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A NOTE ON FRACTIONAL q-INTEGRALS AND APPLICATIONS TO
GENERATING FUNCTIONS AND q-MITTAG–LEFFLER FUNCTION

JIAN CAO

Dedicated to George E. Andrews on his 80th birthday

Abstract. Motivated by the fact that fractional q-integrals play important roles in numer-
ous sciences, it’s natural to generalize the fractional q-integrals. The main object of this
paper is to build the relations between fractional q-integrals and certain generating func-
tions for q-polynomials and to generalize two fractional q-identities of [Fract. Calc. Appl.
Anal. 10(2007), 359–373.] by the method of q-difference equation. As applications, we
deduce the mixed and U(n + 1) type generating functions for Predrag–Sladjana–Miomir
polynomial, gain the transformational fractional q-identities and bulid the relations of frac-
tional q-integrals and q-Mittag–Leffler function.

1. Introduction

The fractional calculus is a very suitable tool in describing and solving a lot of problems
in numerous sciences [30], such as physics, electromagnetics, acoustics, electrochemistry
and material science. Their treatment from the point view of the q-calculus can open new
perspectives as it did, for example, in optimal control problems [5]. For further information
about q-integral and fractional q-integrals, see [2, 3, 4, 6, 16, 18, 19, 20, 21, 22, 26, 27, 38,
39, 40, 41, 42].

In this paper, we follow the notations and terminology in [17] and suppose that 0 < q <
1. We first show a list of various definitions and notations in q-calculus which are useful
to understand the subject of this paper. The basic hypergeometric series rϕs

rϕs

[ a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]
=

∞∑
n=0

(
a1, a2, . . . , ar; q

)
n(

q, b1, b2, . . . , bs; q
)
n

[
(−1)nq(n

2)
]1+s−r

zn, (1)

converges absolutely for all z if r ≤ s and for |z| < 1 if r = s + 1 unless it terminates. The
q-real number [a]q and compact q-shifted factorials are defined by

[a]q :=
1 − qa

1 − q
, (a; q)0 = 1, (a; q)n =

n−1∏
k=0

(1 − aqk), (a; q)∞ =
∞∏

k=0

(1 − aqk) (2)
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and (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n, where m ∈ N := {1, 2, 3, · · · } and n ∈
N0 := N ∪ {0}. The q-gamma function is defined by [17]

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x, (x ∈ R\{0,−1,−2, . . .}). (3)

The Thomae–Jackson q-integral is defined by [17, 23, 37]

∫ b

a
f (x) dq x = (1 − q)

∞∑
n=0

[
b f (bqn) − a f (aqn)

]
qn. (4)

The Riemann–Liouville fractional q-integral operator was introduced in [1](
Iαq f

)
(x) =

xα−1

Γq(α)

∫ x

0

(
qt/x; q

)
α−1 f (t) dq t. (5)

The generalized Riemann–Liouville fractional q-integral operator for α ∈ R+ is given by
[32] (

Iαq,a f
)
(x) =

xα−1

Γq(α)

∫ x

a

(
qt/x; q

)
α−1 f (t) dq t, (6)

which can be rewritten equivalently as follows by (4)(
Iαq,a f

)
(x) =

xα−1(1 − q)
Γq(α)

∞∑
n=0

[
x
(
qn+1; q

)
α−1 f

(
xqn) − a

(
aqn+1/x; q

)
α−1 f

(
aqn)]qn. (7)

Predrag–Sladjana–Miomir [31] obtained the following fractional q-identities.

Proposition 1 ([31, Corollary 4.1]). For α ∈ R+ and 0 < a < x < 1, the following
fractional q-integrals are valid

Iαq,a

{
1

(x; q)∞

}
=

(1 − q)α

(a; q)∞

∞∑
n=0

xα+n(a/x; q
)
α+n

(q; q)α+n
, (8)

Iαq,a
{
(−x; q)∞

}
= (1 − q)α(−a; q)∞

∞∑
n=0

q(n
2)xα+n(a/x; q

)
α+n

(−a; q)n(q; q)α+n
. (9)

In this paper, we consider the Predrag–Sladjana–Miomir polynomial.

Definition 2. For α ∈ R+ and 0 < a < x < 1, we denote

Pn(α, a, x|q) , Iαq,a
{
xn} = n∑

k=0

[
n
k

]
[k]q!an−k

Γq(α + k + 1)
xα+k(a/x; q

)
α+k (10)

and generalize the fractional q-identities (8) and (9) as follows.

Theorem 3. For α ∈ R+ and 0 < a < x < 1. If max{|at| , |az|} < 1, we have

Iαq,a

{
(bxz, tx; q)∞
(xs, xz; q)∞

}
=

(1 − q)α(abz, at; q)∞
(as, az; q)∞

∞∑
k=0

xα+k(a/x; q
)
α+k

ak(q; q)α+k
3ϕ2

[ q−k, as, az
at, abz ; q, q

]
.

(11)

Remark 4. For t = z = 0 and s = 1 in Theorem 3, equations (11) reduces to (8). For
s = z = 0 and t = −1 in Theorem 3, equations (11) reduces to (9).



138 J. CAO JFCA-2019/10(2)

The rest of the paper is organized as follows. In section 2, we give the proof of the main
results by the method of q-difference equation. In section 3, we gain mixed generating
functions for Predrag–Sladjana–Miomir polynomial. In section 4, we give transforma-
tional fractional q-identities. In section 5, we obtain U(n + 1) type generating functions
for Predrag–Sladjana–Miomir polynomial. In section 6, we derive the relations between
fractional q-integrals and q-Mittag–Leffler function.

2. Proof of Theorem 3

The Verma–Jain polynomials [9, Eq. (2.6)]

In(a, x, y, z|q) =
n∑

r=0

[
n
r

]
(a; q)rPn−r(x, y)zr, Jn(a, x, y, z|q) =

n∑
r=0

[
n
r

]
(a; q)rPn−r(y, x)zr,

(12)
where Pn(a, b) are Cauchy polynomials

Pn(a, b) = (b/a; q)nan = (a − b) · · · (a − qn−1b
)
, (13)

are important in q-series, which have close relationship with the other q-polynomials such
as Roger–Szegö, continuous q-ultraspherical, Al-Salam-Chihara, q-random walk and so
on. For more information, please refer to [36].

Chen, Fu and Zhang [14] defined the homogeneous q-difference operator Dxy as follows

Dxy{ f (x, y)} = f
(
x, q−1y

) − f (qx, y)
x − q−1y

, (14)

and the homogeneous q-operator T(a, zDxy) defined by

T(a, zDxy) =
∞∑

n=0

(a; q)n(zDxy)n

(q; q)n
. (15)

We check that [9, Eq. (2.15) and (2.16)]

In(a, x, y, z|q) = T(a, zDxy)
{
Pn(x, y)

}
, In(a, x, y, z|q) = znΩn

(
x/z; y/x, a|q), (16)

Jn(a, x, y, z|q) = E(a, zθxy)
{
Pn(y, x)

}
, Jn(a, x, y, z|q) = (−1)nq(n

2)In
(
1/a, y, x, az|q−1).

(17)

The method of q-difference equations shows itself to be an effective way to deduce many
important results involving q-series. For more information, please refer to [8, 9, 10, 11, 12,
15, 24, 25].

Before prove the main results, the following lemmas are necessary.

Lemma 5 ([9, Theorem 3]). Let f (x, y, z) be a three variables analytic function in a neigh-
bourhood of (x, y, z) = (0, 0, 0) ∈ C3. If f (x, y, z) satisfies the equation(

x − q−1y
)[

f (a, x, y, z) − f (a, x, y, qz)
]

= z
[
f
(
a, x, q−1y, z

)
− f (a, qx, y, z)

]
− az

[
f
(
a, x, q−1y, qz

)
− f (a, qx, y, qz)

]
, (18)

then we have
f (a, x, y, z) = T(a, zDxy){ f (a, x, y, 0)}. (19)

Lemma 6 ([9, Eq. (2.12)]). Suppose that max{|xt| , |zt|} < 1, we have

T(a, zDxy)
{

(yt; q)∞
(xt; q)∞

}
=

(azt, yt; q)∞
(xt, zt; q)∞

. (20)
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Lemma 7 (q-Chu-Vandermonde formula). For n ∈ N, we have

2ϕ1

[ q−n, a
c ; q, q

]
=

(c/a; q)nan

(c; q)n
. (21)

Lemma 8. For α ∈ R+, 0 < a < x < 1 and |as| < 1, we have

Iαq,a

{
(xt; q)∞
(xs; q)∞

}
=

(1 − q)α(at; q)∞
(as; q)∞

∞∑
k=0

xα+k(a/x; q
)
α+k(t/s; q)k sk

(q; q)α+k(at; q)k
. (22)

Proof of Lemma 8. The left-hand side (LHS) of equation (22) is equal to
∞∑

n=0

(t/s; q)nsn

(q; q)n
Iαq,a{xn}

=

∞∑
n=0

(t/s; q)ntn

(q; q)n

n∑
k=0

(q; q)nan−k

(q; q)k(q; q)n−k

(q; q)k(1 − q)−k

(q; q)α+k(1 − q)−α−k xα+k(a/x; q
)
α+k

= (1 − q)α
∞∑

k=0

xα+k(a/x; q)α+k(t/s; q)k sk

(q; q)α+k

∞∑
n=0

(
tqk/s; q

)
n(as)n

(q; q)n
,

which equals the right-hand side (RHS) of equation (22) after simplification. The proof is
complete. �

Lemma 9. For max{|as| , |az|} < 1, we have

(
s − q−1t

) [ (abz, at; q)∞
(as, az; q)∞

− (abzq, at; q)∞
(as, azq; q)∞

]
= z

[ (
abz, atq−1; q

)
∞

(as, az; q)∞
− (abz, at; q)∞

(asq, az; q)∞

]
− bz

[
(abzq, atq−1; q)∞

(as, azq; q)∞
− (abzq, at; q)∞

(asq, azq; q)∞

]
. (23)

Proof of Lemma 9. The LHS of equation (23) is equal to

LHS o f (23) =
(abz, at; q)∞
(as, az; q)∞

· z(b − 1)
(
atq−1 − as

)
1 − abz

. (24)

The RHS of equation (23) equals

RHS o f (23) =
(abz, at; q)∞
(as, az; q)∞

· z
[(

1 − atq−1) − (1 − as)
]

− (abz, at; q)∞
(as, az; q)∞

· bz
[
(1 − az)

(
1 − atq−1)

1 − abz
− (1 − as)(1 − az)

1 − abz

]
=

(abz, at; q)∞
(as, az; q)∞

· z(b − 1)
(
atq−1 − as

)
1 − abz

.

So the equation (23) is valid. The proof is complete. �

Proof of Theorem 3. We denote the RHS of (11) by f (b, s, t, z), and write f (b, s, t, z) equiv-
alently by

f (b, s, t, z) = (1 − q)α
∞∑

k=0

xα+k(a/x; q
)
α+k

ak(q; q)α+k

k∑
j=0

(
q−k; q

)
jq

j

(q; q) j
·
(
abzq j, atq j; q

)
∞(

asq j, azq j; q
)
∞
. (25)
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We check that f (b, s, t, z) satisfies equation (18) by (23), so we have

f (b, s, t, z) = T(b, zDst){ f (b, s, t, 0)}

= T(b, zDst)

(1 − q)α
∞∑

k=0

xα+k(a/x; q
)
α+k

ak(q; q)α+k

k∑
j=0

(
q−k; q

)
jq

j

(q; q) j
·
(
atq j; q

)
∞(

asq j; q
)
∞


= T(b, zDst)

 (1 − q)α(at; q)∞
(as; q)∞

∞∑
k=0

xα+k(a/x; q
)
α+k

ak(q; q)α+k
2ϕ1

[ q−k, as
at ; q, q

] by (22)

= Iαq,a

{
T(b, zDst)

{
(xt; q)∞
(xs; q)∞

}}
,

which equals the LHS of equation (11) after using (20). The proof is complete. �

3. Mixed generating functions for Predrag–Sladjana–Miomir polynomial

In this section, we study the mixed generating functions for Predrag–Sladjana–Miomir
polynomial, before the main results, the following lemmas are necessary. For more infor-
mation about the mixed generating functions, please refer to [9, 13].

Lemma 10. For α ∈ R+, 0 < a < x < 1, we have
∞∑

n=0

Pn(α, a, x|q)
wn

(q; q)n
=

(1 − q)α

(aw; q)∞

∞∑
k=0

xα+k(a/x; q)α+kwk

(q; q)α+k
. (26)

Proof of Lemma 10. The LHS of equation (26) is equal to

Iαq,a

 ∞∑
n=0

(xw)n

(q; q)n

 = Iαq,a

{
1

(xw; q)∞

}
, (27)

which equals the RHS of equation (26) after using (22). The proof is complete. �

Lemma 11 ([9, Eq. (2.20)]). For max{|zt| , |xt|} < 1, we have
∞∑

n=0

In(a, x, y, z|q)
tn

(q; q)n
=

(azt, yt; q)∞
(zt, xt; q)∞

. (28)

Theorem 12. For α ∈ R+, 0 < a < x < 1 and max{|atw| , |arw|} < 1, we have

∞∑
n=0

Pn(α, a, x|q)In(b, r, s, t|q)
wn

(q; q)n

=
(1 − q)α(abtw, asw; q)∞

(atw, arw; q)∞

∞∑
k=0

xα+k(a/x; q
)
α+k

ak(q; q)α+k
3ϕ2

[ q−k, atw, arw
asw, abtw ; q, q

]
. (29)

Remark 13. For s = t = 0 in Theorem 12, equation (29) reduces to (26) by using equation
(21).

Proof of Theorem 12. The LHS of equation (29) is equal to

Iαq,a

 ∞∑
n=0

In(b, r, s, t|q)
(xw)n

(q; q)n

 = Iαq,a

{
(btwx, swx; q)∞
(twx, rwx; q)∞

}
, (30)

which equals the RHS of equation (29) after using (11). The proof is complete. �
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4. Transformational fractional q-identities

In this section, we give the following transformational fractional q-identities by the
method of the homogeneous q-difference equation. For more information, please refer to
[9, 12, 14].

Theorem 14. Let A(n, k) and B(n, k) be independent of a and b. For n ∈ N, if A(n, k) and
B(n, k) satisfies

n∑
k=0

A(n, k)
(sx; q)k

(tx; q)k
=

n∑
k=0

B(n, k)
Pk(s, t)xk

(tx; q)k
, (31)

then for α ∈ R+, 0 < a < x < 1, we have
n∑

k=0

A(n, k)
∞∑

l=0

xα+l(a/x; q
)
α+l

al(q; q)α+l
3ϕ2

[
q−l, asqk, azqk

atqk, abzqk ; q, q
]

=

n∑
k=0

B(n, k)
k∑

j=0

(
q−k; q

)
jq

j

(q; q) j

∞∑
l=0

xα+l(a/x; q
)
α+l

al(q; q)α+l
3ϕ2

[
q−l, asq j, azq j

atq j, abzq j ; q, q
]
. (32)

Corollary 15. Let A(n, k) and B(n, k) be independent of a and b. For n ∈ N, if A(n, k) and
B(n, k) satisfies

n∑
k=0

A(n, k)
(sx; q)k

(tx; q)k
=

n∑
k=0

B(n, k)
Pk(s, t)xk

(tx; q)k
, (33)

then for α ∈ R+, 0 < a < x < 1, we have

n∑
k=0

A(n, k)
∞∑

l=0

xα+l(a/x; q
)
α+l(t/s; q)l

(
sqk)l

(q; q)α+l
(
atqk; q

)
l

=

n∑
k=0

B(n, k)
k∑

j=0

(
q−k; q

)
jq

j

(q; q) j

∞∑
l=0

xα+l(a/x; q
)
α+l(t/s; q)l

(
sq j)l

(q; q)α+l
(
atq j; q

)
l

. (34)

Remark 16. For z = 0 in Theorem 14, equation (32) reduces to (34).

Proof of Theorem 14. By the terminating Jackson’s formula [17, Eq. (III.4)]

2ϕ1

[
a, b
c ; q, z

]
=

(az; q)∞
(z; q)∞

2ϕ2

[
a, c/b
c, az ; q, bz

]
, (35)

formula (31) is valid for cases

A(n, k) =
(
q−n; q

)
kzk

(q; q)k
and B(n, k) =

(
zq−n; q

)
n
(
q−n; q

)
kzk(−1)kq(k

2)(
q, zq−n; q

)
k

. (36)

We can write equation (31) equivalently by
n∑

k=0

A(n, k) ·
(
txqk; q

)
∞(

sxqk; q
)
∞
=

n∑
k=0

B(n, k)
k∑

j=0

(
q−k; q

)
jq

j

(q; q) j
·
(
txq j; q

)
∞(

sxq j; q
)
∞
. (37)

Using the method of the homogeneous q-difference equation by Lemma 5, we have
n∑

k=0

A(n, k)
(
txqk, bzxqk; q

)
∞(

sxqk, zxqk; q
)
∞
=

n∑
k=0

B(n, k)
k∑

j=0

(
q−k; q

)
jq

j

(q; q) j
·
(
txq j, bzxq j; q

)
∞(

sxq j, zxq j; q
)
∞
. (38)

Applying the fractional q-integral operator Iαq,a on both sides of equation (38), we deduce
the equation (32) by using equation (11). The proof is complete. �



142 J. CAO JFCA-2019/10(2)

5. U(n + 1) type generating functions for Predrag–Sladjana–Miomir polynomial

Various authors have researched that multiple basic hypergeometric series associated
with the unitary U(n + 1) group. For more information, please refer to [7, 10, 28].

In [28], Milne studied the theory and application of the U(n + 1) generalization of the
classical Bailey transform and Bailey lemma, which involving the following nonterminat-
ing U(n + 1) generalization of the q-binomial theorem.

Proposition 17 ([28, Theorem 5.42]). Let b, z and x1, . . . , xn be indeterminate, and let
n ≥ 1. Suppose that none of the denominators in the following identity vanishes, and that
0 < |q| < 1 and |z| < |x1, . . . , xn||xm|−n|q|(n−1)/2, for m = 1, 2, . . . , n. Then

∑
yk≥0

k=1,2...,n

{ ∏
1≤r<s≤n

1 − xr
xs

qyr−ys

1 − xr
xs

 n∏
r,s=1

(
q

xr

xs
; q

)−1

yr

n∏
i=1

(xi)nyi−(y1+...+yn)(−1)(n−1)(y1+...+yn)

× qy2+2y3+...+(n−1)yn+(n−1)[(y1
2 )+...+(yn

2 )]−e2(y1,...,yn)(b; q)y1+...+yn zy1+...+yn

}
=

(bz; q)∞
(z; q)∞

, (39)

where e2(y1, . . . , yn) is the second elementary symmetric function of {y1, . . . , yn}.

Lemma 18 ([9, Eq. (2.20)]). For k ∈ N and max{|tx| , |rx|} < 1, we have
∞∑

n=0

In+ j(b, r, s, t|q)
xn+ j

(q; q)n
=

(btx, sx; q)∞
(tx, rx; q)∞

3ϕ2

[
q− j, tx, rx

btx, sx ; q, q
]
. (40)

Theorem 19. Let b, z and x1, . . . , xn be indeterminate, and let n ≥ 1. Suppose that none
of the denominators in the following identity vanishes, and that 0 < |q| < 1 and |z| <
|x1, . . . , xn||xm|−n|q|(n−1)/2, for m = 1, 2, . . . , n. Then

∑
yk≥0

k=1,2...,n

{ ∏
1≤r<s≤n

1 − xr
xs

qyr−ys

1 − xr
xs

 n∏
r,s=1

(
q

xr

xs
; q

)−1

yr

n∏
i=1

(xi)nyi−(y1+...+yn)(−1)(n−1)(y1+...+yn)

× qy2+2y3+...+(n−1)yn+(n−1)[(y1
2 )+...+(yn

2 )]−e2(y1,...,yn)Iy1+...+yn+ j(b, r, s, t|q)Py1+...+yn+ j(α, a, x|q)
}

=
(1 − q)α(abt, as; q)∞

(ar, at; q)∞

j∑
i=0

(
q− j, ar, at; q

)
iq

i

(q, abt, as; q)i

∞∑
k=0

xα+k(a/x; q)α+k

ak(q; q)α+k
3ϕ2

[
q−k, arqi, atqi

asqi, abtqi ; q, q
]
,

(41)

where e2(y1, . . . , yn) is the second elementary symmetric function of {y1, . . . , yn}.

Remark 20. For j = s = t = 0 in Theorem 19, equation (41) reduces to (26).

Proof of Theorem 19. Letting (b, z) =
(
sq j/r, xr

)
in equation (39) and multiplying P j(r, s)

on both sides of equation (39) yields

∑
yk≥0

k=1,2...,n

{ ∏
1≤r<s≤n

1 − xr
xs

qyr−ys

1 − xr
xs

 n∏
r,s=1

(
q

xr

xs
; q

)−1

yr

n∏
i=1

(xi)nyi−(y1+...+yn)(−1)(n−1)(y1+...+yn)

×qy2+2y3+...+(n−1)yn+(n−1)[(y1
2 )+...+(yn

2 )]−e2(y1,...,yn)Py1+...+yn+ j(r, s)xy1+...+yn+ j
}
=

x jP j(r, s)
(
rxq j; q

)
∞

(sx; q)∞
.

(42)
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We denote f (b, r, s, t) by

f (b, r, s, t) =
(btx, sx; q)∞
(tx, rx; q)∞

3ϕ2

[
q− j, tx, rx

btx, sx ; q, q
]

(43)

and we check that f (b, r, s, t) satisfies equation (18), so we have

f (b, r, s, t) = T(b, tDrs){ f (b, r, s, 0)} = T(b, tDrs)
{

x jP j(r, s)
(
rxq j; q

)
∞

(sx; q)∞

}
by (42) (44)

=
∑
yk≥0

k=1,2...,n

{ ∏
1≤r<s≤n

1 − xr
xs

qyr−ys

1 − xr
xs

 n∏
r,s=1

(
q

xr

xs
; q

)−1

yr

n∏
i=1

(xi)nyi−(y1+...+yn)(−1)(n−1)(y1+...+yn)

(45)

× qy2+2y3+...+(n−1)yn+(n−1)[(y1
2 )+...+(yn

2 )]−e2(y1,...,yn)T(b, tDrs){Py1+...+yn+ j(r, s)} · xy1+...+yn+ j
}
,

(46)

which equals

f (b, r, s, t) =
∑
yk≥0

k=1,2...,n

{ ∏
1≤r<s≤n

1 − xr
xs

qyr−ys

1 − xr
xs

 n∏
r,s=1

(
q

xr

xs
; q

)−1

yr

n∏
i=1

(xi)nyi−(y1+...+yn)(−1)(n−1)(y1+...+yn)

× qy2+2y3+...+(n−1)yn+(n−1)[(y1
2 )+...+(yn

2 )]−e2(y1,...,yn)Iy1+...+yn+ j(b, r, s, t|q)xy1+...+yn+ j
}

=
(btx, sx; q)∞
(tx, rx; q)∞

3ϕ2

[
q− j, tx, rx

btx, sx ; q, q
]
. (47)

Applying the fractional q-integral operator Iαq,a on both sides of equation (47), we have

∑
yk≥0

k=1,2...,n

{ ∏
1≤r<s≤n

1 − xr
xs

qyr−ys

1 − xr
xs

 n∏
r,s=1

(
q

xr

xs
; q

)−1

yr

n∏
i=1

(xi)nyi−(y1+...+yn)(−1)(n−1)(y1+...+yn)

× qy2+2y3+...+(n−1)yn+(n−1)[(y1
2 )+...+(yn

2 )]−e2(y1,...,yn)Iy1+...+yn+ j(b, r, s, t|q)Py1+...+yn+ j(α, a, x|q)
}

= Iαq,a

{
(btx, sx; q)∞
(tx, rx; q)∞

3ϕ2

[
q− j, tx, rx

btx, sx ; q, q
]}
, (48)

which is equivalent to the equation (41). The proof is complete. �

6. Relations between fractional q-integrals and q-Mittag–Leffler function

In 1903, the Swedish mathematician Mittag–Leffler [29] introduced the function Eα(z),
defined by

Eα(z) =
∞∑

n=0

zn

Γ(αn + 1)
, α ∈ C,R(α) > 0, (49)

where Γ(z) is the Gamma function. A generalization of equation (49) was given by Wiman
[43] in 1905

Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β)
, α, β ∈ C,R(α) > 0,R(β) > 0. (50)
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The Mittag–Leffler function reduces immediately to the exponential function ez = E1(z)
when α = 1. For 0 < α < 1 it interpolates between the pure exponential ez and a geomet-
ric function 1

1−z =
∑∞

n=0 zn(|z| < 1). Its importance has been realized during the last two
decades due to its involvement in the problems of applied sciences such as physics, chem-
istry, biology and engineering. Mittag–Leffler function occurs naturally in the solution of
fractional order differential or integral equations. For more information, please refer to
[34, 35].

Rajković–Marinković–Stanković [31] defined the following two q-Mittag–Leffler func-
tions, called the small q-Mittag–Leffler function and the big q-Mittag–Leffler function re-
spectively.

Definition 21 ([31, Definition 4.1]). For |c| < |x|, q, x, c, β ∈ C and Re(β) > 0, we have

eq;α,β(x; c) =
∞∑

n=0

xαn+β−1(c/x; q)αn+β−1

(q; q)αn+β−1
, (51)

Eq;α,β(x; c) =
∞∑

n=0

q(αn+β−1
2 )xαn+β−1(c/x; q)αn+β−1

(−c; q)αn+β−1(q; q)αn+β−1
. (52)

Proposition 22 ([31, Theorem 4.2]). For α ∈ R+ and 0 < c < x < 1, we have

Iαq,c(eq(x)) = (1 − q)αeq(c)eq;1,α+1(x; c), (53)

Iαq,c(Eq(x)) = (1 − q)αq(α+1
2 )Eq(cq−α)Eq;1,α+1

(
xq−α; cq−α

)
. (54)

In this section, we continue to study the relations between fractional q-integrals and
q-Mittag–Leffler function.

Theorem 23. For α ∈ R+ and 0 < a < x < 1, we have

Iαq,a

{
1

(xt; q)∞

}
=

(1 − q)α

tα
eq(at)eq;1,α+1(xt; at), (55)

Iαq,a {(xt; q)∞} = (−t)−α(1 − q)αq(α+1
2 )Eq(−atq−α)Eq;1,α+1

(−xtq−α;−atq−α
)
. (56)

Remark 24. For t = 1 and t = −1 in Theorem 23, equations (55) and (56) reduce to (53)
and (54) respectively.

Proof of Theorem 23. The RHS of equation (55) can be written equivalently by

Iαq,a

{
1

(xt; q)∞

}
=

∞∑
n=0

tn

(q; q)n
Iαq,a

{
xn}

=

∞∑
n=0

tn

(q; q)n

n∑
k=0

(q; q)nan−k

(q; q)k(q; q)n−k

(q; q)k(1 − q)−k

(q; q)α+k(1 − q)−α−k xα+k(a/x; q
)
α+k

= (1 − q)α
∞∑

k=0

xα+k(a/x; q
)
α+ktk

(q; q)α+k

∞∑
n=0

antn

(q; q)n

=
(1 − q)α

(at; q)∞

∞∑
k=0

xα+k(a/x; q
)
α+ktk

(q; q)α+k
,

which is the LHS of equation (55). Similarly, we can obtain equation (56). The proof of
Theorem 23 is complete. �
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