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FRACTIONAL NONLINEAR EVOLUTION EQUATIONS WITH
SECTORIAL LINEAR OPERATORS

BAMBANG HENDRIYA GUSWANTO

ABSTRACT. We study the existence and uniqueness of a local mild solution for
a class of nonlinear evolution equations involving the Caputo fractional time
derivative of order a (0 < v < 1) and a sectorial linear operator A in the linear
part. We put on the nonlinear part some conditions involving the fractional
power of A. By applying Banach Fixed Point Theorem, a unique local mild
solution with smoothing effects, estimates, and a behavior at time ¢ close to 0
is obtained. An example associated with anomalous diffusion with chemotaxis,
as an application of our result, is given.

1. INTRODUCTION

Consider the fractional chemotaxis-diffusion system

Difu=Au—V - -uVv, inQ x (0,00),

Div=Av—v+u, inQ x(0,00),

ov  Ju (1.1)

—=——=0 002 x (0

on  On o (0, 00),

u(+,0) = ug, v(-,0) =v9, inQ
where 0 < o < 1, D§ is the Caputo fractional derivative of order o, and  C R? is
a bounded domain with C? boundary. The first equation of the system (1.1)) which
is called the fractional chemotaxis-diffusion equation was derived by Langlands and
Henry in [I]. When o = 1, the system (1.1]) is well known by the Keller-Segel
chemotaxis (KS) model. In this model (KS), v and v stand for the concentration
of amoebae and acrasin, respectively, where acrasin is a chemoattractant produced
by the amoebae. The model (KS) describes the space and time evolution of the
concentration of diffusing amoebae that is chemotactically attracted by diffusing
acrasin (see [2]). In general, the model (KS) can be used to explain the space
and time evolution of the concentration of a diffusing species that is chemotacti-
cally attracted by a diffusing chemoattractant. Meanwhile, when 0 < a < 1, the
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system ((1.1)) describes the process in which the attracted species and attracting
chemoattractant diffuse anomalously.
In this paper, we study the existence and uniqueness of a local mild solution to

the fractional abstract Cauchy problem associated with the system (|1.1)), that is
Diu=Au+ f(u), t >0, 0 < a <1,
’LL(O) = Ug,

where X is a Banach space, Df* is the Caputo fractional derivative of order «,

A:D(A) C X — X is a sectorial linear operator, ug € X, and f: X — X satisfies

some nonlinear conditions. Guswanto and Suzuki in [3] also studied this problem
with f and wug satisfying the conditions :

(f1) f(0) =0,
(f2) there exist Cy > 0, 9 > 1, and 0 < 8 < 1 such that

1£(w) = F)Il < ColllA%ul| + A w[)? | A%u — APw],

for all u,v € D(AP),
(f3) ug € D(AY) for some 0 < v < 1.

Meanwhile, here, we use another conditions on f and ug as stated below :

(F1) f(0)=0,
(F2) there exist Cy > 0 and 0 < 5 < 1 such that

1 (u) = F@)II < Co [(lull + [[o]) ]| A%u — APv]
+([|A%u] + 1A% u = o],

(1.2)

for all u,v € D(AP),

(F3) ug € D(A).
The conditions (F1)-(F3) are the case of Yagi [4]. Von Wahl, in [5], used these
conditions to study the Navier-Stokes equations. As in [3, [, 5], we apply Banach
Fixed Point Theorem to construct a local mild solution to the problem by
employing the properties of the solution operators generated by A and the fractional
power of A. In this paper, we obtain the existence and uniqueness of a local mild
solution with smoothing effects, estimates, and a behavior at time ¢ close to 0.

This paper is composed of four sections. In section 2, we introduce briefly the
fractional integration and differentiation of Caputo operator. In this section, we
also provides some properties of analytic solution operators for fractional evolution
equations including some estimates involving the fractional power of sectorial op-
erators. In the next section, our main result is shown. Finally, in the last section,
an application of our main result to investigate the solution to the system
describing anomalous Diffusion problem with chemotaxis is given.

2. PRELIMINARIES

2.1. Fractional Time Derivative. Let 0 < a« <1, a > 0 and I = (a,T) for some
T > 0. The fractional integral of order « is defined by

t a—1
(t—>s)
Jgé)tf(t) = L Wf(s)ds, f < Ll(l), t> a. (21)
We set J9 . f(t) = f(t). The fractional integral operator (2.1)) obeys the semigroup
property

Je I, = 0<a, Bl (2.2)

a,t —
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Caputo fractional derivative of order « is defined by

D50 =D [ s (F6) = FO)ds, 1> a (2.3
if fe LY (I), t=** f e Whi(I), or
DS, f(t) :/ (lf(li)O:;Dsf(s)ds, t > a, (2.4)

if f € WhI(I) where * denotes the convolution of functions

(f*g)(t) = / f(t - T)g(r)dr, t>a,

and WHL(I) is the set of all functions u € L'(I) such that the distributional
derivative of u exists and belongs to L'(I). The operator Dg, is a left inverse of

Jo'e, that is
DG anf(t) = (1), t>a, (2.5)
but it is not a right inverse, that is
JaiDanf() = f(t) = f(a), t>a (2.6)
For a = 0, we set Jg, = J and Dy, = Dy*. We refer to Kilbas et al. [6] or

Podlubny [7] for more details concerning the fractional integral and derivative.

2.2. Analytic Solution Operators. In this section, we provide briefly some re-
sults concerning solution operators for the fractional Cauchy problem

Diu(t) = Au(t) + f(t), t >0,
u(0) = up.
For more details, we refer to Guswanto [g].

Henceforth, we assume that the linear operator A : D(A) C X — X satisfies the
properties that there is a constant § € (7/2,7) such that

2.7)

p(A) D Sp = {NeC:A£0,|arg(\)]| < 6}, (2.8)
1RO )] < % e Ss, (2.9)

where R(\; A) = (A — A)~! and p(A) are the resolvent operator and resolvent set
of A, respectively. We call A a sectorial operator.

Proposition 2.1. FEvery sectorial operator is closed

Proof. We suppose A is a sectorial operator. To prove A is closed, we must show
that if {x,}neny € D(A), 2, — =z € X, and Az, — y € X, as n — 00, then
x € D(A) and Az = y.

Note that the resolvent set p(A) of A contains all A € C such that A—A : D(A4) —
X is bijective and the resolvent operator R(A; A) of A is bounded. Thus, since, for
any A € p(A), A— A is bijective, we have if z, = (A — A)z, then x,, = R(\; A)z, for
n € N. Observe that z, — Az — y, as n — oo. Consequently, by the boundedness
(which is equivalent to the conitinuity) of R(\; A), we get © = R(A\; A)(Az — y)
implying (A — A)z = Az — y. We obtain z € D(A) and Az = y. O

Definition 2.1. Forr >0 and 7/2 < w < 0,
Iw={AeC:|arg\)| =w, [\ >r}U{XeC:larg(N)| <w, |\ =71}



216 B. H. GUSWANTO

The linear operator A generates solution operators for the problem (12.7), those
are

Sa(t) = L/ MATIR(AY; A)dN, >0, (2.10)
27t Jp,
Pat) = i/ MR AN, t >0, (2.11)
2m Tho

where I',. ,, is oriented counterclockwise. By Cauchy’s theorem, the integral form

(2.10) and (2.11) are independent of r > 0 and w € (7/2,0).
Let B(X;Y') be the set of all bounded linear operators T': X — Y where X and

Y are Banach spaces. If X =Y then B(X;X) := B(X). Also, let BC((0,T]; X)
be the set of all bounded and continuous functions w : (0,7] — X.

The properties of the families { S, (¢) }+>0 and { P, (t) }+~0 are given in the follow-
ing theorems.

Theorem 2.1. Let A be a sectorial operator and S, (t) be the operator defined by
(2.10). Then the following statements hold.
(i) Sa(t) € B(X) and there exists a constant C; = C1(a) > 0 such that
[Sa(t)]| < C1, >0,
(ii) Sa(t) € B(X; D(A)) fort >0, and if x € D(A) then AS,(t)x = Sa(t)Ax.
Moreover, there exists a constant Cy = Cay(a) > 0 such that
[ASL(t)]] < Cot™, t >0,
(iii) The function t — S, (t) belongs to C>°((0,00); B(X)) and it holds that
1
= —/ eANTTIR(NY A)dN, n=1,2,. ..
271 | A
and there exist constants M, = M, («) > 0,n =1,2,... such that
1SSV (@B < Mat™", ¢ >0,

Moreover, it has an analytic continuation S, (z) to the sector Sy_r /o and,
for z € Sg_r /2, n € (7/2,0), it holds that

= omi

1
So(z) = — /F e ATIR(AY; A)d.
™n

Theorem 2.2. Let A be a sectorial operator and P, (t) be the operator defined by
(2.11). Then the following statements hold.

(i) P,(t) € B(X) and there exists a constant Ly = Li(«a) > 0 such that

[Pa(t)ll < Lat*™", £ >0,
P,(t) € B(X;D(A)) for allt > 0, and if x € D(A) then AP,(t)x =
P, (t)Ax. Moreover, there exists a constant Lo = La(a) > 0 such that

AP, (t)|| < Lot™, t>0,
(i) The function t — Py (t) belongs to C*°((0,00); B(X)) and it holds that

1
PM(t) = —/ eANPR(NY A)dA, n=1,2,. ..
Fr,w

T o

(i)

and there exist constants K,, = K,(a) > 0,n=1,2,... such that
IS ()] < Knt*™ ™t £>0,
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Moreover, it has an analytic continuation Py (z) to the sector Sy_r /o and,
for z € Sg_r/2, n € (7/2,0), it holds that
1
P.(z) = 7/ M R(NY; A)dA.
211 T
™n
The following theorem states some identities concerning the operators S, (t) and
P, (t) including the semigroup-like property.

Theorem 2.3. Let A be a sectorial operator, S, (t) and P,(t) be the operators

defined by (2.10) and (2.11)), respectively. Then the following statements hold.
(i) Forxz € X andt >0,

So(t)x = J Py (), DiSa(t)x = APy (t)z,
(ii) For x € D(A) and s,t > 0,
DSy (t)xr = AS,(t)x,

S—T—T

St + )& = Sa(t)Se(s)z — A/O /0 (t +r(1 - )™ b (7) P (r)adrdr

Next theorem shows us the behavior of the operator S, (t) at ¢ close to 0.
Theorem 2.4. Let A be a sectorial operator and S, (t) be the operator defined by
(2.10). Then the following statements hold.

(i) If x € D(A) then lim;_o+ So () = x,
(i) For every x € D(A) andt > 0,

ti(t_T)a_l T)xdT
| S Su(nadr € D)

t t—7 a—1
/0 (F@)[)AS(X(T)IdT = Sa(t)r — x,
(i) If x € D(A) and Az € D(A) then
lim Sat)z =@ = L Ax.
t—0+ te P(a+1)
The representation of the solution to (2.7) in term of S, (¢) and P, (t) is given in
the following theorem:.

Theorem 2.5. Let u € C*((0,00); X)NLY((0,00); X), u(t) € D(A) fort € [0,00),
Au € LY'((0,00); X), f € LY((0,00); D(A)), and Af € L'((0,00); X). If u is a
solution to the problem (2.7)) then

t
u(t) = Sa(t)ug + / P,(t—s)f(s)ds, t>0. (2.12)
0
Now, we consider the fractional power of operator A
1
APy = — A PR\ A)zd), = € X, (2.13)
271 Ty

and A% = (A=P)7L, for 8 > 0. If x € D(A), we can denote A’z by

APy — A(AP~1g) = QL/ NTR(G A)Awd), 0< 8 < 1. (2.14)
™ Jr,.

W
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Proposition 2.2. Let A be a sectorial operator and 3 > 0. The fractional power
AP of A is a bounded operator on X.
Proof. Since A is sectorial, there is a constant 6 € (7/2, 7) such that (2.8) and (2.9)
are satisfied. Then, by Definition 2.1 and ([2.13)), for 5 > 0 and z € X, we have

1

APz < — IA=PR(X; A)a||dA|
27 I'ryw
M

27 I'r,w

M o0 w
- (2/ R—ﬂ—ldR+/ r—ﬂde) ll]|
2T ” —w

M (1

Thus A=? is a bounded operator on X for 5 > 0. O

IA

A7 dA ]

By the boundedness of A=# for 8 > 0, we get the closedness of A? for 3 > 0.

Proposition 2.3. Let A be a sectorial operator and 5 > 0. The fractional power
AP of A is closed.

Proof. To show that A” is closed, we must prove that if {z,},en € D(AP), 2, —
r € X, and APz, — y € X, as n — oo, then z € D(A®) and APz = y. Recall
that A% = (A=#)~1. Tt follows that if y, = A’z, then z, = APy, for n € N.
By Proposition 2.2, A=? is a bounded or continuous operator on X. Consequently,
since x,, — = and y, — y, as n — oo, we have xr = A Fy. It implies x € D(AP)
and y = APz, O

Some estimates involving A” and the operators families {S,(t)}¢>0, {Pu(t)}i>0
generated by the sectorial operator A are provided by the following theorem. These
estimates are analogous to those as stated in Theorem 6.13 in [9] for analytic semi-
groups.

Theorem 2.6. For each 0 < 8 < 1, there exist positive constants C| = Ci(a, B),
Ch = Ch(w, B), and C4 = Ci(a, B) such that for all z € X,

|A%S, (t)z|| < Clt=*(t=*B=Y £ 1)|jz|, t>0, (2.15)
| AP P, (t)z|| < Cht=>B=D=1z|, ¢>0. (2.16)

Moreover, for all x € D(AP),
[Sa(t)z — x| < C5t*P||APz||, t>0. (2.17)

Now, let & = a(¢ —1)+1, for 0 < ¢ < 1, and 27 = max{0, z}, for z € R. Thus
we have the following results.

Corollary 2.1. For each > (2—1/a)" and z € X,

52| AP S, (t)x|| < 207 x|, 0<t<1, (2.18)
t58]| AP S, (H)z|| < 205t ||z||, ¢ > 1, (2.19)
7| APPa(t)z]| < Callall, ¢ >0, (2.20)

and
59| AP Sy ()| — 0, ast — 0%, (2.21)
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Remark 2.1. If 8 = 2 — 1/a > 0, implying g — a = 0, the estimates (2.18)),
(2.19), and (2.20) still hold for all x € X. Furthermore, using (2.13), (2.14)),
Theorem 2.1(i), Theorem 2.1(ii), and Proposition 2.2, if v € D(A) then

| A8 Sy ()| = H;/ Aﬁ—lR(A;A)Sa(t)AdiH
YIWA

= [|A”718a (1) Azl
< G| A7) Az
implying .
Furthermore, we have the same result as Theorem 2.3(ii) with weaker condition.

Theorem 2.7. Let 0 < 3 < 1. Then, for x € D(A®) and s,t > 0,

DSy (t)x = AS,(t)x, (2.22)
Sa(t +8)z = Sa(t)Sa(s)z — A/o /OS U +li(; i;)r)_a P (1) Py(r)xdrdr. (2.23)

3. MAIN RESULTS

In this section, we show the existence and uniqueness of a mild solution for the
problem (1.2)) under certain conditions by applying Banach Fixed Point Theorem.
Based on Theorem 2.5, we define a mild solution to the problem (|1.2)) as follows.

Definition 3.1. A continuous function u : (0,T] — X is a mild solution to the

problem (1.2)) if it satisfies

u(t) = Sa(t)uo Jr/o P,(t —s)f(u(s))ds, 0<t<T.

The conditions on f are
(i) £(0) =0,
(ii) there exist Cy > 0 and 0 < 8 < 1 such that
17 (u) = F)I < Co [(lull + [[v]) 1A% — APv]|

3.1
(1A% + 1A% u — ], )

for all u,v € D(AP).
Under the conditions on f above, we obtain the following result.
Theorem 3.1. Let A be sectorial, ug € D(A), and 1/2 < o < 1. Then there exists
ro > 0 such that if ||ugl] < ro then, for some T > 0, the problem (1.2) has a unique
mild solution u satisfying
u € BC((0,T); D(A2~Y/)), 242"V e BO((0,T); X),

lim A2~ Yyu(t) = 0
t—0+

with
lu(t)ll < Milluoll, 4>~V *u(®)]l < Mat™*||uoll, ¢ € (0,71,
for some M; >0, i=1,2.
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Proof. Observe that 1/2 < o < 1 assures that 0 <2 —1/a<landif 5 =2—-1/«
then {3 = a. We then define the Banach space
Eor={u:[0,T] - X :u € BC((0,T); D(A?)),t*A%u € BC((0,T); X)}
equipped with the norm
lullla,r = sup | A%u(t)]| + sup [lu(t)]
0<t<T 0<t<T
We also define a mapping F' on B, r by
t
Fu(t) = Sa(t)uo +/ Pyt —s)f(u(s))ds, 0<t<T,
0
where B, 7 is the closed subset of F, 1 defined by
B, = {u € Eoq: sup t*||APu(t)]| < K1, sup |lu(t) —uol| < Kg}
0<t<T 0<t<T

with T, K1, and K> are some positive constants which will be specified later.

Step 1. We prove that E, r is a Banach space. Suppose that {u,}nen is a
Cauchy sequence in E, p. It means that |||u,, —
Consequently, for 0 <t < T,

[t (t) — un(t)]] < sup |Jum(t) — un(t)]] = 0, as m,n — o (3.2)
0<t<T
and
t) APty (8) — APy (8)|| < sup £ APy, (t) — APuy ()] — 0, as m,n — co. (3.3)
0<t<T

In other words, from and ., both {u,(t)}nen and {t*APu, (t)}nen, for
0<t<T, are Cauchy sequences in X. Since X is a Banach space, there exist
u(t) € X and v(t) € X such that u, (t) — u(t) and t* APu,,(t) — v(t), asn — oo, for
0 <t < T, respectively. Moreover, both {u,(t)}p,en and {t*APu,, (t)}n,en converge
uniformly in X for 0 < ¢ < T. Note that, for 0 <t < T,

lu(®]l = lim_ (5] < o0
and
lo@)ll = lim [ A%u, (t)] < oo
implying that u(t), v(t) € B((0,T7]; ) Next, consider that, by Proposition 2.3, A#

is closed. It implies that u(t) € D(A®) and t* APu(t) = v(t), for 0 < t < T. Finally,
since, for 0 < t < T, both {u, (t)}nen and {t*APu, (t)},en converge uniformly in
X, we have u(t) € C((0,T]; D(A?)) and t*APu(t) € C((0,T]; X). Thus u(t) €
BC((0,T]; D(AP)) and t*APu(t) € BC((0,T]; X). We obtain E, 7 is a Banach
space.

Step 2. We prove the continuity of A® Fu(t) and Fu(t) with respect to ¢ € (0, 7]
in the norm || - || of X. Observe that, by Theorem 2.1(ii), for each z € X, S, (t)z €
D(A), t > 0. Then by (2.13), (2.14), and Theorem 2.1(ii) again, for uy € D(A) and
0<p<l,

ABS, (t)uo / NLR(A A)Sa (1) Augd) = AP=1S, () Aug. (3.4

2772

By Proposition 2.2, for 0 < f < 1, A?~! is a bounded operator on X. Next,
note that, by Theorem 2.1(iii), S, (¢)Aug is continuous with respect to t € (0, 00).
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Consequently, by (3.4) and the boundedness of A°~1, for 0 < 8 < 1, we have, for
ug € D(A), APS,(t)ug is continuous with respect to t € (0,00). Thus it remains to
show the continuity of

t
Aﬁ/ Pyt —s)f(u(s))ds, 0<t<T.
0
Consider that
t+h

A8 [ Pt b — ) f(uls))ds — Aﬁ/O Pult — 5)f(u(s))ds

= 6 ' — S ul\s S — B t a — S uls S
A /_hm )f(u(s + h))ds — A /OP<t )f(u(s))d
L / Pult — )(F(u(s + h)) — F(u(s)))ds
0

4+ 4P /Oh Palt +h — s)f (u(s))ds.

Observe that, for u € B,y 1,

£ (u(t + h)) — fu(t)]| < 2Co [(K2 + [luol)|APu(t + k) — A%u(t)| (3.5)
+ Kt ut + ) — u®)]] '
and
£ ()] < 2Co|lu() ||| A%u(t)|] < 2Co K (Ko + |Juol)t~* (3.6)

for 0 <t <T. Then, by and , we have
t
/0 148 Pa(t — 5)(F (u(s + h) — f(u(s)))]ds
t
< 20y, B)(Ka + [[uol]) / (t— )| APu(s + h) — APu(s) | ds
0

+2CoCh(av, B) K /0 (t—s)"%s “u(s + h) — u(s)||ds.

Note that, for 0 < s <t < T,
(t — ) || APu(s + h) — APu(s)|| < 2K (t — s)~%s~ 2,

s 2K (t —s) %~ € L'((0,t); H).
Next, consider that since t* A%y € BC((0,T]; X), we have that t* APu(t) is bounded
and continuous with respect to ¢ € (0,7] in the norm || - || of X. Then APu(t) =
t= (t*APu(t)) is also continuous with respect to t € (0,7] in the norm || - || of X.
Thus we have

| APu(s + h) — APu(s)|| — 0, ash — 0.

Hence, by the Dominated Convergence Theorem, we get
t
/ (t — )| APu(s + h) — APu(s)|ds — 0, ash — 0. (3.7)
0
Similarly, we obtain

/0 (t—s5) % Yu(s +h) —u(s)||ds — 0, ash — 0. (3.8)
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By and (3.8)), we have
/Ot |AP Py (t — s)(f(u(s + h)) — f(u(s)))||ds — 0, as h — 0.
Next, observe that, by and ,
/ VAPt 4 B 9 Fu()ds

h
< 2CCY (e, B)K:1 (K + ||u0|\)/ (t+h—s) s *ds
0

_h
— 2000 (o, B) K (K + [fuo) (¢ + h)' =2 / T meredr
0

1
= 2CoCh(, B) K1 (Kz + ol (¢ + )12 - ——

o\ h
| — H(1- 2 -y ——
<t+h> ( % & a’t+h>

_ QCOCé(aaﬁ)Kl(K2 + ||’U’0H)h1—o¢(t_~_ h)—ozH (1 —a.a2—a h )

1—a t+h
where
F(C) 1 tb71(1 _ t)cfbfl
H(a,b;c;x) = dt —b— 0 <1

is Hypergeometric function (see [6]). Thus
h
/ AP P (t+ h — 8)|||[ £ (u(s))||ds — 0, ash — 0.
0

Hence AP Fu(t) is continuous with respect to t € (0,7] in X since A®S, (t)uo is
also continuous with respect to t € (0,00) in X. Using the way which is similar to
that used to prove that A®Fu(t) is continuous with respect to t € (0,7] in X, we
can also obtain that Fu(t) is continuous with respect to ¢t € (0,7] in X.

Step 3. We shall find K7 > 0, K5 > 0, and T > 0 such that

sup ta||AﬁFu(t)H < Ki, sup ||[Fu(t)—ugl < K. (3.9)
0<t<T 0<t<T
By Theorem 2.2(i) and (3.6]), we have, for 0 <t < T,

t t
[ 1Pt = s)(u(s))ds < 260La(@) 1 (Ko + fual) [ (2= 9% sds
0 0
= ZCoLl(OJ)Kl(KQ + HUOH)B(l — Q, Oé)
where
1
B(n,v) = / 1"’771(1 - T)”fldr, n,v >0
0
is Beta function. Hence

| Pu(t) = uoll < [1Sa(t)uo — woll + 26 L (@) K1 (Ks + [lug) B — v a).  (3.10)
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Similarly, by (2.16]) and (3.6]), we get
t t
/ 148 Po(t — ) f(u(s))[ds < 2CoCh(er, )KL (K + [luo]]) / (t—s)s~ds
0 0
= ZCOCé(a, 5)K1(K2 + ||UO||)B(]. — 0[, 1 — Ol)tl_Za

implying
AT Fu(O)] < 12147 S0 (uol o)
+ 2C0Ch(a, B) K1 (K + |Juol)B(1 — a, 1 — a)t* =, '
We shall choose K1 = K9 = K > 0 such that
K/4 —2CyLi(a)K (K + |lugl)B(1 — e, cx) > 0 (3.12)
and
K/4 —2C,Ch(a, B)K(K + ||luo|)B(1 — a, 1 — ) > 0. (3.13)

In order to do it, we take first
1 — _
o = gor min{(Ll(a)B(l —a,a)) ' (Cy(a, B)B(1 — a,1 — ) 1}.
0
It follows that if |jug|| < 7o then
a=1/4—-2CyL1(a)B(1 — o, a)|lug| >0
and
b=1/4—-2C,Cy(cr, 3)B(1 — a, 1 — a)|Juo|| >0
implying that we can find such a K since (3.12)) and (3.13)) are equivalent to
aK —cK? >0
and
bK — dK? > 0,

respectively, where

¢=2C)L1(a)B(1 —a,cx) >0
and

d=2CyCh(c, /)B(1 — ;1 — ) > 0.

Note that, by Theorem 2.4(i),

S0 (t)ug — uo|| — 0,ast — 0 (3.14)
and, by Remark 2.1,

t*)| AP S, (t)uo|| — 0,as t — 0F. (3.15)
Then, by (3.14)) and (3.15]), we can choose T' > 0 such that

sup | [Sa(t)uo = uoll < K/4 =2Co Ly () K(K + [luo|) B(1 — ;) (3.16)
0<t<

and

sup t*||APS, (t)uo|| < K/4 — 2CoCh(c, BYK (K + |luol) B(1 — o, 1 — ), (3.17)
0<t<T

respectively. Applying (3.16) to (3.10]), we have

sup |[Fu(t) —uol| < sup [[Sa(t)uo — uol|
0<t<T 0<t<T

+2CoL1 () K (K + ||uol)B(1 — o, @)
< K/4.



224 B. H. GUSWANTO

Similarly, applying (3.17) to (3.11]), we get

sup t*|A°Fu(t)|| < sup t*[|A” S, (t)uoll
0<t<T 0<t<T

+2CoCs(a, B)K (K + [uo])B(1 — @, 1 — )
< K/4.

Thus (3.9) is satisfied.
Step 4. We prove F' is a contraction in B, 7. Observe that

1 (u(t)) = fFlo@)I < 2Co (K1 + K2 + [luol)t™ [fu = vl[|a.2-
Therefore, by Theorem 2.2(i),

t
[Fu(t) = Fo()|| < 2Co Ly () (K1 + K2 + ||uO||)/ (t—s)* " s™ds|[u — vllla,r
0

< 2Co Ly () (K + Ky + [luol) B(1 — o, a)[[u = vl fla,r

and, by (2.16),
t*|| AP Fu(t) — AP Fu(t)|

t
< 2CoCy (o, B) (K1 + K + ||U0H)t°‘/ (t —s)"%s™ds]l[u = vll|ar
0

< 2CoC%(a, B) (K1 + Ko + |luol ) B(1 — o, 1 — )t ||| — v || a7
Then
[1Fu = Follla,r < K'll[u = vllla,r
where
K' =2Cy(K1 + Kz + |luol) [L1(a) B(1 — o, ) + C(cr, B)B(1 — , 1 — )] .
Note that, with K > 0 specified as in and (3.13)), we have
CoL1(a)(K + ||lugl)B(1 — o, ) < 1/8 (3.18)

and
CoChla, B)(K + [ugl)B(1 — 0,1 - a) < 1/8 (3.19)
implying 0 < K’ < 1. It means that F is a contraction mapping from B, r into
itself.
Then, by Banach Fixed Point Theorem, we obtain a unique v € B, r which is a
mild solution to the problem . Furthermore, consider that, based on ,

t [ APu(t)]| < ]| A" Sa (tuol
+2CoCh(a, B)K (K + |luo|) B(1 — o, 1 — )t 2.
Since ug € D(A), we have
t*|| AP Sy (t)uol| — 0, ast — 0T
by Remark 2.1. It implies that
Tim £ 4%u()] = 0

(3.20)

by (3.20]). Moreover, we can find that there exist M; > 0, i = 1,2, such that
lu)l < Milluoll, [ A%u(t)|| < Mat™*|luoll, t € (0,T].
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4. APPLICATIONS

We consider again the fractional chemotaxis-diffusion system (1.1)
Difu=Au—V - -uVv, inQ x (0,00),
Difv=Av—v+u, inx(0,00),

o _ou
dn ~ In

=0, ondNx (0,00),
u(+,0) = ug, v(-,0) =vp, in€
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with 4/5 < a < 1 and Q C R? is a bounded domain with C? boundary. We define

the Banach space

X = {(Z) cueLXQ),ve H%V(Q)}

where

ou

H%(Q) = {u € H*(Q): — = 00on 99

on
equipped with the norm

9

The abstract formulation of the problem (|1.1)) is

DAU = AU + F(U), t>0,

U(0) = Uy

in X = {(g) cu € L3(Q),v € HIQ\,(Q)} where

ey 2)-r= (5.

WlthAle, AQZA_I7 and

D(A) = {(5) cue HY(Q),v e ’Hj‘w(ﬂ)}

where

Hiy(Q) = {ve HY(Q): Ave HY(Q)}.

%
= (Il + Iole)” - (

The operator A;,7 = 1,2 is dissipative and self adjoint implying that A;,7 =1,2

is sectorial in H% (£2). Moreover, for any A € Sp with 6 € (7/2, ), we get

()\ — Al)il

=7 = (B

_ ( (A=At

Ay Ag(A — Ag)"H(A — Ay)

()\ . Al)il

- <A2_1[/\(/\ —Ap) 7t = I](A = Ay~
Thus, there exists M > 0 such that ||[(A — A)7|| < M/|\| for all X € Sy.

For 3/4 < B8 <1, we define

HY(Q) = {u e H*(Q) : 0

aZ:OonaQ}.
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Since V - uVv = Vu - Vv + uAwv, we have, for 1/2 < 8 <1,

IV - UVU||L2(Q) < CHuHHM(Q)HUHHQ(Q), u € H2B(Q),’U € HQ(Q), (4.1)
for some constant C' > 0. Next, for 3/4 < 3 < 1, D(AY) = D(A5) = H3(Q) and
ull 26y < RillAfull 20y, w€ Hy (Q), i=1,2, (4.2)
for some constants R; > 0, ¢ = 1,2. Furthermore, we obtain that, for 3/4 < 8 <1,
Dmﬁ:{<g;ueﬂw() e HATTV (9 ﬁ (4.3)
where
'H2?+”(Q)::{uezfﬁau2);Avg;fﬁ?(g)}
(see [E]).

Thus, using , . ., and the inequalities

(a+0b)P <271 (a? +bP), a,b>0, p>1,
a®+b* < (a+b)? ab>0,
for 3/4 < 8 <1, F satisfies
IFU) = F(V)|I?
H ( (ug — ug)Vouy —

AV ’LLQV(UQ — 1)1)) 2

0
= ||V (u1 —uz)Vuy — V- ua2V(vg — Ul)||2L2(Q)

< O [[lus — uallgr2s oy o1 |l rr2 () + luall ras ey llor = vall 2]

< C*’R? [HA?(Ul — u2)|| 22y o1l 2y + | AT w2l L2 gy lvr — Uz||H2(Q)r

< 207R} [ Afur — Afusll3a o oIy + 147w 320y 01 = vl
<202C" (| AU = APV (U + V1) + (14°U | + 14°V])* U = V|12]
<2020 (| AU — APV (U + IVI) + (14°U| + APV ) 1T — V1)

for some constant C’ > 0 with
U:Gﬁepm@ V:cﬁepmﬂ

U1 V2
It follows that, for some constant Cy > 0,
IF@)=FV)| < Co [(IUN| + VN |A°U = APV || + (|A°U || + | A°V|)) U = V][] -
By Theorem 3.1, for 8 =2—1/a with 4/5 < a < 1 and Uy € D(A) with ||Up| < 7a,
we conclude that, for some T' > 0, the problem has a unique mild solution U
satisfying

U € BC((0,T] : D(AP)), t*APU € BC((0,T] : X),
lim t*APU(t) =0

t—0+
with
U@ < MU, |APU@)I| < Mot~ Ul t € (0,T]
for some M; >0, i =1,2.
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