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A NOTE ON FRACTIONAL g¢-INTEGRALS AND APPLICATIONS TO
GENERATING FUNCTIONS AND ¢-MITTAG-LEFFLER FUNCTION

JIAN CAO

DEbICATED TO GEORGE E. ANDREWS ON HIS 80TH BIRTHDAY

ABsTRACT. Motivated by the fact that fractional g-integrals play important roles in numer-
ous sciences, it’s natural to generalize the fractional g-integrals. The main object of this
paper is to build the relations between fractional g-integrals and certain generating func-
tions for g-polynomials and to generalize two fractional g-identities of [Fract. Calc. Appl.
Anal. 10(2007), 359-373.] by the method of g-difference equation. As applications, we
deduce the mixed and U(n + 1) type generating functions for Predrag—Sladjana—Miomir
polynomial, gain the transformational fractional g-identities and bulid the relations of frac-
tional g-integrals and g-Mittag—Leffler function.

1. INTRODUCTION

The fractional calculus is a very suitable tool in describing and solving a lot of problems
in numerous sciences [30], such as physics, electromagnetics, acoustics, electrochemistry
and material science. Their treatment from the point view of the g-calculus can open new
perspectives as it did, for example, in optimal control problems [5]. For further information
about g-integral and fractional g-integrals, see [2, 3, 4, 6, 16, 18, 19, 20, 21, 22, 26, 27, 38,
39, 40, 41, 42].

In this paper, we follow the notations and terminology in [17] and suppose that 0 < g <
1. We first show a list of various definitions and notations in g-calculus which are useful
to understand the subject of this paper. The basic hypergeometric series ¢,

ay,az,...,ar - (al,az,. ~~yar;q)n n () Ls—r
r¥s 5 q, = -1 2 , 1
% bi,ba,...b, qz] ”Z:;)(q,bl,bz,...,bx;q)n[( el M

converges absolutely for all z if » < s and for |z] < 1 if » = 5 + 1 unless it terminates. The
g-real number [a], and compact g-shifted factorials are defined by

1=g¢ n—1 oo
faly = 721 (@gn =1, @an=[Ja-ah @on=]a-a @
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and (a1, az, - - -, Gm; Pn = (@15 Pn(@2; @+ + + (@m; @, Wherem € N := {1,2,3,---} and ne€
Np := N U {0}. The g-gamma function is defined by [17]

(4 P lox
1- ,
et P

The Thomae—Jackson g-integral is defined by [17, 23, 37]

r,(x) = (x e R\{0,-1,-2,...}). 3)

b (o]
[ 143 = -0 Y [brt6g - astagla @
a n=0

The Riemann—Liouville fractional q—integral operator was introduced in [1]

(L f)e0 = f (qt/%; @) f(D) dg 1. (5)

q()

The generalized Riemann-Liouville fractional g-integral operator for @ € R* is given by
(32]

Y X -1 X
()0 =55 [ a0 ©

which can be rewritten equivalently as follows by (4)

x¥ 1(1
[y(@)

Predrag—Sladjana—Miomir [31] obtained the following fractional g-identities.

(12, f)on = U9 Z[ (@"": )01 F(xq") - alag™ [x:9),_, flag")]q".  (T)

Proposition 1 ([31, Corollary 4.1]). For « € R* and 0 < a < x < 1, the following
fractional g-integrals are valid

(3 { 1 } = (1 _q)a N xa+n((,l/x; q)(y+n
(D) (@D A (G Dasn

®)

() ya+n
g x"*"(a/x; Q)m—n' ©)

12 {(-x: )} = (1 = 9)"(-a; q)‘”z (=@ Dn(q; Qo+

In this paper, we consider the Predrag—Sladjana—Miomir polynomial.

Definition 2. Fora € R and 0 < a < x < 1, we denote

c [n] [k],la"*

Pn(aa a, x|¢1) = ]q,a{xn} = ; k l"q(a, + k + l)

x**(a/x; Dosr (10)

and generalize the fractional g-identities (8) and (9) as follows.

Theorem 3. For @ e R* and 0 < a < x < 1. If max{|at|, |az|} < 1, we have

. {(bxz, 1x; q)m} (1= g)(@bz,at; @)oo <2 XM@/% Qx| g as,az |

(X8, X25 @)oo (as,az; q)o e ai gy @lark 32 at,abz P9
(11D

Remark 4. Fort = z = 0 and s = 1 in Theorem 3, equations (11) reduces to (8). For
s =z=0andt=—1in Theorem 3, equations (11) reduces to (9).
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The rest of the paper is organized as follows. In section 2, we give the proof of the main
results by the method of g-difference equation. In section 3, we gain mixed generating
functions for Predrag—Sladjana—Miomir polynomial. In section 4, we give transforma-
tional fractional g-identities. In section 5, we obtain U(n + 1) type generating functions
for Predrag—Sladjana—Miomir polynomial. In section 6, we derive the relations between
fractional g-integrals and g-Mittag—Leffler function.

2. Proor oF THEOREM 3

The Verma—Jain polynomials [9, Eq. (2.6)]

n

Tn(a,x,,7lq) = ) m (@ ), Par(63) s Tl x,y,20) = [’r’] (@ )P0, 002,
r=0 r=0
(12)

where P,(a, b) are Cauchy polynomials
Py(a.b) = (b/aiqha" = (a=b)---(a~q""'b), (13)

are important in g-series, which have close relationship with the other g-polynomials such
as Roger—Szegd, continuous g-ultraspherical, Al-Salam-Chihara, g-random walk and so
on. For more information, please refer to [36].

Chen, Fu and Zhang [14] defined the homogeneous g-difference operator Dy, as follows

flx,q7'y) - flgx.y)

Dy{f(x, )} = - (14)
X—=qy
and the homogeneous g-operator T(a, zD,,) defined by
o (@ @n(zDyy)"
T(a,zD,,) = _— (15)
” ; (4: D
We check that [9, Eq. (2.15) and (2.16)]
Ta(a, x,y,2q) = T(a,zD o ){Pu(x, )}, Tu(a, x,,2lq) = 2"Qu(x/z; y/x, alg), (16)
Tula. x.y.2l9) = B@, 20)(Pa(v. 0}, Tula. x.y.2lg) = (~1Y'qO L, (1/a,y. x.azlg™).
(17)

The method of g-difference equations shows itself to be an effective way to deduce many
important results involving g-series. For more information, please refer to 8, 9, 10, 11, 12,
15, 24, 25].

Before prove the main results, the following lemmas are necessary.

Lemma 5 ([9, Theorem 3]). Let f(x,y, z) be a three variables analytic function in a neigh-
bourhood of (x,v,z) = (0,0,0) € C3. If f(x,v,z) satisfies the equation
(x—q7'y)[f (@, x.y,2) - fla, x,y,q2)]
= z[f(a, %, q7'y.2) - fla, gx.y,2)] - az| f(a, x.g'y.42) = fla,qx.y.q2)], (18)

then we have
fla, x,y,2) = T(a,zDy){f(a, x, y, 0)}. (19)
Lemma 6 ([9, Eq. (2.12)]). Suppose that max{|xt|,|zt|} < 1, we have

Ot q)oo} _ (azt,yt,9)e
(xt; Qoo (xt, 285 @)oo

T(a, zDyy) { (20)
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Lemma 7 (¢-Chu-Vandermonde formula). For n € N, we have

—n

(c/a; g)na"

q",a ;
1q.q|= ————. (21)
2¢1[ c 11 (€3 @n
Lemma 8. Fora € R*, 0 <a < x < 1and|as| < 1, we have
v G (= @)%at @)oo < X7 (a/x:9) 0 (1] 53 ics*
= . (22)
(X8 @) (as:q) (4 Da-ilat; @)

Proof of Lemma 8. The left-hand side (LHS) of equation (22) is equal to

Z ([/S ('I)n I¢ xn}

(45 Dn gl
e W s @at” (¢; @)nd” @G-
B Z (G5 Pn Z (@ DG Dk (G Qi1 — q)‘“"‘x (/% 4o

s

N X‘”"(a/x; Daskt]s; it < (16" 5:9),(as)"
=(1 =) n
(1= ,; (45 @a+k Z (45 Pn

which equals the right-hand side (RHS) of equation (22) after simplification. The proof is
complete. O

Lemma 9. For max{|as|, |az]} < 1, we have

10| (abz,at; @)s  (abzq,at; )
(s-47"1) -
(as,az; @) (as,azq; @)

[(abz, atg”'1q).,  (abz,at; ) } ~ [(abzq, atg o _ (abigatig)s ] g
(as,az; @) (asq,az; @)oo (as,azq; g)w (asq,azq; Qoo |
Proof of Lemma 9. The LHS of equation (23) is equal to
‘@ 2(b— D(atg™' -
LHS 0f(23) = (abz,at; @) 2(b = 1)(atq aS)_ 24)
(as,az; @)oo 1 —-abz
The RHS of equation (23) equals
bz, at; g)w -
RHS0f(23) = {4024l D (1 —atg™) = (1 - as)
(as,az; @)oo
_@hratgs |, [(-a)(l-ag) (1-a(-az)
(as,az; @) 1 —abz 1—-abz
_(abz,at;q)es 2(b— (atg™' - as)
T (as,az; @)oo 1—abz '
So the equation (23) is valid. The proof is complete. O

Proof of Theorem 3. We denote the RHS of (11) by f(b, s, 1, z), and write f(b, s, t, z) equiv-
alently by

(25)

o o XA/ 9) 0 o (0759),4 (abzg,atg's ).,
flbys,t,2) = (1—g)" Y ok N
= G Pen L (@9 (asq)azq)iq)
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We check that f(b, s, t, 7) satisfies equation (18) by (23), so we have

f(bs Sa t’ Z) = T(b, ZDst){f(b’ S’ [’ O)}
k

§ ey 2 L0 g,
G Den A (@@ (asq)q)

= T(b,zDy) {(1 -9

(1 = 9)"(at; o o ¥ (a/%;9)gsr s [ q*.a
@i & g Qs at

_ e (X5 @)oo
- Iq,a {T(b, zDy) {(xs; Do }} ,

which equals the LHS of equation (11) after using (20). The proof is complete. O

=T(b,zDy) { y 78 q]} by (22)

3. MIXED GENERATING FUNCTIONS FOR PREDRAG—SLADJANA—MIOMIR POLYNOMIAL

In this section, we study the mixed generating functions for Predrag—Sladjana—Miomir
polynomial, before the main results, the following lemmas are necessary. For more infor-
mation about the mixed generating functions, please refer to [9, 13].

Lemma 10. Fora e R, 0<a < x < 1, we have

oo

& n 1=qg) a+k 1o k
ZPn(a/,a, xlg) W = ( ,Q) Z al (a/.x Dkl .
“ @ Dn (@@ & (43 Dok

(26)

Proof of Lemma 10. The LHS of equation (26) is equal to

o (xw)” 1
[(Y — I(Z , 27
e {% (@ Dn } > {(xw; q)oo} @7

which equals the RHS of equation (26) after using (22). The proof is complete. O

Lemma 11 ([9, Eq. (2.20)]). For max{|zf|, |xt|} < 1, we have

> T (azt, yt; @)eo
> Iiaxydg)——— = oL (28)
s (@ @Dn (@ X1 Q)
Theorem 12. For « € R*, 0 < a < x < 1 and max{|atw|, |arw|} < 1, we have
(o) Wn
Z P, a, xlg)1 (b, 1, 5,1lq)
ot (G5 Dn
(1 — @)*(abtw, asw; g)e ~ X**(a/x;q), *atw, arw
- . —d Z K 3| iq.q|- (29)
(atw, arw; q)co = dq; @ark asw, abtw

Remark 13. For s =t = 0 in Theorem 12, equation (29) reduces to (26) by using equation
(21).

Proof of Theorem 12. The LHS of equation (29) is equal to

= (xw)? (btwx, SWX; @)oo
I7, Ia(b,1,s,tlq)—— =17, {— , (30)
* {nz_;; T q)n} PN (twx, rwx; @)oo

which equals the RHS of equation (29) after using (11). The proof is complete. O
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4. TRANSFORMATIONAL FRACTIONAL (-IDENTITIES

In this section, we give the following transformational fractional g-identities by the
method of the homogeneous g-difference equation. For more information, please refer to
[9, 12, 14].

Theorem 14. Let A(n, k) and B(n, k) be independent of a and b. For n € N, if A(n, k) and
B(n, k) satisfies
(R P(s, )x*
(n,k)———= ) B(n,k)———— (€2D)
kz;‘ (13 @i Z (tx;q
then fora e R, 0 < a < x < 1, we have

Xa/x;q), g7, asqt, azq*
ZA( k)z a'(q; Qi 3¢2[ atq*, abzq* ’q’q]

j o

(@594 & x*(a/x;q), ', asq’, azq’
:ZB(n,k)Z = ”aasz[" T aq] (32)
k=0 j=0

@9 = G Dan atq’, abzq’

Corollary 15. Let A(n, k) and B(n, k) be independent of a and b. For n € N, if A(n, k) and
B(n, k) satisfies

(sx q>k Y Pi(s,0)x*
A(n, k = k 33
Z G ; B k)~ (33)

then for @ € RY, 0<a<x< 1, we have

Zn:A(n o oo x(l+l(a/X;q)m_[(t/s;q)l(sqk)l
= (@ Dari(atq ; q),;

(@59),4" S x*a)x;.q),(t5: i(s¢7)
= § B(n, k § § R . (34
-0 (@9); “ (4; Qa+iatq’; ), GY

Remark 16. For z = 0 in Theorem 14, equation (32) reduces to (34).
Proof of Theorem 14. By the terminating Jackson’s formula [17, Eq. (I.4)]

2¢1[ a,b ;q,z] (az; q)oo b [ a,c/b > ,bz] (35)

c (Z; @)oo c,az
formula (31) is valid for cases

-n. k k k (2)
Al = (7" @)z and  Bln.k) = (zg7":9),(q7"; @) (-1)'q 36)
(4 D (9:297" @)y
We can write equation (31) equivalently by
(1x¢"39)s @94 (1xq;q),,
A(n, k B(n, k . . . 37
Z 0 (sx¢*19) Z o )Z (:@;  (sxq¢'59) G7

Using the method of the homogeneous q-dlfference equation by Lemma 5, we have

(txq*, bzxq*; q)., (g% 9);4’ (txqj, bzxq’; q)
A(n, k B(n, k e ) 38
Z . )(sxq zxqk; q)., Z =, )Z (@)  (sxq/,2xq’; q), o9

Applying the fractional g-integral operator I, on both sides of equation (38), we deduce
the equation (32) by using equation (11). The proof is complete. O
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5. U(n + 1) TYPE GENERATING FUNCTIONS FOR PREDRAG—SLADJANA—MIOMIR POLYNOMIAL

Various authors have researched that multiple basic hypergeometric series associated
with the unitary U(n + 1) group. For more information, please refer to [7, 10, 28].

In [28], Milne studied the theory and application of the U(n + 1) generalization of the
classical Bailey transform and Bailey lemma, which involving the following nonterminat-
ing U(n + 1) generalization of the g-binomial theorem.

Proposition 17 ([28, Theorem 5.42]). Let b,z and xi,...,x, be indeterminate, and let
n > 1. Suppose that none of the denominators in the following identity vanishes, and that
0<lgl<land|z <|x1,..., %1% "lgl" V2, form=1,2,...,n. Then

>

=y 1<r<s<n Xy r,s=1

=

-1 n
X, (v ) (v |
q_r;q) | |(xi)n>, ()1+~~+)n)(_1)(n DOi+..+yn)
X

s Yroi=1

Xq‘\'2+2y3+...+(n—1)y,,+(n—1)[("'2')+...+()£‘)]—eg(y| ..... y”)(b; q) . Zler.A.ﬂ;,l _ (bZ; q)oo’ (39)
Yit..tVn (Z; q)oo

where ex(y1, . .., Yn) is the second elementary symmetric function of {y1,..., Y}

Lemma 18 ([9, Eq. (2.20)]). For k € N and max{|tx|, |rx|} < 1, we have

(40)

- X (btx, X3 @)oo i tx, rx
ZInJrj(b’r’s’th) = 3 a 5q,
n=0

(@G Pn (107X Qe btx, sx

Theorem 19. Let b,z and xi,.. ., x, be indeterminate, and let n > 1. Suppose that none
of the denominators in the following identity vanishes, and that 0 < |q| < 1 and |z| <

X1, - Xl gl D2, form = 1,2, ..., n. Then
1 -2y no o \-lon
I ar. N4y 1\(=DOn . yn)
Z{ [1 [ — }H(qx;") BE (-1)
k:)lkion 1<r<s<n X rs=1 Yroi=1

_ (1-9)*(abt,as;q)e z]: (q7,ar,at; q),q' i X7 x; @) ok s gt arq atq"
(ar,at; @) i (q,abt,as;q)i a*(q; Q)ark asq', abtq' 4|
(41)

where ex(y1, .. .,Yn) is the second elementary symmetric function of {y1, ..., Y}
Remark 20. For j = s =t = 0 in Theorem 19, equation (41) reduces to (26).

Proof of Theorem 19. Letting (b, z) = (sq’/r, xr) in equation (39) and multiplying P;(r, s)
on both sides of equation (39) yields

1 — ﬁq)’r_)’s n -1 n
Z { l_[ [*—} l_[ (qﬁ. q) l_[(xi)n.v,-—ovl+...+.v,,>(_1)<n—1><y1+.‘.+yn>
X ’
w20 M<r<s<n - x5 rs=1 Xs Yroi=1

ijj(r, $)(rxq’; @),
(5% @)oo )

qu2+2y3+4..+(n—1)y”+(n—1)[(."21)+..4+(/";)]—e2(y] ’m’y”)Pyl+...+y,,+j(rv S)Xy] +..4+y,,+j}=

(42)
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We denote f(b, 1, s,t) by

btx, $X;q)oo —J tx,
Foursigy = LK Do [q 1, rx

(X, rx; @)oo bix,sx T ‘1} (43)

and we check that f(b, r, s, t) satisfies equation (18), so we have

x'P (7, $)(rxq’; q).,
S(b,r,s,1) = T(b,tD ) f (b, 1, 5,0)} = T(b,1D,y) i) by (42) (44)
— X Vs n -1 n
= Z { ]_[ {—1 al qx,‘ ] 1—1 (qﬁ; q) ]_[( X, (=D )
k:"]k;o 1<r<s<n - Xy r,s=1 Xs Yroi=1

(45)

(46)
which equals

— X yrYs n -1 n
f(b, 1, s,1) = Z{ l—[ [1 lqux }n(qﬁ;q) l_[(xi)ny,-—(yl+...+y,,>(_1)<n—1><y1+...+yn)
- =z Xy

=0 1<r<s<n X r,s=1 Yroi=1
k=12...n

% qyz+2,vz+-~-+(ﬂ*l)Y»er(”*l)[(“;)*---*(";)]*ez(yl ,,,,, y !")Iy1+...+yn+j(ba r s, th)xy|+--~+,\'u+j}

_ (btx, sx; @)oo g7/, tx, rx
T x| bix,sx

3 4qs q] . @)

Applying the fractional g-integral operator I, on both sides of equation (47), we have

q.a

1- %q,Vr_y.r n x, -1 n ot DOty

Z l_[ — l_[ g=":q l_[(xi) V=01 (1) Y1+t
20 Msr<ssn I_Z rs=l VX5 i

_ e (btx, 5X; q)oo gl tx, rx
9.4 (1, rX; @)oo 32 btx, sx

349, 61}}, (48)

which is equivalent to the equation (41). The proof is complete. O

6. RELATIONS BETWEEN FRACTIONAL ({-INTEGRALS AND q-MITTAG—LEFFLER FUNCTION

In 1903, the Swedish mathematician Mittag—Leffler [29] introduced the function E,(z),
defined by

(o) Zn
E.(z) = ZO T ©€ C,R(a) > 0, (49)

where I'(z) is the Gamma function. A generalization of equation (49) was given by Wiman
[43] in 1905

— N Zn
Eop(2) = Z:(; T s @ B eC,R(@) >0,R@B) > 0. (50)
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The Mittag—Lefller function reduces immediately to the exponential function ¢ = E;(z)
when o = 1. For 0 < @ < 1 it interpolates between the pure exponential ¢ and a geomet-
ric function 1+Z = Y0 2'(zl < 1). Its importance has been realized during the last two
decades due to its involvement in the problems of applied sciences such as physics, chem-
istry, biology and engineering. Mittag—Lefller function occurs naturally in the solution of
fractional order differential or integral equations. For more information, please refer to
[34, 35].

Rajkovié—Marinkovi¢—Stankovié¢ [31] defined the following two g-Mittag—Leffler func-
tions, called the small g-Mittag—Leffler function and the big g-Mittag—LefHer function re-
spectively.

Definition 21 ([31, Definition 4.1]). For |c| < |x|, g, x, ¢, B € C and Re(B) > 0, we have
- x(tn+ﬁ—l (C/-X; q)an+ﬁ—l
=0 (q’ q)rm+,8—1

00 an+p-1 _
Eyys(x: C)_Zq( 27 yanf I(C/XQQ)MH-B—I (52)
BT L (=6 Qanep1 (G Dansp 1

eq;a,ﬂ(-X; c)= P (51

Proposition 22 ([31, Theorem 4.2]). For @ € R* and 0 < ¢ < x < 1, we have
I (eq(x)) = (1 = q)"eg(c)eg 1 a+1(X;0), (53)
a+l
12 (E,0) = (1 - 9D Ey(cq)E 1,001 (xq™ 5 cq 7). (54)

In this section, we continue to study the relations between fractional g-integrals and
g-Mittag—Leffler function.

Theorem 23. Fora € R* and 0 < a < x < 1, we have

(1 1 (1 — Q)a .
Iq,a {(xt, q)m } = 1@ eq(at)eq;l,a/+1 (Xt, at)s (55)

2 4Gt )} = (071 = )¢ Ey(~atq ) E 1 gur (~xtq ™ —atg ™). (56)

Remark 24. Fort =1 andt = —1 in Theorem 23, equations (55) and (56) reduce to (53)
and (54) respectively.

Proof of Theorem 23. The RHS of equation (55) can be written equivalently by

1 1
Ill — Ia n
a.a {(xt; q)m} Z (4 Pn g’}

n=0

o o @™t @l -F
= § X)) g
n=0

= (@ Dn (@ DG Dk (G5 Daii(1 — g)7*

_a _q)ai xm—k(a/x; q)(wrktk i att

o (@G Dark (G Dn
(1= & xMa/x;q), 1
@9 H (G Park

which is the LHS of equation (55). Similarly, we can obtain equation (56). The proof of
Theorem 23 is complete. O
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