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SYSTEMATICALLY SEVERAL GENERAL CLASSES OF

BILATERAL GENERATING FUNCTIONS

LAKSHMI NARAYAN MISHRA, RAKESH KUMAR SINGH, SHIKHA PANDEY

Abstract. The object of this paper is to present rather systematically several
classes of bilateral generating functions which are applicable to such familiar

orthogonal polynomials as the Jacobi, Laguerre, Hermite and Bessel polyno-

mials and indeed also to their numerous interesting unifications and general-
izations introduced and studied in the literature. Several remarks, comments

and observations, relevant to the present discussion are also included.

1. Introduction

Let fk : C→ C be a complex-valued polynomial function of a complex variable
z(k = 1, ..., n). Also let

Mf = max
|z|=1

|f(z)|. (1.1)

In terms of degree dk of the polynomial fk(z)(k = 1, ..., n), Rassias [6] gave an
interesting two-sided inequality for Mf1...fn . Indeed, just as the upper and lower
bounds derived earlier by Srivastava and Brenner [7] for a general system of or-
thogonal polynomials, Rassias’s result would apply easily to various members of
the family of classical orthogonal polynomial (see, e.g., [1], [5], [13] and [14]) led by
the Jacobi polynomials:

p(α,β)
n (z) =

n∑
k=0

[
α+ n
n− k

] [
β + n
k

] [
z − 1

2

]k [
z + 1

2

]n−k
=

[
α+ n
n

]
2F1

[
−n, α+ β + n+ 1

α+ 1
;

1− z
2

]
, (1.2)

where 2F1 denotes the Gaussian hypergeometric function defined, in the special
case p = 2 and q = 1, by the power series:

pFq

[
α1, ..., αp
β1, ..., βq

; z

]
=

8∑
m=0

(α1)m, ..., (αp)m
(β1)m, ..., (βq)m

zm

m!
(1.3)

(p ≤ q, |Z| <∞; p = q + 1, |Z| < 1;βJ 6= 0,−1,−2, ...(j = 1, ..., q))
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with (λ)m = Γ(λ+m)
Γ(λ) .

Some other members of the family of classical orthogonal polynomials include such
special cases of the Jacobi polynomials as the Gegenbauer (or ultraspherical) poly-
nomials, the Legendre (or spherical) polynomials, and the Tchebycheff polynomials
of the first and second kinds. Indeed we also have, in the same family the classical
Laguerre polynomials:

Lαn(z) =

n∑
k=0

[
α+ n
n− k

]
(−z)k

k!
=

[
α− n
n

]
2F1

[
−n
α+ 1

; z

]
, (1.4)

the classical Hermite polynomials:

Hn(z) =

[n/2]∑
k=0

(−1)k
[
n
2k

]
(2k)!

k!
(2z)n−2k

= (2z)n2F0

[
− 1

2n,−
1
2n+ 1

2 ;−1

2

]
, (1.5)

and the Bessel polynomials (cf. [2] and [3]):

yn(z, α, β) =

[
n
k

]
k!

[
z

β

]k
2F0

[
−n, α+ n− 1

;− z
β

]
, (1.6)

which are all limiting cases of the Jacobi polynomials (see, for details, [13, p. 103,
Equation (5,3,4)] and [10, p.99, Problems 35 and 36]).
The importance of a systematic study of various properties and characteristics of
the classical Jacobi polynomials (including, example linear, bilinear and bilateral
generating functions (cf. [4] and [10]) associated with them) led Srivastava and
Popov [12] recently to a class of mixed multilateral generating functions for the
Jacobi polynomials, which can indeed be suitable applied to derive numerous further
results involving Jacobi polynomials and some of their aforementioned relatives.
A familiar unification of each of the classes of orthogonal polynomial named above,
and of their various known generalization studied in the literature (cf., e.g., [10]),
is provided by the sequence [11, p.307, Equation(5)]:

S(α,β)
n [x, a, b, c, d; γ, δ;ω(x)] =

(ax+ b)−α(cx+ d)−β

n!ω(x)
Dn
x

{
(ax+ b)γn+b(cx+ d)δn+βω(x)

}
(1.7)[

Dx =
d

dx
; n = 0, 1, 2, ...

]
,

where the parameters a, b, c, d, α, β, γ, δ are arbitrary constants, real or complex and
ω(x) is independent of n and differentiable any number of times. For example, it
is easily observed from (1.7) and the known Rodrigues formulas for the Jacobi and
Bessel polynomials that

S(α,β)
n [x, a,−a, c, c; 1, 1;C] = (2ca)npα,βn (x) (1.8)

for any nonzero constant C, and

S(α−2,0)
n [x, a, 0, c,D; 2, 0; exp(−β/x)] =

α2nβn

n!
yn(x, α, β). (1.9)

Indeed, in each of these and other cases of reducibility, we can have numerous al-
ternative sets of choices for the various parameters involved.



158 LAKSHMI N. MISHRA, RAKESH K. SINGH, SHIKHA PANDEY JFCA-2021/12(1)

For the sequence of function defined by (1.7), various classes of linear, bilinear, bi-
lateral, and mixed multilateral generating functions are given in the literature. The
most general results of this type for the sequence defined by (1.7) were announced
recently by Srivastava and Panda [9]. The object of this paper is to present a
detailed demonstration of each of the earlier results and to recall how these gen-
eral results can indeed be applied to derive the corresponding generating functions
for various systems of orthogonal polynomials and for numerous other polynomials
associated with them [15]-[28].

2. General Bilateral Generating Functions

The main results on bilateral generating functions for the sequences defined by
(1.7) are given by Theorem 1, 2 and 3 below (cf.[9]).

Theorem 1. Corresponding to a non-vanishing function Ωµ(y1, ..., ys) of s vari-
ables Ωµ(y1, ..., ys)(s ≥ 1) and of (complex) order µ, let

E(p,q)
m,p,q[x1; y1, ..., ys; t] =

∞∑
n=0

S
(α−pqn,β−σqn)
m+qn [x, a, b, c, d; γ, δ;ω(x)]·Ωµ+pn(y1, ..., ys)t

n (an 6= 0).

(2.1)
where p and q are positive integers, ρ and σ are complex parameters. Also, for an
arbitrary integers m ≥ 1, let

θα,β,ρ,σn,m,p,q[x; y1, ..., ys; z] =

[n/q]∑
n=0

[
m+ n
n− qk

]
ak

·S(α−γn+ρqk,β−δn+σqk)
m+n [x, a, b, c, d; γ, δ;ω(x)]

·Ωµ+pk(y1, ..., ys)z
k. (2.2)

Then

∞∑
n=0

θα,β,ρ,σn,m,p,q[x; y1, ..., ys; z] =
[
1 + at(ax+ by−1)(cx+ d)δ

]α
·
[
1 + ct(ax+ b)γ(cx+ d)δ−1

]β ω(ξ)

ω(x)
F (γ−ρ,γ−σ)
m,p,q

[ξ; y1, ..., ys; zt
q
{

1 + at(ax+ b)γ−1(cx+ d)δ
}(ρ−γ)q{

1 + ct(ax+ b)γ(cx+ d)δ−1
}(σ−δ)q

], (2.3)

Provided that each side exist; here, for convenience,

ξ ≡ ξ(x, t) = x+ t(ax+ b)γ(cx+ d)δ. (2.4)

Theorem 2. Under the hypotheses of Theorem 1, let

G(ρ)
m,p,q[x; y1, ..., ys; t] =

∞∑
n=0

anS
(α−ρqn,β)
m+qn [x, a, b, c, d; γ, δ, ω(x)]·Ωµ+qn(y1, ..., ys)t

n (an 6= 0),

(2.5)
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and define

Φα,β,ρn,m,p,q[x; y1, ..., ys; z] =

[n/q]∑
n=0

[
m+ n
n− qk

]
ak

·S(α−γn+ρqk,β)
m+n [x, a, b, c, d; γ, 1;ω(x)]Ωµ+pk(y1, ..., ys)z

k.

(2.6)

for an arbitrary integer m ≥ 0.
Then
∞∑
n=0

Φα,β,ρn,m,p,q[x; y1, ..., ys; z]t
n =

[
1 + t(ad− bc)(ax+ b)γ−1

]α
· [1 + ct(ax+ b)γ ]

−α−β−m−1 ω(η)

ω(x)
G(γ−ρ)
m,p,q [η; y1, ..., ys; zt

q

{
t(ad− bc)(ax+ b)γ−1

}(ρ−σ)q {1− ct(ax+ b)γ}(γ−ρ−1)q
],

(2.7)

where

η ≡ η(x, t) = [x+ dt(ax+ b)γ ]/[1− ct(ax+ b)γ ]. (2.8)

Theorem 3. Under the hypotheses of Theorem 1, let

H(σ)
n,m,p,q[x; y1, ..., ys; t] =

∞∑
n=0

anS
(α,β−σρn)
m+qn [x, a, b, c, d; γ, δ;ω(x)]·Ωµ+pn(y1, ..., ys)t

n (an 6= 0),

(2.9)
and define

ψα,β,ρn,m,p,q[x; y1, ..., ys; z] =

[n/q]∑
k=0

[
m+ n
n− qk

]
ak

·S(α,β−δn+σqk)
m+n [x, a, b, c, d; δ, 1;ω(x)]Ωµ+pk(y1, ..., ys)z

k,

(2.10)

for an arbitrary integer m ≥ 0.
Then
∞∑
n=0

Ψα,β,ρ
n,m,p,q[x; y1, ..., ys; z]t

n =
[
1 + t(bc− ad)(cx+ d)δ−1

]β
·
[
1 + at(cx+ d)δ

]−α−β−m−1 ω(ζ)

ω(x)
G(δ−ρ)
m,p,q [ζ; y1, ..., ys; zt

q

{
1 + t(bc− ad)(cx+ d)δ−1

}(σ−γ)q {
1− at(cx+ d)δ

}
],

(2.11)

where:

ζ ≡ ζ(x, t) = [x+ bt(cx+ b)δ]/[1− at(cx+ b)δ]. (2.12)

Demonstrations
The proofs of Theorems 1, 2, and 3 are based rather heavily upon certain generating
relationships which we recall here as the following
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Lemma 1. (Srivastava and Panda [11]; see also Srivastava [7]). Let ξ, η and ζ and
be defined by Equations (2.4), (2.8) and (2.12), respectively.
Then, for every non-negative integer m,

∞∑
n=0

[
m+ n
n

]
S

(α−γn,β−δn)
m+n [x, a, b, c, d; γ, δ;ω(x)]tn

= [1 + at(ax+ b)γ−1(cx+ d)δ−1]β
ω(ξ)

ω(x)
G(α,β)
m [ξ; a, b, c, d; γ, δ;ω(ξ)]

(2.13)

∞∑
n=0

[
m+ n
n

]
S

(α−γn,β)
m+n [x, a, b, c, d; γ, 1;ω(x)]tn

= {1 + t(ad− bc)(ax+ b)γ−1}α

·[1− ct(ax+ b)γ ]α−β−m−1 ω(η)

ω(x)
S(α,β)
m [η; a, b, c, d; γ, 1;ω(η)], (2.14)

and

∞∑
n=0

[
m+ n
n

]
S

(α−γn,β)
m+n [x, a, b, c, d; 1, δ;ω(x)]tn

= {1 + t(bc− ad)(cx+ d)δ−1}β

·[1− at(cx+ d)δ]α−β−m−1 ω(ζ)

ω(x)
S(α,β)
m [ζ; a, b, c, d; 1, δ;ω(ζ)]. (2.15)

Proof of Theorem 1. Denoting the left side of the assertion (2.3) by ∆, and
substituting for the θ−polynomials from (2.2), we observe that

∆ =

∞∑
n=0

tn
[n/q]∑
n=0

[
m+ n
n− qk

]
akS

(α−γn+pqk,β−δn+σqk)
m+n [x, a, b, c, d; γ, δ;ω(x)]

·Ωµ+pk(y1, ..., ys)z
k

=

∞∑
n=0

Ωµ+pk(y1, ..., ys)(zt
q)k

·
∞∑
n=0

[
m+ qn+ n

n

]
S

(α+(ρ−γ),qk−γn,β+(σ−δ)qk−δn)
m+n [x, a, b, c, d; γ, δ;ω(x)]tn,

(2.16)

where we have inverted the order of the double summation involved. If we now
sum the inner series in (2.16) by appealing to the generating relation (2.13), with
m,α and β replaced by m + qk, α + (ρ − γ)qk, and β + (ρ − δ)qk, respectively
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(k = 0, 1, 2, ...), we shall find that

∆ = [1 + at(ax+ b)γ−1(cx+ d)δ]α[1 + ct(ax+ b)γ(cx+ d)δ−1]β
ω(ξ)

ω(x)
∞∑
n=0

akS
(α+(ρ−γ)qk,β+(σ−δ)qk)
m+n [ξ; a, b, c, d; γ, δ;ω(ξ)]Ωµ+pk(y1, ..., ys)

·

[
ztq[1 + at(ax+ b)γ−1(cx+ d)δ](ρ−σ)q[1 + ct(ax+ b)γ(cx+ d)δ−1](σ−δ)q

]k
,

(2.17)

where ξ is given by (2.4). Interpretation of the infinite series occurring in (2.18) by
means of the definition (2.1) yields the right side of the assertion (2.3).
This evidently completes the proof of Theorem 1 under the assumption that the
double series involved in the first two steps of our proof are absolutely convergent.
Thus, in general, Theorem 1 holds true for these values of the various parameters
and variables involved for which each side of the assertion (2.3) exists.

Proofs of Theorems 2 and 3. The proofs of Theorems 2 and 3 run parallel to
that of Theorem 1, which is already detailed above. Indeed, instead of (2.13), our
proofs of Theorems 2 and 3 would make use of the generating relations (2.14) and
(2.15), respectively.
Each of the cases of reducibility of the sequence defined by (1.7), which are illus-
trated by (1.8) and (1.9) and also described fairly adequately by Srivastava and
Panda [11, p. 308], can indeed be shown to lead from Theorems 1, 2, and 3 to the
corresponding generating functions for simpler (and, quite frequently, more famil-
iar) sequences of special functions and polynomials (see also Remark 3 below). For
instance, in one of such circumstances, Theorem 1 will readily yield the main result
of Srivastava and Popov [12].
We conclude this section by recalling the following relevant remarks concerning
Theorems 1, 2, and 3 (cf. [9]).

Remark 1. Since [11, p. 308, Equation (10)]

Sα,βm [x, a, b, c, d; 1, δ;ω(x)] = [abγ+δ−1cγ−1dδ−1]−n

Sα,βm

[
bcx

ad
, a, b, a2d, b2c; δ, γ;ω

(
bcx

ad

)]
.(2.18)

The generating relationships (2.14) and (2.15), and hence also Theorem 2 and The-
orem 3, are essentially equivalent.

Remark 2. For p = σ = 0, the assertions (2.3), (2.7), and (2.11) would immedi-
ately yield certain bilateral generating functions due to Srivastava ([7, Part II, pp.
243-244, Corollaries 19, 20, and 21]; see also [10, pp. 435-436]).

Remark 3. By appealing to the known relationships between the sequence (1.7)
and its numerous special cases (cf. [11, p. 308]), it is not difficult to derive, from
Theorems 1, 2, and 3, analogous results on generating functions for such familiar
orthogonal polynomials as Jacobi, Laguerre, Hermite, and Bessel polynomials, and
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also for the various interesting generalizations of these polynomials studied in the
literature (cf. [3], [10], and [13]). The details involved may be omitted.
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