition 2.3, we further obtain the Riemann-Liouville
fractional derivative of order µ ∈ R+ and the Caputo fractional derivative of order
µ ∈ R+ for φ(s) as

Dµ
0φ(s) = Dk[Dµ−k

0 φ(s)], (32)

CDµ
0φ(s) = Dµ−k

0 φ(k)(s)], (33)

where k is the smallest integer exceeding µ. Based on Eq. (31), we define

Dkf(x+ sh) = (h1∂1 + · · ·+ hn∂n)
kf(x+ sh)

and

Dkf(y) = (h1∂1 + · · ·+ hn∂n)
kf(y),

when s = 1.
We now define directional Riemann-Liouville and Caputo fractional derivatives

of order µ for f(z) along the directed line segment P0Ps.
Definition 3.2. Assume µ > 0 and k is the smallest integer exceeding µ. For

fixed points P0 : x = (x1, ..., xn), P1 : y = (y1, ..., yn) ∈ Ω ⊂ Rn, and any point
Ps : z = x + sh, (0 ≤ s ≤ 1), define the directional Riemann-Liouville fractional
derivative of order µ for f(z) along the directed line segment P0Ps as follows:

(Dµ
xf)(x+ sh) = (DkDµ−k

x f)(x+ sh). (34)

In particular, when s = 1, it gives

(Dµ
xf)(y) = (DkDµ−k

x f)(y). (35)

Definition 3.3. Assume µ > 0 and k is the smallest integer exceeding µ. For
fixed points P0 : x = (x1, ..., xn), P1 : y = (y1, ..., yn) ∈ Ω ⊂ Rn and any point
Ps : z = x+ sh, define the directional Caputo fractional derivative of f(z) of order
µ along the directed line segment P0Ps as follows:

(CDµ
xf)(x+ sh) = (Dµ−k

x Dkf)(x+ sh). (36)

In particular, when s = 1, it gives

(CDµ
xf)(y) = (Dµ−k

x Dkf)(y). (37)
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Definition 3.4. Let 0 ≤ α ≤ 1 and n ∈ N. Dnα
x f(x+sh) denotes the sequential

directional fractional Riemann-Liouville derivative along the directed line segment
P0Ps, which is defined as

Dnα
x f(x+ sh) = Dα

0 · · ·Dα
0 ·Dα

xf(x+ sh), (38)

where Dα
0 is given in Eq. (32) and Dα

0 · · ·Dα
0 indicates repeating Dα

0 (n− 1) times.
In particular, when s = 1, it gives

Dnα
x f(y) = Dα

0 · · ·Dα
0 ·Dα

xf(y).

On the other hand, CDnα
x f(x + sh) denotes the sequential directional fractional

Caputo derivative along the directed line segment P0Ps, which is defined as

CDnα
x f(x+ sh) = (CDα

0 ) · · · (CDα
0 ) · (CDα

xf)(x+ sh), (39)

where CDα
0 is given in Eq. (33) and (CDα

0 ) · · · (CDα
0 ) indicates repeating CDα

0

(n− 1) times. When s = 1, it gives

CDnα
x f(y) = (CDα

0 ) · · · (CDα
0 ) · (CDα

xf)(y).

Lemma 3.3. Assume µ > 0 and k is the smallest integer exceeding µ. For fixed
vectors x,y ∈ Ω and any vector z = x+ sh, (0 ≤ s ≤ 1), it holds

Dkf(x+ sh) = φ(k)(s), (40)

Dkf(y) = φ(k)(1), Dkf(x) = φ(k)(0). (41)

For the directional Riemann-Liouville fractional derivative, it holds

(Dµ
xf)(x+ sh) = (Dµ

0φ)(s), (42)

(Dµ
xf)(y) = (Dµ

0φ)(1), (Dµ
xf)(x) = (Dµ

0φ)(0). (43)

For the directional Caputo fractional derivative, it holds that

(CDµ
xf)(x+ sh) = (CDµ

0φ)(s), (44)

(CDµ
xf)(y) = (CDµ

0φ)(1), (CDµ
xf)(x) = (CDµ

0φ)(0). (45)

Proof. Eqs. (40) and (41) can be easily obtained based on the definition of
Dkf(x+ sh). By Definition 3.2 and Lemma 3.1, we have

(Dµ
xf)(x+ sh) = (DkDµ−k

x f)(x+ sh)

= Dk[Dµ−k
x f(x+ sh)]

= DkDµ−k
0 φ(s)

= Dµ
0φ(s),

implying that

(Dµ
xf)(y) = (Dµ

0φ)(1), (Dµ
xf)(x) = (Dµ

0φ)(0).
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On the other hand, by Definition 3.1 and Definition 3.3, we obtain

(CDµ
xf)(x+ sh) = (Dµ−k

x Dkf)(x+ sh)

= Dµ−k
x [Dkf(x+ sh)]

=
1

Γ(k − µ)

∫ s

0

(s− t)k−µ−1Dkf(x+ th)dt

=
1

Γ(k − µ)

∫ s

0

(s− t)k−µ−1φ(k)(t)dt

= (CDµφ)(s),

implying that

(CDµ
xf)(y) = (CDµ

0φ)(1), (CDµ
xf)(x) = (CDµ

0φ)(0).

By Lemma 3.3, the following lemma can be obtained.
Lemma 3.4. For α > 0 and fixed vectors x,y ∈ Ω ⊂ Rn, denote h = y − x.

For any vector z = x+ sh, (0 ≤ s ≤ 1),it holds

Dnα
x f(x+ sh) = Dnα

0 φ(s), CDnα
x f(x+ sh) = (CDnα

0 φ)(s), 0 ≤ s ≤ 1,

and

Dnα
x f(y) = Dnα

0 φ(1), Dnα
x f(x) = Dnα

0 φ(0),

CDnα
x f(y) = (CDnα

0 φ)(1), CDnα
x f(x) = (CDnα

0 φ)(0),

whereDnα
0 φ(s) and (CDnα

0 φ)(s) denote the sequential fractional Riemann-Liouville
and Caputo derivatives, respectively.

Remark 3.2. If hi = yi − xi ̸= 0, h1 = · · · = hi−1 = hi+1 = · · · = hn = 0, then

φ(s) = f(x1, ..., xi−1, xi + sh, xi+1, ..., xn), 0 ≤ s ≤ 1,

and

φ(n)(s) = hn∂ni f(x1, ..., xi−1, xi + sh, xi+1, ..., xn)

= (yi − xi)
n∂ni f(x1, ..., xi−1, xi + sh, xi+1, ..., xn).

Thus, along this special directed line segment, the Riemann-Liouville fractional
derivative in Eq. (35) becomes

(Dµ
xf)(y) = (hi∂i)

n[
1

Γ(n− µ)

∫ 1

0

(1− t)n−µ−1φ(t)dt]

=
(yi − xi)

n

Γ(n− µ)
[∂i

n

∫ 1

0

(1− t)n−µ−1f(x1, ..., xi−1, xi + th, xi+1, ..., xn)dt]

=
(yi − xi)

n

Γ(n− µ)
(yi − xi)

µ−n[∂i
µ

∫ yi

xi

(y − τ)n−µ−1f(x1, ..., xi−1, τ, xi+1, ..., xn)dτ ]

= (yi − xi)
µ[Dµ

xi
f ](x1, ..., xi−1, yi, xi+1,..., xn),
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and the Caputo fractional derivative in Eq. (37) becomes

(CDµ
xf)(y) =

1

Γ(n− µ)

∫ 1

0

(1− t)n−µ−1φ
(n)

(t)dt

=
(yi − xi)

n

Γ(n− µ)

∫ 1

0

(1− t)n−µ−1∂ni f(x1, ..., xi−1, xi + th, xi+1, ..., xn)dt

= (yi − xi)
µ−n (yi − xi)

n

Γ(n− µ)

∫ yi

xi

(y − τ)n−µ−1∂ni f(x1, ..., xi−1, τ, xi+1, ..., xn)dτ

= (yi − xi)
µ[CDµ

xi
f ](x1, ..., xi−1, yi, xi+1,..., xn).

Using a similar argument, we can obtain the sequential directional fractional deriva-
tives along the directed line segment as

Dnα
x f(y) = (yi − xi)

nα[Dnα
xi
f ](x1, ..., xi−1, yi, xi+1,..., xn),

CDnα
x f(y) = (yi − xi)

nα[CDnα
xi
f ](x1, ..., xi−1, yi, xi+1,..., xn).

Based on the above definitions and lemmas, we now are in the position to state
the main results of this article.

Theorem 3.1 (Fractional vector Taylor formula with Riemann-Liouville
derivative). Assume that Ω ⊂ Rn is a compact and convex domain and Dν

xf(y) ∈
C(Ω). Let ν > 0 and m be the smallest integer exceeding ν. Then, for any vectors
x,y ∈ Ω, it holds

f(y) =
m∑
j=1

Dν−j
x f(x)

Γ(ν − j + 1)
+D−ν

x [Dν
xf(y)]. (46)

Proof. Let φ(t) = f(x + t(y − x)) = f(x + th) and a = 0, b = 1. By Theorem
2.1, we have

φ(1) =
m∑
j=1

Dν−j
0 φ(0)

Γ(ν − j + 1)
+

1

Γ(ν)

∫ 1

0

(1− t)[Dν
0φ(t)]dt. (47)

From Eq. (43) and by Lemma 3.3, we further obtain

φ(1) = f(y), Dν−j
0 φ(0) = Dν−j

x f(x), (48a)

1

Γ(ν)

∫ 1

0

(1− t)ν−1Dν
0φ(t)dt =

1

Γ(ν)

∫ 1

0

(1− t)ν−1Dν
xf(x+th)dt

= D−ν
x [Dν

xf(y)]. (48b)

Thus, substituting them into Eq. (47) gives Eq. (46).
Theorem 3.2 (Fractional vector Taylor formula with Caputo deriva-

tive). Assume that Ω ⊂ Rn is a compact and convex domain and CDν
xf(y) ∈

C(Ω). Let ν > 0 and m being the smallest integer exceeding ν. Then, for any
vectors x,y ∈ Ω, it holds

f(y) =
m−1∑
k=0

Dk
xf(x)

k!
+D−ν

x [CDν
xf(y)]. (49)
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Proof. Let φ(t) = f(x + t(y − x)) = f(x + th) and denote a = 0, b = 1. By
Theorem 2.2, we obtain

φ(1) =
m−1∑
k=0

φ(k)(0)

k!
+

1

Γ(ν)

∫ 1

0

(1− t)ν−1[CDν
0φ(t)]dt. (50)

From Eq. (45) and by Lemma 3.3, we further obtain

φ(1) = f(y), φ(k)(0) = Dk
xf(x), (51a)

1

Γ(ν)

∫ 1

0

(1− t)ν−1[CDν
0φ(t)]dt =

1

Γ(ν)

∫ 1

0

(1− t)ν−1[CDν
xf(x+th)]dt

= D−ν
x [CDν

xf(y)]. (51b)

Thus, substituting them into Eq. (50) gives Eq. (49).
Remark 3.3. It should be pointed out that Eq. (49) is essentially the same as

Eq. (13), and however, the expression in Eq. (49) looks much more concise than
that in Eq. (13). Also, the proof for Eq. (49) is much simpler than that for Eq.
(13).

Theorem 3.3 (Fractional vector Taylor formula with sequential Caputo
derivative). Assume that Ω ⊂ Rn is a compact and convex domain and the
sequential Caputo derivative CDkα

x f(y) ∈ C(Ω), k = 0, 1, ...,m + 1, 0 < α ≤ 1.
Then, for any vectors x,y ∈ Ω and h = y − x, it holds

f(y) =

m∑
k=0

CDkα
x f(x)

Γ(kα+ 1)
+

1

Γ((m+ 1)α)

∫ 1

0

(1− t)
(m+1)α−1 CD(m+1)α

x f(x+ th)dt.

(52)
Proof. Let φ(t) = f(x + th). Replacing f by φ with a = 0, b = 1 in Eq. (4),

we obtain

φ(1) =

m∑
k=0

CDkα
0 φ(0)

Γ(kα+ 1)
+

1

Γ((m+ 1)α)

∫ 1

0

(1− t)
(m+1)α−1

(CD
(m+1)α
0 φ)(t)dt. (53)

From Eqs. (44)-(45), we further obtain

(CDµ
xf)(x+ sh) = (CDµ

0φ)(s), (54)

(CDµ
xf)(y) = (CDµ

0φ)(1), (CDµ
xf)(x) = (CDµ

0φ)(0). (55)

Thus, substituting them into Eq. (53) gives Eq. (52).
Theorem 3.4 (Fractional vector Taylor mean value theorem with se-

quential Caputo derivative). Assume that Ω ⊂ Rn is a compact and convex
domain and the sequential Caputo derivative CDkα

x f(y) ∈ C(Ω), k = 0, 1, ...,m+1,
0 < α ≤ 1. Then, for any points x,y ∈ Ω, it holds

f(y) =
m∑
k=0

CDkα
x f(x)

Γ(kα+ 1)
+

CD
(m+1)α
x f(ξ)

Γ((m+ 1)α+ 1)
, (56)

where ξ = x+ θ(y − x) for some θ in 0 < θ < 1.
Proof. Let φ(t) = f(x + t(y − x)) and denote a = 0, b = 1. From Eq. (4), we

obtain

φ(1) =
m∑
k=0

(CDkα
0 φ)(0)

Γ(kα+ 1)
+

CD
(m+1)α
0 φ(θ)

Γ((m+ 1)α+ 1)
, (57)
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for some θ in 0 < θ < 1. From Eq. (45), we further obtain

φ(1) = f(x, y), (CDkα
0 φ)(0) = CDkα

x f(x), CD
(m+1)α
0 φ(θ) = CD(m+1)α

x f(ξ).
(58)

Thus, substituting them into Eq. (57) gives Eq. (56).
To verify the above Theorems 3.3 and 3.4, we consider the following simple

example.
Example 3.1. Consider f(y) = (y2α1 + · · ·+ y2αn )/Γ(2α+ 1), where 0 < α ≤ 1,

and Ω = {y21 + · · · + y2n 6 1}. Here, we choose x =0 = (0, · · · , 0) and ob-
tain f(0) = 0. For any vector y ∈ Ω, we denote φ(t) ≡ f(ty) = t2α(y2α1 +
· · · + y2αn )/Γ(2α+ 1). This gives CDα

0 φ(t) = tα(y2α1 + · · · + y2αn )/Γ(α+ 1) and
CD2α

0 φ(t) = y
2α
1 +· · ·+y2αn , implying that f(0) = φ(0) = 0,C Dα

0f(0) =
CDα

0 φ(0) =

0, and CD2α
0 f(z) =

C
D2α

0 φ(s) = y2α1 + · · · + y2αn . Note that CDkα
0 f(z) ∈ C(Ω),

k = 0, 1, 2. Thus, from Eq. (53) with m = 1, we obtain

φ(1) = φ(0) +
CDα

0 φ(0)

Γ(α+ 1)
+

1

Γ(2α)

∫ 1

0

(1− t)
2α−1

[CD2α
0 φ(t)]dt

= 0 + 0 +
y2α1 + · · ·+ y2αn

Γ(2α+ 1)
, (59)

implying that

f(y) =
y2α1 + · · ·+ y2αn

Γ(2α+ 1)
= 0 + 0 +

y2α1 + · · ·+ y2αn
Γ(2α+ 1)

= f(0) +
CDα

0f(0)

Γ(α+ 1)
+

1

Γ(2α)

∫ 1

0

(1− t)
2α−1

[
C
D(m+1)α

x f ](x+ th)dt. (60)

Hence, we have verified Eq. (52) to be true when m = 1.

Furthermore, from CDα
0 φ(t) = tα(y2α1 +· · ·+y2αn )/Γ(α+ 1) and CD2α

0 φ(t) = y
2α
1 +

· · ·+ y2αn , we see CDα
0f(y) =

CDα
0 φ(1) = (y2α1 + · · ·+ y2αn )/Γ(α+ 1), CDα

0f(0) =
CDα

0 φ(0) = 0, CD2α
0 f(y) =

C
D2α

0 φ(1) = y2α1 + · · ·+ y2αn , and

CD2α
0 f(ξ) =

C
D2α

0 f(θy) =
C
D2α

0 φ(θ) = y
2α

1 + · · ·+ y2αn .

Note that CDkα
0 f(y) ∈ C(Ω), k = 0, 1, 2. Thus, from Eq. (56) with m = 1, we

obtain

φ(1) = φ(0) +
CDα

0 φ(0)

Γ(α+ 1)
+

CD2α
0 φ(θ)

Γ(2α+ 1)
,

implying that

f(y) =
y2α1 + · · ·+ y2αn

Γ(2α+ 1)
= 0 + 0 +

y2α1 + · · ·+ y2αn
Γ(2α+ 1)

= f(0) +
CDα

0f(0)

Γ(α+ 1)
+

CD2α
0 f(ξ)

Γ(2α+ 1)
, (61)

where ξ = θy for θ in 0 < θ < 1. Hence, we have verified Eq. (56) to be true when
m = 1.

To illustrate the applicability of the fractional vector Taylor formula, we consider
the following simple example.

Example 3.2. Let 0 < α ≤ 1.Given points P0 : x = (x1, ..., xn), P1 : y = (y1, ..., yn) ∈
Ω ⊂ Rn, and given f(x)= C0 and the directional fractional derivative at Ps as
CDα

xf(z) = s2α[(y1 − x1)
2α + · · ·+ (yn − xn)

2α]/Γ(2α+ 1), where z = x+ sh,h =



142 JINFA CHENG, WEIZHONG DAI JFCA-2020/11(2)

y − x = (h1, ...,hn), and 0 ≤ s ≤ 1. We will use the multivariate fractional Taylor
formula in Eq. (56) to evaluate f(y).

To this end, we denote CDα
xf(x+ sh) = s2α(h2α1 + · · ·+h2αn )/Γ(2α+ 1) as g(s).

It can be seen that CDα
xf(x)= lim

s→0+
g(s) = lim

s→0+
s2α(h2α1 +· · ·+h2αn )/Γ(2α+ 1) = 0,

CD2α
x f(x)= lim

s→0+
CDα

0 g(s) = lim
s→0+

sα(h2α1 +· · ·+h2αn )/Γ(α+ 1) = 0, and CD3α
x f(x+ sh) =

CD2α
0 g(s) = h2α1 + · · ·+ h2αn . By Theorem 3.4, we obtain

f(y) = f(x+ h)

= f(x) +
CDα

xf(x)

Γ(α+ 1)
+

CD2α
x f(x)

Γ(2α+ 1)
+

CD3α
x f(ξ)

Γ(3α+ 1)

= C0 +
h2α1 + · · ·+ h2αn

Γ(3α+ 1)
. (62)

Theorem 3.5 (Fractional vector Cauchy mean value theorem with Ca-
puto derivative). Assume that Ω ⊂ Rn is a compact and convex domain and
the sequential Caputo derivatives CDkα

x f(y),C Dkα
x g(y) ∈ C(Ω), k = 0, 1, ...,m+1,

0 < α ≤ 1. Then, for any vectors x,y ∈ Ω, it holds

f(y)−
m∑
k=0

CDkα
x f(x)

Γ(kα+1)

g(y)−
m∑
k=0

CDkα
x g(x)

Γ(kα+1)

=
CD

(m+1)α
x f(ξ)

CD
(m+1)α
x g(ξ)

, (63)

where ξ = x+ θ(y− x) ≡ x+ θh for some θ in 0 < θ < 1. Here, it is assumed that
CDkα

x g(x) ̸= 0 in Ω\{x}.
Proof. Denoting φ(t) = f(x+ th) and ψ(t) = g(x+ th), and replacing function

f by φ, g by ψ with a = 0, b = 1 in Eq. (6), we obtain

φ(1)−
m∑
k=0

CDα
0 φ(0)

Γ(kα+1)

ψ(1)−
m∑
k=0

CDα
0 ψ(0)

Γ(kα+1)

=
CD

(m+1)α
0 φ(θ)

CD
(m+1)α
0 ψ(θ)

, (64)

for some θ in 0 < θ < 1. From Eq. (45), we further obtain

φ(1) = f(x), (CDkα
0 φ)(0) = CDkα

x f(x), CD
(m+1)α
0 φ(θ) = CD(m+1)α

x f(ξ).
(65a)

ψ(1) = g(x), (CDkα
0 ψ)(0) = CDkα

x g(x), CD
(m+1)α
0 ψ(θ) = CD(m+1)α

x g(ξ).
(65b)

Thus, substituting them into Eq. (64) gives Eq. (63).
To verify Theorem 3.5, we consider the following simple example.
Example 3.3. Consider f(y) = (y2α1 + · · · + y2αn )/Γ(2α+ 1) and g(y) =

(y4α1 + ... + y4αn )/Γ(4α+ 1), where 0 ≤ α ≤ 1 and Ω = {y21 + · · · + y2n 6 1}.
Here, we choose x = 0 = (0, · · · , 0) and obtain f(0) = 0, g(0) = 0. For any vector
y ∈ Ω, we denote φ(t) ≡ f(ty) = t2α(y2α1 + · · · + y2αn )/Γ(2α+ 1), ψ(t) ≡ g(ty) =
t4α(y4α1 + · · · + y4αn )/Γ(4α+ 1). Taking the sequential Caputo fractional deriva-

tives, we obtain CDα
0 φ(t) = tα(y2α1 + · · ·+ y2αn )/Γ(α+ 1), CD2α

0 φ(t) = y
2α
1 + · · ·+

y2αn , and CDα
0 ψ(t) = t3α(y4α1 + · · · + y4αn )/Γ(3α+ 1), and CD2α

0 ψ(t) = t2α(y4α1 +
· · · + y4αn )/Γ(2α+ 1). These indicate that CDα

0f(y) =
CDα

0 φ(1) = (y2α1 + · · · +
y2αn )/Γ(α+ 1), CDα

0f(0) =
CDα

0 φ(0) = 0, CD2α
0 f(y) = CD2α

0 φ(1) = y2α1 + · · · +



JFCA-2020/11(2) FRACTIONAL VECTOR TAYLOR 143

y2αn , CD2α
0 f(ξ) = CD2α

0 f(θy) = CD2α
0 φ(θ) = y

2α
1 + · · · + y2αn , and CDα

0 g(y) =
CDα

0 ψ(1) = (y4α1 + · · · + y4αn )/Γ(3α+ 1), CDα
0 g(0) =

CDα
0 ψ(0) = 0, CD2α

0 g(y) =
CD2α

0 ψ(1) = (y4α1 + · · ·+ y4αn )/Γ(2α+ 1), CD2α
0 g(ξ) = CD2α

0 g(θy) = CD2α
0 ψ(θ) =

θ2α(y4α1 +· · ·+y4αn )/Γ(2α+ 1). Note that CDkα
0 f(y), CDkα

0 g(y) ∈ C(Ω), k = 0, 1, 2,
and CD2α

0 g(y) = (y4α1 + · · ·+ y4αn )/Γ(2α+ 1) ̸= 0 in {0 < y21 + · · ·+ y2n 6 1}. Thus,
from Eq. (64) with m = 1, we obtain

φ(1)− φ(0)−
CDα

0 φ(0)
Γ(α+1)

ψ(1)− ψ(0)−
CDα

0 ψ(0)
Γ(α+1)

=
CD2α

0 φ(θ)
CD2α

0 ψ(θ)
, (66)

implying that

f(y)− f(0)−
CDα

0 f(0)
Γ(α+1)

g(y)− g(0)−
CDα

0 g(0)
Γ(α+1)

=

y2α1 +...+y2αn
Γ(2α+1) − 0− 0

y4α1 +...+ ̸y4αn
Γ(4α+1) − 0− 0

=
y2α1 + ...+ y2αn
θ2α(y4α1 +...+y4αn )

Γ(2α+1)

=
CD2α

0 f(ξ)
CD2α

0 g(ξ)
, (67)

where the value of θ is calculated to be θ = [Γ2(2α+ 1)/Γ(4α+ 1)]
1
2α < 1 for

0 < α ≤ 1 and ξ = θy. Hence, we have verified Eq. (63) to be true for m = 1.
Remark 3.4. Here, we would like to discuss some special cases of Theorem 3.3.
Case 1. When n = 1 (i.e., one-dimensional space R) and 0 < α ≤ 1, Eq. (52)

gives

f(y) =
m∑
k=0

CDkα
x f(x)

Γ(kα+ 1)
+

1

Γ((m+ 1)α)

∫ 1

0

(1− t)(m+1)α−1 CD(m+1)α
x f(x+ t (y − x))dt.

(68)
Based on Eq. (26) in one-dimensional space R, we obtain

(D−ν
0 f)(y) =

1

Γ(ν)

∫ 1

0

(1− t)ν−1f(x+ t(y − x))dt

= (y − x)−ν
1

Γ(ν)

∫ y

x

(y − τ)ν−1f(τ)dτ

= (y − x)−ν [D−ν
x f ](y), (69)

where [D−ν
x f ](y) is the Riemann-Liouville integral and ν > 0. Similarly, by Defini-

tion 3.3 and Lemma 3.3 in one dimension, we obtain

(CDµ
0 f)(y) = (y − x)µ[CDµ

xf ](y). (70)

where [CDµ
xf ](y) is the Caputo fractional derivative. Substituting Eq. (70) into

Eq. (68), we obtain a fractional Taylor formula with an integral remainder via the
sequential fractional Caputo derivative as

f(y) =
m∑
k=0

(y − x)kα

Γ(kα+ 1)
[CDkα

x f ](x)

+
1

Γ((m+ 1)α)

∫ y

x

(y − t)(m+1)α−1 CD(m+1)α
x f(t)dt, (71)
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which is the same as Eq. (4) obtained by Odibat and Shawagfeh [22].
In particular, when α = 1, Eq. (71) becomes

f(y) =

m∑
k=0

(y − x)k

k!
fk(x) +

1

m!

∫ y

x

(y − t)mf (m+1)(t)dt, (72)

which is the same as classical Taylor formula in calculus.
Especially, when m = 0, Eq. (72) further simplifies to the well-known Newton-

Leibnitz fundamental theorem in calculus as

f(y) = f(x) +

∫ y

x

f ′(t)dt.

Case 2 . When n > 1 (i.e., multi-dimensional space Rn) and α = 1, by Definition
3.2, Eq. (52) becomes

f(y) =
m∑
k=0

1

k!
(h1

∂

∂x1
+ h2

∂

∂x2
+ · · ·+ hn

∂

∂xn
)kf(x)

+
1

m!

∫ 1

0

(1− t)mDm+1f(x+ th)dt, (73)

which is the classical multivariate Taylor formula in Eqs. (7) and (8).
Especially, when m = 0, Eq. (73) further simplifies to

f(y) = f(x) +

∫ 1

0

(h1
∂

∂x1
+ · · ·+ hn

∂

∂xn
)f(x+ th)dt, (74)

which is the famous Hadamard formula.
Case 3. Based on the classical Cauchy mean value theorem of integral, the

integral term in Eq. (52) can be re-written as∫ 1

0

(1− t)(m+1)α−1 CD(m+1)α
x f(x+ sh)ds

= CD(m+1)α
x f(x+ θh)

∫ 1

0

(1− t)(m+1)α−1ds

=
(
C
D

(m+1)α
x f)(ξ)

(m+ 1)α
, (75)

where ξ = x + θh for some θ in 0 < θ < 1. This indicates that the multivariate
fractional Taylor formula in Eq. (56) can also be obtained from Eq. (52).

It should be pointed out that by using the definitions of fractional integrals and
fractional derivatives along directed line segments corresponding to multivariable,
we have derived fractional vector Taylor formulas and Cauchy mean value formulas.
Here, we further give couple of examples for solving directional fractional differential
equations along directed line segments.

Example 3.4. Given two vectors x,y ∈ Ω ⊂ Rn, any vector z = x+ sh, where
0 ≤ s ≤ 1 and h = y − x. Assume 0 < α ≤ 1 and f(z) ∈ C(Ω). Consider the
Cauchy initial value problem with the directional Caputo derivative as{

CDα
xf(z) = λf(z),

f(x) = 1.
(76)
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To find its solution, we use those fractional integrals and fractional derivatives
along directed line segments defined in the previous text and obtain that Eq. (76)
is equivalent to {

CDα
0 φ(s) = λφ(s),

φ(0) = 1,
(77)

where the solution is given as

φ(s) = Eα(λs
α) =

∞∑
k=0

λkskα

Γ (kα+ 1)
. (78)

Hence, the solution of Eq. (76) is

f(z) = Eα(λs
α) =

∞∑
k=0

λkskα

Γ (kα+ 1)
. (79)

Example 3.5. Given two vectors x,y ∈ Ω @ Rn, any z = x + sh, where
0 ≤ s ≤ 1 and h = y − x. Assume 0 < α ≤ 1 and f(z) ∈ C(Ω). Consider the
Cauchy initial value problem with the directional Riemann-Liouville derivative as{

Dα
xf(z) = λf(z),

Dα−1
x f(x) = 1.

(80)

To find its solution, again, we use those fractional integrals and fractional deriva-
tives along directed line segments defined in the previous text and obtain that Eq.
(80) is equivalent to {

Dα
0 φ(s) = λφ(s),

Dα−1
0 φ(0) = 1,

(81)

where the solution of Eq. (81) is given as

φ(s) = sα−1Eα,α(λs
α) = sα−1

∞∑
k=0

λkskα

Γ (kα+ α)
. (82)

Hence, the solution of Eq. (80) is

f(z) = sα−1Eα,α(λs
α) = sα−1

∞∑
k=0

λkskα

Γ (kα+ α)
, (83)

where Eα,β(t) is defined by

Eα,β(t) =
∞∑
k=0

tk

Γ (kα+ β)
. (84)

4. Conclusion

By defining fractional integrals and fractional derivatives along directed line seg-
ments corresponding to multivariable, we derive fractional vector Taylor formulas
and fractional vector Cauchy mean value formulas in the sense of the Riemann-
Liouville fractional order derivative, the Caputo fractional order derivative, and
the sequential fractional order derivative, respectively, where the fractional order α
is in 0 < α ≤ 1. When α = 1, these formulas can be reduced to the corresponding
classical Taylor formula and Cauchy mean value formula. These new formulas and
directional fractional derivatives are verified and illustrated by several examples.
The obtained formulas may be useful in fractional vector calculus which is an im-
portant tool for describing processes in complex media, non-local materials and
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distributed systems in multi-dimensional space and for solving fractional partial
differential equations.
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