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ON THE DYNAMICS OF SOME RECURSIVE SEQUENCES

H. EL-METWALLY, E. ELABBASY AND M. AL-KAFF

ABSTRACT. In this paper we deal with the investigation of some qualitative
behavior such as the global convergence, boundedness and periodicity of the
solutions of the difference equation

Tn+1 = ax% i an_lxn * 71237‘72 , = 0, 1, vy
Az2 + Bxyp_1%n + Ca:%_Q
where the parameters «, 3, v, A, B and C are nonnegative numbers with
A+ B+C >0, a+ B+~ >0 and the initial conditions z_o,x_1 and zg are
arbitrary positive real numbers.

1. Introduction

In this paper we deal with the behavier of the solutions of the following difference
equation

ar? + Brn_ 17, + 22,

Ax2 + Bxy_ 12, + Ca2 )’
where the parameters «, 3, v, A, B, and C are nonnegative numbers with

A+B+C >0, a4+ B+~ > 0 and the initial conditions x_5, z_7 and x( are

arbitrary positive real numbers.
In [I1], Kulenovi¢ et al. investigated the solutions of the difference equation

Tn+1 = n:O,l,..., (1)

a+ Bry +yTn-1
A+ Bz, +Cxp_1’

Tn41 =

In [2], Elabbasy et al. studied the periodicity and the global stability of the differ-
ence equation

oLy + 555'7171 + YTp—2

Az, + By +Cxpn

In [3], El-Metwally. studied qualitative the properties of some higher order the
difference equations of the form

I e
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and
aoYn + A1Yn—1 + ...+ AYn—t

Boyn + Blyn—l + ...+ /Btyn—t '
Other related results on rational difference equations can be found in [[3],[8],[9]]
Let I be some interval of real numbers and let

Yn4+1 =

foItt T,
be a continuously differentiable function. Then for every set of initial conditions
Loy Tpot1, ---,To € I, the difference equation

Tpt+1 = f(xnaxnfla-“;xnfli)v n=0,1,.., (2)

has a unique solution {z, }$2 _,.. A solution of Eq. that is constant for alln > —k
is called an equilibrium solution of Eq.. If

T, =, forall n>—k,
is an equilibrium solution of Eq. then Z is called an equilibrium point or
simply an equilibrium of Eq..
The following definitions and previous results will be useful for the proof of our
results in this paper.
Definition 1 [I] (stability)
(i) An equilibrium point Z of Eq. is called locally stable if, for every € > 0,
there exists 0 > 0 such that if {z,}> _, is a solution of Eq. with

| — Z| + |T—ps1 — F| + ... + |xo — Z| < 0,
then
|z, —Z| <e, forall n>—k.

(ii) An equilibrium point Z of Eq. is called locally asymptotically stable
if T is locally stable and if in addition there exists v > 0 such that if
{z,}52 _, is a solution of Eq.(2) with

|—p — Z| + |Topt1 — T + ... + |z0 — T] <7,

then

lim z, = Z.
n—oo

(iii) An equilibrium point Z of Eq. is called a global attractor if, for every
solution {x,}>°  of Eq. we have
lim z,, = .
(iv) An equilibrium point Z of Eq. is called globally asymptotically stable
if T is locally stable and Z is also a global attractor of Eq..
(v) An equilibrium point Z of Eq. is called unstable if Z is not locally stable.
Definition 2 [I]
(1) A solution {z,,} of Eq.(2) is said to be periodic with period p if

Tptp =T, foral n>-1. (3)
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(2) A solution {z,} of Eq.(2) is said to be periodic with prime period p, or
a p-cycle if it is periodic with period p and p is the least positive integer
for which holds.

Definition 3 [7] (permanence): Eq.(2) is said to be permanent and bounded
if there exists number m and M with 0 < m < M < oo such that for any
initial condition z_ .,z _.41, ..., 20 € (0,00) there exists a positive integer N which
depends on these initial conditions such that m < x, < M for all n > N.

The linearized equation of Eq. about the equilibrium point Z is

Zngl = 012n + G2Zn—1 + oo+ Qg1 20—k, (4)
where a; = af,;f,i (z,%,...,%),1=0,1,..., k. The characteristic equation of Eq.
is
k1
AL " A =,
i=1

Theorem A.[I0] Assume that p; € R,i=2,...,and k € {0,1,2,...}. Then

2
Z ‘ptl < 17
=0
is a sufficient condition for the asymptotic stability of the difference equation

Ynt1 + P1Ynth—1 + . +PkYn =0 ,n=0,1,2,..,
consider the following equation
Tnt1 = Q(Tpy Tp—1,Tn—2).
Theorem B.[6] Let J be some interval of real numbers, f € C[J"**, J] and let
{zn} _, be a bounded solution of the difference equation

Tnt1 = [(Tny Tty ey Tnv), n=0,1,.., (5)

with
I= nh_}rgo infz,, S= nh_}rrgo supx, and with I,SeJ.
and {S,}% of Eq. with

Then there exist two solutions {I,}5% ™

I,=1, So=S8, I,,S,¢€[I,S] forall neZ,

and such that for every N € Z, Iy and Sy are limit points of {z,}52 _ .
Furthermore for every m < —wv, there exist two subsequences {z, } and {z;, }
of the solution {z,,}22 _, such that the following are true:

lim x, 4y =Inx and limax;, 4y =Sy forevery N >m.
n—oo

n—oo
The solutions {I,}52 __ and {S,}52__ are called full limiting sequences
of Eq..
Consider the scalar k ** order linear difference equation
z(n+k)+pr(n)z(n+k—1)+ ...+ pr(n)z(n) = 0. (6)

where k is a positive integer and p; : ZT — C for i = 1, ..., k. Eq.@ is said to
be of Poincaré type if the limits

g = lmpin), i=1 ..k, (7)

ade el
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exist in C. Under this hypothesis, Eq.@ can be regarded as a perturbation of the
eqaution with constant Coefficients

z(n+k)+qzn+k—1)+ ..+ gxz(n) =0. (8)
Theorem C.[I2] (Poincar¢’s Theorem). Suppose condition (7)) holds.
Let Aq,..., Ax be the roots of the characteristic equation
MW Nt +qg=0 (9)

of Eq. and suppose that
[Ail # (] for i 5. (10)

If z(n) is a solution of () then either z(n) = 0 for all large n or there exists an
index j € {1,...,k} such that
lim 22+ 1)

=\ (11)

2. Local Stability of the equilibrium points of Eq.

In this section, we investigate the local stability character of the solutions of

Eq..

The equilibrium points of Eq. are given by the relation

az? + T2 4+ 472

Az? + B7? 4+ C7%

Clearly, the unique positive equilibrium point of Eq. is
T=(a+p+7v)/(A+B+0C).

Let f:(0,00)% — (0,00) be a function defined by

T =

au? + Bvu + yw?
= . 12
f(u,0,w) Au? + Buv + Cw? (12)

Therefore it follows that
of (u,v,w)  (20u + Bo) (Au? + Buv 4+ Cw?) — (24u + Bv) (ou? + fou + yw?)

ou (Au? 4+ Buv + C’w2)2 ’
of (u,v,w)  Pu (Au2 + Buv + sz) — Bu (au2 + Bou + vwz)
v B (Au? + Buv + Cw?)’ 7
and

of (u,v,w)  2yw (Au? + Buv 4+ Cw?) — 2Cw (au? 4 fvu + yw?)
ow B (Au? + Buv 4+ Cw?)? '

Then we see that
of(z,z,7) (aB+2aC+ BC)— (AS+2Ay+~+B)

ou (A+B+C)(a+B+7) -
o (A+B+C)(a+B+7) b

d
8 T 745 2 wsd)
ow  (A+B+C)(atB+y) ”
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Then the linearized equation of Eq. about the positive equilibrium point T is

Yn+1 +p2yn +p1yn—1 +p0yn—2 =0. (13)

The characteristic equation of the linearized equation is given by
AP 4+ p2A? + prA+po = 0. (14)
Theorem 1 Assume that
4|(aC = Ay) +(BC = Bv)|,
(A+B+C)(a+p+7v) > max 2|(aB — AB) + (By — BC)|,
2|(aB — AB) + 2 (aC — Av) + (BC — By)|.
(15)
Then the positive equilibrium point of Eq. is locally asymptotically stable.

proof. It is follows by Theorem A that Eq. is locally asymptotically stable
if all roots of the Eq.(14) lie in the open disc [A| < 1 that is if

Ip2| + |p1| + |po| < 1. (16)

We consider the following different possibilities:
(1) If p; > 0, p1 > 0 and py > 0. In this case we see from that

(aB +2aC + pC) — (A +2Av +vB) + (A + 5C) — (B +vB)
+2v(A+B)-2C(a+8)<(A+B+C)(a+L8+7)

if and only if
(A+B+C)(a+B8+7) >0,

which is always true.
(2) If po > 0, p1 > 0 and py < 0. It follows from that

(aB +2aC + BC) — (AB + 2Ay +vB) + (AB + BC) — (aB + vB)
—2v(A+B)+2C(a+B)<(A+B+C)(a+B8+7)

if and only if
4(aC — Ay)+4(BC —yB) < (A+B+C) (a+8+7),

which is satisfied by .
The proofs of the following cases are similar to the proof of cases 1 and 2 and
will be left to the reader.
(3) If po > 0, p1 <0 and pg > 0.
4) If po > 0, p1 <0 and pg < 0.
) If po <0, p; >0 and py > 0.
) If pa <0, p; >0 and py < 0.
) If po <0, p1 <0 and py > 0.
)pr2<0,p1<0andp0<0.
his completes the proof.

—

3. Boundedness of the Solutions of Eq. (1))

In the section we study the boundedness of the solutions of Eq..
Lemma 1 Every positive solution of Eq. is bounded and persists.
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proof. Let {z,}>2 , be a positive solution of Eq.. Then it follows that

ar? + Brn_ 17, + 224
Ax2 + Bxy 1z, + C22_,

2
oy BETp_ 1Ty

Az2 4+ By, + C22_, + Ax2 4+ Bxy_1z, + C22_,
7$%—2
Ax2 + Bxy 13, + C22_,

x
c

Tn+1 -

+

IN

8
L = M.
+5+

SRS

Then
T, <M forallm > 1.

By the change of variables xz,, = zi for all n > 1, Eq. can be rewritten in the
form

2 2 2
Azn_12; o9+ Bzpzi_o+ Czhzn_1

Antl = 2 2
OZp_1%a_o+ Bonze_o+ 722201
B Az 122 4 N Bz,2%
= 2 2 2 2
Q2125 _o + B2nza_o+V222n—1  Q2Zn_125_o~+ B2nza_o + V22201
2
Czzn—1
Q21220+ Benz2_, + 7222
n—14p_—2 n2p_2 T YZp2n—1
A B C -
<S4+ Z=m
a B
That is
1
Tp > —:=m foralln>1,
m

and this completes the proof.
Theorem 2 Every solution of Eq. is bounded and persists.
proof. Let {z,} 2 _,be solution of Eq.. Then

n=—2

2 2

oy + By 1Ty, + Y25 o
2

Ax2 4+ Bxy_1z, + C22_,

Tn+1

e {0, 5,7} (0 + Bncrn+ 0% 5) _ max{on,7)
min {4, B,C} (22 + @p—12, + 22 _,) ~ min{A, B,C}’

Similarly it is easy to see that

T min{mﬁ,’y}
"~ max{A4,B,C}’
Thus we get
0<m.. minte By} omax{e B} L0

max{A, B,C} — = in {A,B,C}
Therefore every solution of Eq. is bounded and persists. Hence the result holds.
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4. Global attractor of the equilibrium points of Eq.

In this section we study the global attractor of the equilibrium points of Eq..

Lemma 2 For any partial order of the quotients %, % and %, the function
f(u,v,w) defined by the equation has the monotonicity behavior in at least
one or two of its arguments.

proof. The proof follows by some direct substitutions and will be omitted.

Remark 1 It follows from Eq. when

e_B_7
A B O
that
Tp, =0, n>—2 for some constant o.
Whenever the quotients %, % and £ are not equal we get the following result.

Theorem 3 The equilibrium point Z is global attractor of Eq. if one of the
following statements holds
1. aB > AB, BC > vB and

(AB)? (v* +vC?T* + AV’T + ACYT? + CH*T)
> [C°Z (aB+ AB)] [AB(a+ B+ CZ) + C (aB + AB)]. (17)
2. aB > AB, aC < Ay and
CyY?2+Cz(A+C)(v+Z(A+C))

(A+C)?
(Ba+AB)[(A+ B)T+ (@ + )]+ AB (e + )T as)
- AB '
3. aB > ApB, fC < +vB and
2+ C?7% + Cyz o (Ba+AB)[(A+ B)T+ (a+17)] + AB(a + ’y)f. (19)

C - AB
4. aB < AB, aC > A~y and
V5> + 7T (A+ B) [T (A + B) + f]
(A+ B)?
T (Ca+ A7)
(AC)?
5. aB < AB, fC > vB and

v8°+~Z(A+B)(8+T(A+ B)) _ & _
By > B0+ D) +A+O) (T4 (1)

6. aB < Ap, C <~vB and
BA(y* 4+ Cyz+C?Z* 4+ (a —7) (y+CT)) > CT(A+ B) (aB+ AB).  (22)

proof. Let {z,} ~ , be a solution of Eq. and let f be a function defined
by Eq.. We will prove the theorem in the first case and the proofs of the other
cases are similar and will be omittied.

[(AC) (a+ B+ (A+C)7) + (A+C) (Cat Ay)]. (20)
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Assume that is ture then it is easy to see that the function f(u,v,w) is
non-decreasing in its first argument and non-increasing in its third argument. Thus
from Eq. we see that

azy, + Ben1Zn + 720y 0@ + BTz +7(0)
Ax2 + Bxy 13, + C22_, = A22 + Bxy 13, + C(0)
— 5 OLLU?L + 25377,,_11'" < g
Ax2 + Brp_1x, Ax2 4+ Bx,_1%, A

anrl

b:\m

Then

6

n < —=H forall n>1. (23)

@y
At
Bl 0 0l I S (0) +6(0) (H

Ax2 4 By 1xn +Cx2 5 = A(0)+ B(0)(H

Tn+1

_
C(H? C
Then
Tp 2
From Eq. and we see tha
B

th <xn§2+§ H forall n>1.
It follows by the Method of Full Limiting Sequences that there exist solutions
{,}._and {Sp} o of Eq. with

=h forall n>1. (24)

2 Qle

<I=Iy= lim inf z, < lim sup z, =Sy =5 <

(67
A ’
n—- 00 n—- 00 A

8
B

Ql=

where

I,,S8,€[I,S], n=0,-1,
It suffices to show that I = S. Now it follows from Eq. that
al?, + BI_ I 5 +~I%,
AI? |+ BI 11 5+ CI?,
_al? + BI oI +~5? o (a+ B) I? + 452
~ AI? + BI ] +CS? = AI? + BSI + CS?’

I =

Zf(I7—[727S)

and so
AI® + BST* + CS*I > (a+ B) I* +vS>.
Then we obtain

AI?S 4+ BS?*I? + CS*I > (a+ B) I*S +~S3,

or

(a+B) I?S +~8% — AI*S — CS3T < BS*I?. (25)
Similarly it is easy to see from Eq. that

(a+B)IS? +~4I% — AIS® — CSI® > BS?I*. (26)

Therefore it follows from Eqs. and that
((a+ B)IS* = (a+ B) SI?) +(vI® — vS*)+ (AIPS — AIS?)+(CS*T — CSI?) > 0
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= (a+B)IS(S—1)+(A-C)IS(I* = S*) + (vI* —4S*) >0
—
or
(I—=8)[yI* = (a+ B)IS] + (vS+ (A= C)SI) (I* — 5*) > 0
or equivalently
(I=8)[yI> = (a+B) IS+ (vS+ (A= C)SI) (I + 5)] >0
and so I > S if
YI? + (vS+ ASI) (I +S) > (a+ B) IS+ CIS (I +S). (27)
Now it follows from that
v+ yC?T? + AV’T + ACHT? + CH°T

CQ
T(aB+ A
> (‘W) [AB (a+ 8 + CZ) + C (aB + AB)]
3 vz  Ayz: AT
< o2 + 7% + Kol + C + 2
- Z(aB+ AB)\ (AB(a+ )+ CABT + C (aB + AB)
= AB AB

o @)+ (F ) ()

( aB+Aﬂ x) a+ﬂ+c<w+(aB+A6)>>.

AB
Now

7(%)2+ (+’yx> (%w) <AI2 4 (AIS +~S)(I+S),  (28)
and
@BHARDTN (L gro(z+ PN S i py1s+CSI(I+59).
(o25) o o 50

Then we see from and that
YI? + (ySH+ASI)(I+S) > (a+B)IS+CIS(I+S),
which yields that is satisfied and then the proof is complete.

5. Rate of Convergence of Eq.(T)

In this section we will recognize the rate of convergence of the solutions that
converge to the unique positive equilibrium point of Eq..

Theorem 4 Assume that holds. Then all solutions of Eq. which are
eventually approach to the equilibrium satisfy the following.

where \; are the roots of Eq..

(a+B)IS(S—1I)+(A—C)IS (I* = S?) + (vI* —vI%S) + (vI*S —+S?) >0
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proof. We have
ABxpxn_1 — ABx2 + Aya?_, — Aya? + Bax? — Baz,x,_1

HaE (A22 + Bxy_12, + C22_,) (A+ B+ C)
+B7x72171 — Byzpty-1 + Cax? — Caz? 5+ CBzyw,—1 — CPx2_,
(Az2 4+ Bxy_1zn + C22_,) (A+ B+ C)
 (Ba—AB)ai — (Ba— AB)x,Z + (Ba— AB) x,@
B Ax2 + Bz, 11, +Ca22 ) (A+B+C
v n—2
+(C’oz — Ay) 2?2 — (Ca— Ay) 2,7 + (Ca — Ay) z,%
(Az2 4+ Bxy_12, + C22_,) (A+ B+ C)
(Ay = Ca)ap_y — (Ca— Ay) xptn_o — (Ay = Ca) 2, 5T
(Az2 4+ Bxy_12, + C22_,) (A+ B+ C)
(Ay = Ca) z 2% + (Ca = Ay) wpn—2 + (By = CB) a; 5
(Ax% + By 12, + C’a:%_Q) (A+B+0C)
+ (37 — Cﬁ) Tp—2T — (ny B Cﬁ) Tp—2T + (Cﬁ B B’Y) TpnTp—2
(A22 + Bzy_1z, +C22_,) (A+ B+ C)
+(Cﬁ — BY)zpxn—1 — (CB — BY) z,@ + (C5 — BY) x0T
(Ax% 4+ Bxy_1xy + C’x%_z) (A+B+0C)
(Aﬁ - Ba) TpTp—1 — (CB - BV) LTnTn—2
(Az2 4+ Bxy_12n + C22_y) (A+ B+ C)
(AB — Ba) 2, — (AB — Ba) x,T
(Az2 + Bxy_1an + C22_y) (A+ B+ C)
(Ba—ApB)+ (Ca — Ay)) z, (2 — )
(A22 + Brp_12, + C22_,) (A+B+C) "
((CO‘ — AV) + (Cﬁ — BV)) Ln—2 (J,‘ _ j)
(Az2 + Bx,_12, + C22_,) (A+B+C) "
((Cﬁ—B’Y)—F(Aﬂ—BO&)).I‘,L (J? ) —.f)
(Ax% + Bxy_1x, + C’xEHQ) (A+B+C) "
()= Ca) 4 By —COVens
(A22 + Bzp_q1z, + C22_,) (A+ B+ C) ne?
(By=CO)+(y=Cal
(Az2 + B, 12, + C22_,) (A+B+C) "2
Put

€n =Ty —T,6p—1 =Tp—1 —T,Ep—9 = Tp_9 — T.
Then we obtain
€ntl — Yn€n — Onen—1 — (pen_2 =0,

where

- (Ba—AB) + (Ca — Ay)) xy + ((Ca — Ay) + (CB — BY)) Tn—2

" (A22 + Bzp_yzn, + Ca2_,) (A+ B+C) ’

((CB = By) 4+ (AB — Ba)) zy,

(A22 + Bzp_1an +Ca2_,) (A+ B+ C)’

5n =
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and
(A7 — Ca) + (By — CB)) tn_s + (By — CB) + (Ay — Ca)) .,
(A22 + Bzy_yzn +Ca2_,) (A+ B+ O) '
As the positive equilibrium is a global attractor, we get
. (Ba— AB)+2(Ca— Ay)+ (CB — BY)
lim vy, = - 5
n—oo Z(A+B+C)
(aB+2aC + BC) — (AB +2Ay + +B)
(a+B+7)(A+B+C) ’
(CB—B)+(AB—Ba) _ (AB+CB) — (aB+1B)

lim 6, = =

n—oo z(A+B+C)’ (A+B+0)(a+f+7)

Cn =

and

) 2(Ay —Ca)+2(By—-Cp)
lim ¢, = 5
n—00 z(A+B+C)
2v(A+ B) —2C (a+p)
(A+B+C)(a+B8+7)
Thus the limiting equation of Eq. is the linearized equation . Then the

result follows as an immediate consequence of Poincare’s theorem C and the proof
is complete.

6. Periodic solutions

In this section we present some results for the existence of minimal period-two
solutions of Equation .
Theorem 5 Eq. has a positive periodic solution of prime period two if and
only if
(A+C—B)(B—(a+7)) >4B(a+7). (30)
proof. First assume that there exists a periodic solution of prime period two

{-.sD, ¢, P, q,...} of Eq.. From we get

(+7) ¢+ Bpq
(A+C)q¢®>+ Bpq’

and
_ (a+7)p*+Bpg
(A+ C)p? + Bpq’
Then
(A+C)pq+ Bp* = (a+7) q + Bp, (31)
and
(A+C)pg+ B = (a+7)p+ Bq. (32)

Subtracting from
B(p*~¢*) = (B~ (a+7) (p—q)
Since p # g, it follows that

erq:W‘ (33)
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Substituting in we obtain
(B(C+A)-B)(B—(a+7) (B—(a+7)(a+7)

(B~ (C+ AN + o p- . o,
(34)
from which
pe =020 (1o A IBa ) /AT C- BB @)
and so

1-4B(a+7v)/(A+C—-B)(B—(a+7)) >0,
A4B(a+v) < (A+C—-B)(B—(a+7)).

Since A+ C' — B and 8 — a — 7, have the same sign then holds.

Second suppose that the condition is true. We will show that Eq. has
positive prime period two solutions. Assume that p and ¢ are distinct positive real
numbers.

Now choose x_5 =p, x_1 =q and x¢ = p. It is easy to prove that

Ty =x_1 and zo = xg.
Then it follows by induction that
ZTop =p and x9,41 =¢q forall n>—-1.
Thus Eq. has the positive prime period two solution

et p’ q7 p? q""

where p and ¢ are the distinct roots of the quadratic equation ) and the proof
is completed.
Theorem 6 Assume that {mn}io:_Qbe solution of Eq. |D with xn10 > zy >

T>xN_1> 2Ny > xn4g for some N >0. Then {z,} _ , converges to a two
cycle solution of Eq. .
proof. We have

TNta = [ (N3, TNg2, TN41) > [ (TN, TN, TN-1) = TN42,
and

EN+s = f(ZN4a, TN43, TN42) < f(TN42, TN41,EN) = TN43.

By induction on N > 0 one can easy establishes the monotonic of the two se-
quences {Tnyok e o, {TNt2k e o and since {z,} -, is bounded, the sequence
{&N+2r} is increasing and bounded above by M and the sequence {zni2r} is de-
creasing and bounded below by m. i.e

TNqor <M and zyjory1 >m for k=0,1,....

Therefore, both subsequences {zniok oo o, {TNtok o o cOnverges to, say 1 and
o respectively, that is

lim zny49s =% and limayioxt1 = @.
k=00 K—00

This completes the proof.
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7. Numerical Examples

Example 1 We assume z_o =4,2_1 =5,20 =05, =2,8=9,7 = 6,
A=12,B =7,C = 9.(See Figure 1).

Example 2 (See Figure 2) since ©_5 = 0.5,2_1 = 0.6, 20 = 0.6, = 0.9,
8=39v=3A=8B=150C=2.

Example 3 (See Figure 3) since x_2 =5,2_1 = 1,20 =5, = 0.02,5 =5,
v=09,A=12,B=2,C=0.8.

Example 4 We consider x_5 =9,2_1 =5,20 =9,a = 0.05, 5 = 15,
v=0.3,A=2,B=0.5C = 2.(See Figure 4).

Example 5 (See Figure 5) since o =3,2_1 =2,20 = 1,a = 5,5 = 0.8,
N =3,A=2B=04,C = 0.02.

Example 6 (See Figure 6) since z_o = 15,21 = 5,20 = l,a = 13,5 = 15,
v=02A=2B=050C =2

x(n+1):(a*x(n)z+b*x(n-l)*x(n)+c*x(n-2)2)/(A*x(n)2+B*x(n-l)*x(n)+c*x(n-2)2)

——X(n+1)
Equilibrium point

X(n)

0.68}

0.67}
= L
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0.65f

0.64,

|+X(n+l) """"" Equilibrium point

5 10 15 20 25 30
n

Figure (2)
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X(rHL)=(@x(n) 2+ DXL *x(n)+C*X(n-2) Y (A*X(n) 2+ B*X(n-1)*x(n)+C*x(n-2)?)

——X(n+1)

2 e Equilibrium point ||
18} A -
1.6f b

£ 14f \/ v VA2 ]
x
1.2 b
1 4
0.8} i
5 10 15 20 25 30 35
n
Figure (3)
x(n+1):(a*x(n)2+b*x(n-1)*x(n)+c*x(n-2)Z)I(A*x(n)2+B*x(n-l)*x(n)+C*x(n-2)2)

25 ——X(n+1) I

"""" Equilibrium point
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Figure (4)
x(n+1):(a*x(n)z+b*x(n-l)*x(n)+c*x(n-2)2)/(A*x(n)2+B*x(n-1)*x(n)+C*x(n»2)2)
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x(n+1):(a*x(n) +b*><(n 1)*x(n)+c*x(n- 2) )/(A*x(n) +B*x(n l)*x(n)+C*x(n-2)2)
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Figure (6)
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