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APPROXIMATE CONTROLLABILITY OF IMPULSIVE

FRACTIONAL STOCHASTIC INTEGRO-DIFFERENTIAL

SYSTEMS WITH STATE-DEPENDENT DELAY AND POISSON

JUMPS

S. SELVARASU, P. KALAMANI, M. MALLIKA ARJUNAN

Abstract. The main purpose of this paper is to investigate the result on ap-

proximate controllability of stochastic integro-differential equations with state-
dependent delay and Poisson jumps. By employing the stochastic analysis

theory and fixed point theorem, a set of novel sufficient conditions are derived

for the second order nonlinear impulsive fractional neutral stochastic integro-
differential systems with state-dependent delay and Poisson jumps. Finally, an

example has been given to validate the efficiency of the proposed theoretical

results.

1. Introduction

In recent few decades, the theory of fractional calculus has become a most inter-
esting area for researchers due to its wide applicability in sciences and engineering
such as material sciences, mechanics, seepage flow in porous media, in fluid dynamic
traffic models, population dynamics, economics, chemical technology, medicine and
many others. One of the major applications of fractional calculus is the hypothesis
of fractional evolution equations. In fact, fractional differential equations may be
considered as an alternative model to nonlinear partial differential equations. The
nonlinear oscillations of an earthquake can be described by the fractional differential
equation. The fractional derivatives give a phenomenal instrument for describing
the memory and genetic properties of different materials and process which is a
major advantage of fractional calculus. For more details about fractional calculus
and fractional differential equations, we refer to the monographs [32, 26, 38, 22]
and references cited therein.
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To build more realistic models in chemistry, physics, economics, social sciences,
finance and other areas, stochastic effects need to be taken into account. There-
fore, many real world problems can be modeled by stochastic differential equa-
tions. The existence, stability, approximate controllability, uniqueness of solu-
tions of the stochastic differential equation with delay is a special type of sto-
chastic functional differential equations have recently received a lot of attentions
(see [30, 29, 15, 16, 34, 33, 13, 18, 31, 14, 23]).

The problem with nonlocal condition, which is a generalization of the problem
of classical condition, was motivated by physical problem. The leading deal with
nonlocal conditions due to Byszewski [11, 12]. Since it is demonstrated that the
nonlocal problems have better effects in applications than the classical Cauchy
problem. Stochastic differential equations with nonlocal conditions were studied
by many authors and some basic results on nonlocal problems have been obtained.
For more details about nonlocal conditions (see [10, 30, 29, 21, 4]).

The theory of impulsive differential equations of integer order has found its ex-
tensive applications in realistic mathematical modeling of a wide variety of practical
situations and has emerged as an important area of investigation in recent years.
For the general theory and applications of impulsive differential equations, we refer
the reader to [6, 8, 25]. However, impulsive differential equations of fractional or-
der have not been much studied and many aspects of these equations are yet to be
explored. For some recent work on impulsive fractional differential equations, see
[2, 3, 9, 7, 45, 40, 41] and the references therein.

The controllability is one of the basic ideas in linear and nonlinear control
theory, and plays a crucial role in both deterministic and stochastic control sys-
tems. Roughly speaking, controllability generally means that it is possible to
steer a dynamical control system from an arbitrary initial state to an arbitrary
final state using the set of admissible controls. Many papers have been dedicated
to the approximate controllability of fractional differential equations for example
[46, 34, 29, 30, 13, 16, 28, 33].

The Poisson jumps have become very popular, it is extensively used to model
many of the phenomena arising in areas such as economic, finanace, physics, biol-
ogy, medicine and other sciences. For example if a system jumps from a ”normal
state” to a ”bad state”, the strength of system in random. It is natural and neces-
sary to include a jump term in the stochastic differential equation. Sakthivel and
Ren [37] established the exponential stability of second-order stochastic evolution
equations with Poisson jumps. Existence and uniqueness of solutions to neutral
stochastic functional differential equations with Poisson jumps are derived by Tan
et.al [44]. Moreover, stochastic differential equations with Poisson jumps are ana-
lyzed by many authors [29, 24, 37, 5]. In particluar, Muthukumar and Rajivgandhi
[30] established the approximate controllability of fractional order stochastic varia-
tional inequalities driven by Poisson jumps. Recently, Sathiyaraj et.al [39] derived
fractional order stochastic dynamical systems with distributed delayed control and
Poisson jumps. Very recently Muthukumar and Thiagu [29] studied existence of
solutions and approximate controllability of fractional nonlocal neutral impulsive
stochastic differential equations of order 1 < q < 2 with infinite delay and Poisson
jumps. However, approximate controllability of nonlocal fractional neutral impul-
sive stochastic integro-differential equations of order 1 < q < 2 with state-dependent
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delay and Poisson jumps have not yet been fully considered in the literature, and
this fact is the main motivation of this work.

We consider the following neutral integro-differential equations of fractional-
order with state-dependent delay and Poisson jumps of the model:

CDq
t

[
y(t) +A1

(
t, yt,

∫ t

0

a(t, s, ys)ds

)]
= [A y(t) +Bu(t)]dt+

∫ t

0

A2(t− s)y(s)ds

+

∫ t

−∞
h(τ, y%(τ,yτ ))dW (τ) +

∫
Z

g(t, yt, z)Ñ(dt, dz), t ∈ I := [0, T ]\{t1, · · · , tn},

(1.1)

y0(t) = ϕ(t) +m1(yt1 , yt2 , · · · , ytm)(t), t ∈ (−∞, 0], (1.2)

y′(0) = ξ, (1.3)

∆y(tp) = Ip(ytp), (1.4)

∆y′(tp) = Ip(ytp), p = 1, 2, · · · , n. (1.5)

Here, the state variable y(·) takes values in a real separable Hilbert spaces H
with inner product 〈·, ·〉 and norm ‖ · ‖H, CDq

t denotes the Caputo derivative of
order q, where 1 < q < 2. A , (A2(t))t≥0 are closed linear operators defined on
a common domain which is dense in Hilbert space H. Let 0 = t0 < t1 < t2 <
· · · < tn < tn+1 = T be the given time points. The control function u(·) is
given in L2(I , U) of admissible control functions with U as a Hilbert space. B
is a bounded linear operator from U into H. Also A : D(A ) ⊂ H → H is the
infinitesimal generator of a strongly continuous cosine family C(t) on H. Let K be
the another separable Hilbert space. Let {W (t)}t≥0 be a given K -valued Brownian
motion or Wiener process with a finite trace nuclear covariance operator Q ≥ 0.
Let q = {q(t) : t ∈ Dq} be a stationary Ft-Poisson point process with characteristic
measure κ. Let N(dt, dz) be the Poisson counting measure associated with q. Then
N(t, Z) =

∑
s∈Dq,s≤t

IZ(q(s)) with measurable set Z ∈ B(K−{0}), which denotes the

Borel σ− field of K−{0}. Let Ñ(dt, dz) = N(dt, dz)− dtκ(dz) be the compensated
Poisson measure that is independent of W (t). Let P2([0, T ] × Z;H) be the space

all mapping χ : [0, T ] × Z → H for which
∫ T

0

∫
Z
E‖χ(t, z)‖2Hdtκ(dz) < ∞. We

can define H− valued stochastic integral
∫ T

0

∫
Z
χ(t, z)N(dt, dz), which is a centred

square integrable martingale. We can also employ the same notation ‖ · ‖ for the
norm of L (K,H), which denotes the space of all bounded operators from K into
H. Simply L (H) if K = H. The histories yt represents the function defined by yt :
(−∞, 0]→ H, yt(θ) = y(t+ θ), for t ≤ 0 belongs to some phase space B described
axiomatically. Furthermore, A1 : I ×B × H → H, h : I ×B → LQ(K,H), g :
I×B×Z → H and % : I×B → (−∞, T ] are nonlinear functions. Here, LQ(K,H)
denotes the space of all Q− Hilbert Schmidt operators from K into H. Moreover,
m1 : Bm → B is a continuous function. Ip and Ip : H → H are appropriate
functions. The symbol ∆ζ(t) represents the jump of the function ζ at t which is
defined by ∆ζ(t) = ζ(t+) − ζ(t−). The initial data ϕ = {ϕ(t) : t ∈ (−∞, 0]} is
an F0− measurable B− valued stochastic process independent of Brownian mation
{W (t)} and Poisson point process q(·) with finite second moment. Furthermore,
ξ(t) is an Ft− measurable H− valued random variable independent of W (t) and
Poisson point process q with finite second moment.
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The rest of this paper is organized as follows, In Section 2, we summarize several
important working tools on second-order fractional derivative and we recall some
preliminary results about analytic semigroups, delay definitions and its generator
that will be used to develop our outcomes. In Section 3, by the Sadovskii’s fixed
point theorem, we consider a sufficient condition for the existence for mild solutions
of model (1.1)-(1.5). In Section 4, the system (1.1)-(1.5) has approximate control-
lability. In Section 5, we give an example to illustrate the efficiency of the obtained
results.

2. Preliminaries

Let (H, ‖ · ‖H) and (K, ‖ · ‖K) denote two real separable Hilbert spaces. Let
(Ω,F,P) be a complete probability space furnished with a normal filtration {Ft, t ∈
I } satisfying the usual conditions (i.e., right continuity and F0 containing all P-
null sets of F). An H-valued random variable is an F-measurable function y(t):
Ω→ H and the collection of random variablesW = {y(t, ω): Ω→ H|t∈I } is called
a stochastic process. Usually, we suppress the dependence on ω ∈ Ω and write y(t)
instead of y(t, ω) and y(t): I → H in the place of W. Let {εk}∞k=1 be a complete
orthonormal basis of K. Suppose that {W (t); t ≥ 0} is a K-valued Wiener process

with finite trace nuclear covariance operator Q ≥ 0, denote Tr(Q) =
∞∑
k=1

αk < ∞,

which satisfies Qεk = αkεk. We denote W (t) =
∞∑
k=1

√
αkβk(t)εk, where {βk(t)}∞k=1,

are mutually independent one-dimensional standard Wiener processes. We assume
that Ft = σ{W (s) : 0 ≤ s ≤ t} is the σ−algebra generated by W and FT = F. Let
ς ∈ L (K,H) and define

‖ς‖2Q = Tr(ςQς∗) =

∞∑
k=1

‖
√
αkςεk‖2.

If ‖ς‖2Q < ∞, then ς is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) de-
note the space of all Q-Hilbert-Schmidt operators ς : K → H. The completion
LQ(K,H) of L (K,H) with respect to the topology induced by the norm ‖ · ‖Q,
where ‖ς‖2Q= 〈ς, ς〉 is a Hilbert space with the above norm topology. The collection
of all strongly measurable, square integrableH-valued random variables, denoted by
L2(Ω,F,P;H) ≡ L2(Ω;H), is a Banach space equipped with the norm ‖y(·)‖L2 =

(E‖y(·, ω)‖2H)
1
2 , where the expectation E is defined by E(h1) =

∫
Ω

h1(ω)dP. Let

Î = (−∞, T ] and C(Î ,L2(Ω;H)) be the Banach space of all continuous maps

from Î into L2(Ω;H) satisfying the condition sup
t∈Î

E‖y(t)‖2 <∞.

Now, we present the abstract phase space B. Assume that the phase space
(B, ‖ · ‖B) is a semi-normed linear space of functions mapping (−∞, 0] into H and
fulfilling the subsequent elementary axioms as a result of Hale and kato [20].

If y : (−∞, T ]→ H, T > 0 is continuous on I and y0 ∈ B, then for every t ∈ I
the following conditions hold:

(A1) yt is in B;
(A2) ‖y(t)‖ ≤ H‖yt‖B;
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(A3) ‖yt‖B ≤ K1(t) sup
0≤s≤t

‖y(s)‖ + K2(t)‖y0‖Bh
, where H > 0 is a constant:

K1(t),K2(t) : [0,+∞)→ [1,+∞),K1 is continuous, K2 is locally bounded,
K1 and K2 are independent of y(·).

(A4) The function t→ ϕt is well described and continuous from the set

R(%−) = {%(s, ψ) : (s, ψ) ∈ I ×B},

into B and there is a continuous and bounded function Jϕ : R(%−) →
(0,∞) to ensure that E‖ϕt‖2B ≤ Jϕ(t)E‖ϕ‖2B for every t ∈ R(%−).

(A5) For the function y(·) in (A1), yt is a B valued continuous functions on
[0, T ).

(A6) The space B is complete.

Recognize the space BT = {y : (−∞, T ]→ H such that y0 ∈ B and the constraint
y|I ∈ PC(I ,L 2)}.

The function ‖ · ‖BT
to be a seminorm in BT , it is denoted by

‖y‖BT
= ‖ϕ‖B + sup{(E‖y(s)‖2)

1
2 : s ∈ [0, T ]}, y ∈ BT .

Lemma 1. [17] Let y: (−∞, T ] → H be a function in a way that y0 = ϕ and
y ∈ PC(I ,L 2) and if (A4) holds. Then

E‖ys‖2B ≤ K
∗
1

2 sup{E‖y(θ)‖2H : θ ∈ [0,max{0, s}]}+(K∗2 +Jϕ)2E‖y0‖2B, s ∈ R(%−)∪I ,

where Jϕ = sup
t∈R(%−)

Jϕ(t), K∗1 = sup
t∈I

K1(t), K∗2 = sup
t∈I

K2(t).

To stay way from the reiterations of a few definitions utilized as a part of this
paper we refer to the readers such as for the definitions of the fractional integral,
Riemann-Liouville fractional operator, resolvent operator and Caputo’s derivative
one can see papers [21, 42, 29] and the monograps [47, 22, 32].

Consider the abstract fractional integro-differential equations as in the form

Dq
t y(t) = A y(t) +

∫ t

0

A2(t− s)y(s)ds,

y(0) = y0 ∈ H, y′(0) = 0, (2.1)

which is an associated q- resolvent operator of bounded linear operator (Rq(t))t≥0

on H.

Definition 2.1. A one-parameter family of bounded linear operator (Rq(t))t≥0 on
H is called an q- resolvent operator of (2.1) if the following conditions are verified.

(i) The function Rq(·) : [0,∞)→ L (H) is strongly continuous and Rq(0)y = y
for all y ∈ H and q ∈ (1, 2).

(ii) For y ∈ D(A ),Rq(·)y ∈ C([0,∞), [D(A )]) ∩ C ′((0,∞),H), and

Dq
tRq(t)y = ARq(t)y +

∫ t

0

A2(t− s)Rq(s)yds

Dq
tRq(t)y = Rq(t)A y +

∫ t

0

Rq(t− s)A2(s)yds

for every t ≥ 0.

In order to see the existence of q- resolvent operator for problem (2.1), we have
considered the following conditions
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(G1) The operator A : D(A ) ⊆ H → H is a closed linear operator with [D(A )]
dense in H. Let 1 < q < 2. For some ϕ̃0 ∈ (0, π2 ], for each ϕ̃ < ϕ̃0, there
is a positive constant C0 = C0(ϕ̃) such that κ ∈ p(A ) for each κ ∈

∑
0,qα

=

{κ ∈ C : κ 6= 0, | arg(κ)| < qβ}, where β = ϕ̃ + π
2 and ‖R(κ,A )‖H ≤ C0

|κ|
for all κ ∈

∑
0,qβ .

(G2) For all t ≥ 0,A2(t) : D(A2(t)) ⊆ H → H is a closed linear operator,
D(A ) ⊆ D(A2(t)) and A2(·)y is strongly measurable on (0,∞) for each y ∈
D(A ). There exists b1(·) ∈ L 1

loc(R+) such that b1(κ) exists for Re(κ) > 0
and ‖A2(t)y‖H ≤ b1(t)‖y‖1, for all t > 0 and y ∈ D(A ). Moreover, the op-
erator valued function A2 :

∑
0,π2
→ L ([D(A )],H) has an analytic exten-

sion (still denoted by A2) to
∑

0,β such that ‖A2(κ)y‖H ≤ ‖A2(κ)‖H‖y‖1
for all y ∈ D(A ), and ‖A2(κ)‖ = 0

(
1
|κ|
)

as |κ| → ∞.

(G3) There exists a subspace D ⊆ D(A ) dense in [D(A )] and a positive constant
M0 such that A (D) ⊆ D(A ),A2(κ)(D) ⊆ D(A ), and ‖AA2(κ)y‖H ≤
M0‖y‖H for every y ∈ D and all κ ∈

∑
0,β .

In the sequel for k1 > 0 and α ∈ (π2 , β),
∑
k1,α

= {κ ∈ C : κ 6= 0, |κ| > k1, | arg(κ)| <
α} for Φk1,α,Φ

i
k1,α

, i = 1, 2, 3 are the paths Φ1
k1,α

= {teiα : t ≥ k1},Φ2
k1,α

= {teiµ :

|µ| ≤ α},Φ3
k1,α

= {te−iα : t ≥ k1}, and Φk1,α = ∪3
i=1Φik1,α oriented counterclock-

wise. In addition εq(Fq) are the sets

εq(Fq) =

{
κ ∈ C : Fq(κ) = κq−1(κqI −A −A2(κ))−1 ∈ L (H)

}
.

Define the operator family (Rq(t))t≥0 by

Rq(t) =

 1
2πi

∫
Φn,α

eκtFq(κ)dκ, t > 0,

I, t = 0.
(2.2)

Theorem 2.1. Assume that conditions (G1)− (G3) are fulfilled. Then there exists
a unique q-resolvent operator for problem (2.1).

Theorem 2.2. [1] The function Rq : [0,∞) → L (H) is strongly continuous and
Rq : (0,∞)→ L (H) is uniformly continous.

Now, we consider the non-homogeneous problem

Dq
t y(t) = A y(t) +

∫ t

0

A2(t− s)y(s)ds+ f(t), t ∈ [0, T ],

y(0) = y0, y′(0) = 0, (2.3)

where q ∈ (1, 2) and f ∈ L 1([0, T ],H). In the sequel, Rq(·) is the operator function
defined by (2.2).

cDq
t g(t) represents the Caputo derivative of order q > 0 of g is defined by

cDq
t g(t) =

∫ t

0

hn−q(t− s)
dn

dsn
g(s)ds

where n is the smallest integer greater that or equal to q and hγ(t) = tγ−1

Γ(γ) , t >

0, γ ≥ 0.
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Definition 2.2. [43] A function y : [0, T ]→ H, 0 < T is called a classical solution
of (2.3) on [0, T ] if y ∈ C([0, T ], [D(A )])∩C([0, T ],H), hn−q∗y ∈ C1([0, T ],H), n =
1, 2, the conditions y(0) = y0, y

′(0) = 0 holds and (2.3) is verified on [0, T ].

Definition 2.3. [43] Let q ∈ (1, 2), we define the family (Tq(t))t≥0 by

Tq(t)y =

∫ t

0

hq−1(t− s)Rq(s)yds,

for each t ≥ 0.

Lemma 2. [1] The function Rq(·) is exponentially bounded in L (H).

Lemma 3. [1] The function Rq(·) is exponentially bounded in L (H), then Tq(·) is
exponentially bounded in L (H).

Lemma 4. [1] The function Rq(·) is exponentially bounded in L ([D(A )]), then
Tq(·) is exponentially bounded in L ([D(A )]).

We denote by (−A )β the fractional power of the operator −A for 0 ≤ β ≤ 1,
one have the following next result.

Lemma 5. [1] Suppose that the conditions (G1)− (G3) are satisfied. Let q ∈ (1, 2)
and β ∈ (0, 1) such that qβ ∈ (0, 1), then there exists a positive number M1 such
that

‖(−A )βRq(t)‖ ≤ M1e
rtt−qβ ,

‖(−A )βTq(t)‖ ≤ M1e
rttq(1−β)−1,

for all t > 0. If y ∈ [D(−A )β ], then (−A )βRq(t)y = Rq(t)(−A )βy and
(−A )βTq(t)y = Tq(t)(−A )βy.

3. Main Results

In this section, we derive the existence of mild solution to systems (1.1)-(1.5) by
using Sadovskii’s fixed point theorem and fractional calculus.

Definition 3.1. [19, 35, 43] An H-valued stochastic process {y(t) : t ∈ (−∞, T ]}
is said to be the mild solution of the system (1.1)-(1.5) if

(i) y(t) is a Ft-adapted and measurable for t ≥ 0.
(ii) y(t) is continuous on I almost surely and for each s ∈ [0, t), the function

A Tq(t− s)A1

(
s, ys,

∫ s

0

a(s, τ, yτ )dτ

)
is integrable such that the following
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stochastic integral equation is satisfied

y(t) =



Rq(t)
[
ϕ(0) +A1(0, ϕ, 0) +m1(yt1 , yt2 , · · · , ytm)(0)

]
−A1

(
t, yt,

∫ t

0

a(t, s, ys)ds

)
−
∫ t

0

A Tq(t− s)A1

(
s, ys,

∫ s

0

a(s, τ, yτ )dτ

)
ds

−
∫ t

0

∫ s

0

Tq(t− s)A2(t− s)A1

(
τ, yτ ,

∫ τ

0

a(τ, µ, yµ)dµ

)
dτds

+

∫ t

0

Tq(t− s)Bu(s)ds+

∫ t

0

Tq(t− s)
[ ∫ s

−∞
h(τ, y%(τ,yτ ))dW (τ)

]
ds

+

∫ t

0

∫
Z

Tq(t− s)g(s, ys, z)Ñ (ds, dz) +
∑

0<tp<t

Tq(t− tp)Ip(ytp)

+
∑

0<tp<t
Tq(t− tp)Ip(ytp), p = 1, 2, · · · , n.

(3.1)

(iii) y0(t) = ϕ(t) +m1(yt1 , yt2 , · · · , ytm)(t), t ∈ (−∞, 0], y′(0) = ξ.

In order to obtain the main result, we make the following hypotheses:

(H1) The operator families Rq(t) and Tq(t) are compact for all t > 0 and there
exists a positive constant M such that

sup
t∈I
‖Rq(t)‖ ∨ sup

t∈I
‖Tq(t)‖ ≤ M.

(H2) The functions m1 : Bm → B is continuous, satisfy the Lipschitz conditions
and we can find a positive constant Nm1

such that

E‖m1(yt1 , yt2 , · · · , ytm)‖2H ≤ Nm1 ,

for all (yt1 , yt2 , · · · , ytm) ∈ Bm and t ∈ I .
(H3) The function A1 : I × B × H → H is continuous there exist positive

constants NA1
,NA1,(−A )β such that A1 is Hβ-valued and

E‖A1(t, x, y)‖2H ≤ NA1(1 + ‖x‖2B + ‖y‖2H), for t ∈ I , x ∈ B, y ∈ H,

E‖(−A )βA1(t, x, y)‖2H ≤ NA1,(−A )β (1+‖x‖2B+‖y‖2H), for t ∈ I , x ∈ B, y ∈ H.

(H4) For each x ∈ B,K(t) = lim
a→∞

∫ 0

−a
h(t, x)dW (s) exists and is continuous.

And also we can find a positive constant Nk such that

E‖K(t)‖2H ≤ Nk.

(H5) The functions h : I ×B → L (K,H) and g : I ×B×Z → H are satisfies
the following properties:

(i) The function h : I ×B → L (K,H) is a continuous and measurable
function.

(ii) The non-linear function g is a Borel measurable function which satisfy

the Lipschitz continuity condition, and we can find constants Ñg and
Lg such that∫

Z

E‖g(t, x, y)‖2Hκ(dy) ≤ Ñg(1 + ‖x‖2B),
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Z

E‖g(t, x1, y)− g(t, x2, y)‖2Hκ(dy) ≤ Ñg‖x1 − x2‖2B,∫
Z

E‖g(t, x, y)‖4Hκ(dy) ≤ Lg(1 + ‖x‖4B),∫
Z

E‖g(t, x1, y)−g(t, x2, y)‖4Hκ(dy) ≤ Lg‖x1−x2‖4B, for all x, x1, x2 ∈ B, t ∈ I .

(iii) There are positive integrable functions m,n ∈ L 1(I ) and continuous
increasing functions Nh,Ng : [0,∞)→ (0,∞) such that for all (t, x) ∈
I ×B, we have∫ t

0

E‖h(t, x)‖2Hds ≤ m(t)Nh‖x‖2B, lim
τ→∞

inf
Nh(τ)

τ
= v1 <∞,∫ t

0

E‖g(t, x, y)‖2Hds ≤ n(t)Ng(1 + ‖x‖2B), lim
τ→∞

inf
Ng(τ)

τ
= v2 <∞.

(H6) The functions Ip and Ip : H → H are continuous and we can find positive
constants NIp ,NIp , p = 1, 2, · · · , n such that

E‖Ip(x)− Ip(y)‖2H ≤ NIp‖x− y‖2B, x, y ∈ B, p = 1, 2, · · · , n,

E‖Ip(x)− Ip(y)‖2H ≤ NIp‖x− y‖
2
B, x, y ∈ B, p = 1, 2, · · · , n.

(H7) The functions Ip and Ip : H → H are continuous and we can find positive

increasing functions θp, θp : [0,∞) → (0,∞), p = 1, 2, · · · , n such that for
all y ∈ B and p = 1, 2, · · · , n, we have

E‖Ip(y)‖2H ≤ θpNIp‖y‖2B, lim
τ→∞

inf
NIp(τ)

τ
= v3 <∞,

E‖Ip(y)‖2H ≤ θpNIp‖y‖
2
B, lim

τ→∞
inf
NIp(τ)

τ
= v4 <∞.

(H8) The function A1 : I ×B ×H → H is continuous and there exists positive
constants NA1,(−A )β > 0 such that for all (t, xj) ∈ I ×B, j = 1, 2

‖(−A )βA1(t, x1, y1)− (−A )βA1(t, x2, y2)‖2H
≤ NA1,(−A )β‖x1 − x2‖2B +NA1,(−A )β‖y1 − y2‖2H, x1, x2 ∈ B, y1, y2 ∈ H.

(H9) a : I ×I ×B → H is continuous and we can find constant Na > 0 and
N ∗a > 0 to ensure thatwwww∫ t

0

a(t, s, x)ds

wwww2

H
≤ Na‖x‖2H,wwww∫ t

0

[
a(t, s, x1)− a(t, s, x2)

]
ds

wwww2

H
≤ N ∗a ‖x1 − x2‖2H.

In order to address the problem, it is convenient at the point to introduce two
relevant operators and basic assumptions on these operators:

ΓT0 =

∫ T

0

Tq(T − s)BB∗T ∗q (T − s)ds,

R(λ,ΓT0 ) = (λI + ΓT0 )−1, for λ > 0.

where B∗ denotes the adjoint of B and T ∗q (t) is the adjoint of Tq(t). It is straight-

forward that operator ΓT0 is a linear bounded operator.
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(H10) λR(λ,ΓT0 )→ 0 as λ→ 0+ in the strong operator topology.

Also, we note that the assumption (H10) is equivalent to the fact that the linear
fractional control system

Dq
t y(t) = A y(t) +Bu(t),

y(0) = y0 ∈ H, y′(0) = 0,

is approximately controllable on I .

Definition 3.2. [19] The model (1.1)-(1.5) is said to be approximately controllable

on the interval I if R(T, ϕ, ξ) = H, where R(T, ϕ, ξ) is the closure of the reachable
set.

Lemma 6. [27] For any y ∈ L2(FT ,H), there exists ϕ ∈ L 2
F (Ω,L2(0, T,L 0

2 ))

such that yT = EyT +

∫ T

0

ϕ(s)dW (s).

For any λ > 0, p = 1, 2, · · · , n and y ∈ L2(FT ,H), we define the control function

uλ(t) = B∗T ∗q (T − t)(λI + ΓT0 )−1

[
EyT +

∫ T

0

ϕ(s)dW (s)

−Rq(T )
[
ϕ(0) +A1(0, ϕ, 0) +m1(yt1 , yt2 , · · · , ytm)(0)

]
+A1

(
t, yt,

∫ t

0

a(t, s, ys)ds

)]
+B∗T ∗q (T − t)

∫ t

0

(λI + ΓT0 )−1A Tq(T − s)A1

(
s, ys,

∫ s

0

a(s, τ, yτ )dτ

)
ds

+B∗T ∗q (T − t)
∫ t

0

∫ s

0

(λI + ΓT0 )−1Tq(T − s)A2(t− s)

(×)A1

(
τ, yτ ,

∫ τ

0

a(τ, µ, yµ)dµ

)
dτds

−B∗T ∗q (T − t)
∫ t

0

(λI + ΓT0 )−1Tq(T − s)Buλ(s)ds

−B∗T ∗q (T − t)
∫ t

0

(λI + ΓT0 )−1Tq(T − s)
[ ∫ s

−∞
h(τ, y%(τ,yτ ))dW (τ)

]
ds

−B∗T ∗q (T − t)
∫ t

0

∫
Z

(λI + ΓT0 )−1Tq(T − s)g(s, ys, z)Ñ(ds, dz)

−B∗T ∗q (T − t)(λI + ΓT0 )−1
∑

0<tp<t

Tq(T − tp)Ip(ytp)

−B∗T ∗q (T − t)(λI + ΓT0 )−1
∑

0<tp<t

Tq(T − tp)Ip(ytp). (3.3)

Theorem 3.1. If the assumptions (H1) − (H9) are satisfied. Further, suppose
that for all λ > 0 and p = 1, 2, · · · , n, then the control system (1.1)-(1.5) has mild
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solution on I provided that

9

(
1 +

11M4M4
BT

2

λ2

)[
4(1 +Na)

(
NA1

+M2NA1,(−A )β
T 2qβ

q2β2

)(
1 +

∫ T

0

µ(s)ds

)
K∗1

2

+ 8M2T 2K∗1
2[Tr(Q)Nh sup

s∈I
m(s) + (Ñg +

√
Lg) sup

s∈I
n(s)

]
+ 4M2K∗1

2

[ n∑
p=1

NIp sup
s∈I

θp(s) +

n∑
p=1

NIp sup
s∈I

θp(s)]

]]
< 1, (A)

Proof. Consider the space C((−∞, T ],H) are all continuous with H- valued sto-
chastic process {ζ(t) : t ∈ (−∞, T ]} and BT = {y : y ∈ C((−∞, T ],H), y0 ∈ B}.
Let ‖·‖T be the semi-norm defined by ‖y‖T ≤ ‖y0‖Bh + sup

0≤s≤T
(E‖y(s)‖2)

1
2 , y ∈ BT .

For any λ > 0 and p = 1, 2, · · · , n, defined the operator Φλ : BT → BT by

(Φλy)(t) =



ϕ(t), t ∈ (−∞, 0]

Rq(t)
[
ϕ(0) +A1(0, ϕ, 0) +m1(yt1 , yt2 , · · · , ytm)(0)

]
−A1

(
t, yt,

∫ t

0

a(t, s, ys)ds

)
−
∫ t

0

A Tq(t− s)A1

(
s, ys,

∫ s

0

a(s, τ, yτ )dτ

)
ds

−
∫ t

0

∫ s

0

Tq(t− s)A2(t− s)A1

(
τ, yτ ,

∫ τ

0

a(τ, µ, yµ)dµ

)
dτds

+

∫ t

0

Tq(t− s)Buλ(s)ds+

∫ t

0

Tq(t− s)
∫ s

−∞
h(τ, y%(τ,yτ ))dW (τ)ds

+

∫ t

0

∫
Z

Tq(t− s)g(s, ys, z)Ñ(ds, dz)

+
∑

0<tp<t
Tq(t− tp)Ip(ytp) +

∑
0<tp<t

Tq(t− tp)Ip(ytp), t ∈ I .

�

From the hypothesis (H3) and using Holder’s inequality, we get

E
wwww∫ t

0

A Tq(t− s)A1

(
s, ys,

∫ s

0

a(s, τ, yτ )dτ

)
ds

wwww2

H

≤M2

(∫ t

0

(t− s)qβ−1ds

)(∫ t

0

(t− s)qβ−1

(×)E
wwww(−A )βA1

(
s, ys,

∫ s

0

a(s, τ, yτ )dτ

)wwww2

H
ds

)
≤M2NA1,(−A )β

T qβ

qβ

∫ t

0

(t− s)qβ−1

(
1 + ‖ys‖2B +

wwww∫ s

0

a(s, τ, yτ )dτ

wwww2

B

)
ds.

By Bochner’s theorem and Lemma 2.1, A Tq(t − s)A1

(
s, ys,

∫ s

0

a(s, τ, yτ )dτ

)
is

integrable on I . Next, we prove that Φλ has a fixed point, by Sadovskii’s theorem,
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which is then a mild solution of the given system (1.1)-(1.5) . Define

v(t) =

{
ϕ(t), t ∈ (−∞, 0]

Rq(t)
[
ϕ(0) +m1(yt1 , yt2 , · · · , ytm)(0)

]
, t ∈ I .

It is clear that x ∈ B. Let y(t) = xt + vt, t ∈ (−∞, T ]. Then y satisfies (1.1)-(1.5)
if and only if v0 = ϕ and

x(t) =



Rq(t)A1(0, ϕ, 0)−A1

(
t, xt + vt,

∫ t

0

a(t, s, xs + vs)ds

)
−
∫ t

0

A Tq(t− s)A1

(
s, xs + vs,

∫ s

0

a(s, τ, xτ + vτ )dτ

)
ds

−
∫ t

0

∫ s

0

Tq(t− s)A2(t− s)A1

(
τ, xτ + vτ ,

∫ τ

0

a(τ, ξ, xξ + vξ)dξ

)
dτds

+

∫ t

0

Tq(t− s)Buλ(s)ds+

∫ t

0

Tq(t− s)

(×)

[ ∫ s

−∞
g(τ, x%(τ,xτ+vτ ) + v%(τ,xτ+vτ ))dW (τ)

]
ds

+

∫ t

0

∫
z

Tq(t− s)g(s, xs + vs, z)Ñ(ds, dz) +
∑

0<tp<t

Tq(t− tp)Ip(xtp + vtp)

+
∑

0<tp<t
Tq(t− tp)Ip(xtp + vtp), p = 1, 2, · · · , n.

Where uλ(t) is defined (3.3). Let B0
T = {x ∈ BT : x0 = 0 ∈ B}. For any x ∈ B0

T ,
can be defined by

‖x‖B0
T

= sup
s∈I

(
E‖x‖2

) 1
2 + ‖x0‖B = sup

s∈I

(
E‖x‖2

) 1
2 , x ∈ B0

T .

As a result, (B0
T , ‖ · ‖B0

T
) is a Banach space. Set Br = {x ∈ B0

T : ‖x‖2 ≤ r} for

each positive number r. Then for each r,Br is a bounded closed convex set in B0
T

. For x ∈ Br, then by Lemma 2.1, we have

E‖xt + vt‖2B
≤ 2
[
E‖xt‖2B + E‖vt‖2B

]
≤ 4

[
K∗2

2E‖x0‖2B +K∗1
2 sup

0≤s≤t
E‖x(s)‖2 +K∗2

2E‖v0‖2B +K∗1
2 sup

0≤s≤t
E‖v(s)‖2

]
≤ 4K∗1

2r + C1 = r̃, (3.4)



JFCA-2018/9(2) APPROXIMATE CONTROLLABILITY OF IMPULSIVE 241

where C1 = 4
(
K∗1

2M2[E‖ϕ(0)‖2B +Nm1
] +K∗2

2E‖ϕ‖2B
)
.

E‖x%(t,xt+vt) + v%(t,xt+vt)‖
2

≤ 2(E‖x%(t,xt+vt)‖
2 + E‖v%(t,xt+vt)‖

2)

≤ 4

(
K∗1

2 sup
0≤s≤max(0,t)

t∈R(%−)∪I

E‖x(s)‖2H + (K∗2 + Jϕ)2E‖x0‖2B
)

+ 4

(
K∗1

2 sup
0≤s≤max(0,t)

t∈R(%−)∪I

E‖v(s)‖2H + (K∗2 + Jϕ)2E‖v0‖2B
)

≤ 4

(
K∗1

2r +K∗1
2E‖Rq(t)(ϕ(0) +m1(yt1 , yt2 , · · · , ytm)(0))‖2 + (K∗2 + Jϕ)2E‖ϕ‖2B

)
≤ 4

(
K∗1

2r +K∗1
2M2(E‖ϕ(0)‖2 +Nm) + (K∗2 + Jϕ)2E‖ϕ‖2B

)
≤ 4K∗1

2r + C2 = r∗, (3.5)

where C2 = 4
[
K∗1

2M2(E‖ϕ(0)‖2 +Nm1
) + (K∗2 + Jϕ)2E‖ϕ‖2B

]
.

Define the map Φ from B0
T into itself. Therefore, we have

(Φx)(t) =



0, t ∈ (−∞, 0],

Rq(t)A1(0, ϕ, 0)−A1

(
t, xt + vt,

∫ t

0

a(t, s, xs + vs)ds

)
−
∫ t

0

A Tq(t− s)A1

(
s, xs + vs,

∫ s

0

a(s, τ, xτ + vτ )dτ

)
ds

−
∫ t

0

∫ s

0

Tq(t− s)A2(t− s)A1

(
τ, xτ + vτ ,

∫ τ

0

a(τ, µ, xµ + vµ)dµ

)
dτds

+

∫ t

0

Tq(t− s)Buλ(s)ds+

∫ t

0

Tq(t− s)

(×)

[ ∫ s

−∞
h(s, x%(τ,xτ+vτ ) + v%(τ,xτ+vτ ))dW (τ)

]
ds

+

∫ t

0

∫
Z

Tq(t− s)g(s, xs + vs, z)Ñ(ds, dz) +
∑

0<tp<t

Tq(t− tp)Ip(xtp + vtp)∑
0<tp<t

Tq(t− tp)Ip(xtp + vtp), p = 1, 2, · · · , n.

Then Φ is well defined on Br for each r > 0. We see that the operator Φλ has a
fixed point if and only if Φ has a fixed point. Thus, let us demonstrate that Φλ has
a fixed point. Now, we split Φ as Φ1 + Φ2 where

(Φ1x)(t) =



Rq(t)A1(0, ϕ, 0)−A1

(
t, xt + vt,

∫ t

0

a(t, s, xs + vs)ds

)
−
∫ t

0

A Tq(t− s)A1

(
s, xs + vs,

∫ s

0

a(s, τ, xτ + vτ )dτ

)
ds

+
∑

0<tp<t
Tq(t− tp)Ip(xtp + vtp) +

∑
0<tp<t

Tq(t− tp)Ip(xtp + vtp),

p = 1, 2, · · · , n.
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(Φ2x)(t) =



−
∫ t

0

∫ s

0

Tq(t− s)A2(t− s)A1

(
τ, xτ + vτ ,

∫ τ

0

a(τ, µ, xµ + vµ)dµ

)
dτds

+

∫ t

0

Tq(t− s)Buλ(s)ds+

∫ t

0

Tq(t− s)

(×)

[ ∫ s

−∞
h(τ, x%(τ,xτ+vτ ) + v%(τ,xτ+vτ ))dW (τ)

]
ds

+

∫ t

0

∫
Z

Tq(t− s)g(s, xs + vs, z)Ñ(ds, dz).

The proof of the theorem is technical. Therefore, we need the following theorem.

Theorem 3.2. If the above hypothesis (H1) - (H9) are satisfied. Then Φ1 is a
contraction mapping and Φ2 is compact.

Proof. To prove this theorem, we first prove the following crucial lemmas. �

Lemma 7. For each λ > 0 and suppose that (H1)− (H9) hold. Then, we can find
a positive number r such that Φ(Br) ⊂ Br.

Proof. Suppose that Φ(Br) 6⊂ Br. Then for each non-negative number r, there
exists a function xr(·) ∈ Br, but Φ(xr) /∈ Br, that is E‖(Φxr)(t)‖2H > r for some
t = t(r) ∈ I . Then for each λ > 0 and p = 1, 2, · · · , n, we have

r ≤E‖Φxr‖2H

≤ 9E‖Rq(t)A1(0, ϕ, 0)‖2H + 9E
wwwwA1

(
t, xrt + vt,

∫ t

0

a(t, s, xrs + vs)ds

)wwww2

H

+ 9E
wwww∫ t

0

A Tq(t− s)A1

(
s, xrs + vs,

∫ s

0

a(s, τ, xrτ + vτ )dτ

)
ds

wwww2

H

+ 9E
wwww∫ t

0

∫ s

0

Tq(t− s)A2(t− s)A1

(
τ, xrτ + vτ ,

∫ τ

0

a(τ, µ, xrµ + vµ)dµ

)
dτds

wwww2

H

+ 9E
wwww∫ t

0

Tq(t− s)Buλ(s)ds

wwww2

H

+ 9E
wwww∫ t

0

Tq(t− s)
[ ∫ s

−∞
h(τ, xr%(τ,xrτ+vτ ) + v%(τ,xrτ+vτ ))dW (τ)

]
ds

wwww2

H

+ 9E
wwww∫ t

0

∫
Z

Tq(t− s)g(s, xrs + vs, z)Ñ(ds, dz)

wwww2

H

+ 9
∑

0<tp<t

E
wwwwTq(t− tp)Ip(xrtp + vtp)

wwww2

+ 9
∑

0<tp<t

E
wwwwTq(t− tp)Ip(xrtp + vtp)

wwww
= 9

9∑
i=1

Ji. (3.6)
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From Lemma (2.1), (H1)− (H9), (3.4), (3.5) and Holder’s inequality, we get:

J1 ≤M2E‖A1(0, ϕ, 0)‖2H
≤M2NA1(1 + ‖ϕ‖2B).

J2 ≤ E
wwwwA1

(
t, xrt + vt,

∫ t

0

a(t, s, xrs + vs)ds

)wwww2

H

≤ NA1

(
1 + ‖xrt + vt‖2B +

wwww∫ t

0

a(t, s, xrs + vs)ds

wwww2

H

)
≤ NA1

(
1 + 4K∗1

2r + C1 +Na(4K∗1
2r + C1)

)
≤ 4NA1

[K∗1
2r(1 +Na) + C3], where C3 = NA1

(1 + C1(1 +Na)).

J3 ≤ E
wwww∫ t

0

A Tq(t− s)A1

(
s, xrs + vs,

∫ s

0

a(s, τ, xrτ + vτ )dτ

)
ds

wwww2

H

≤M2T
qβ

qβ

∫ t

0

(t− s)qβ−1E
wwww(−A )βA1

(
s, xrs + vs,

∫ s

0

a(s, τ, xrτ + vτ )dτ

)wwww2

H
ds

≤M2NA1,(−A )β
T 2qβ

(qβ)2

(
4K∗1

2r(1 +Na) + C4

)
, where C4 = 1 + C1(1 +Na).

J4 ≤E
wwww∫ t

0

∫ s

0

Tq(t− s)A2(t− s)A1

(
τ, xrτ + vτ ,

∫ τ

0

a(τ, µ, xrµ + vµ)dµ

)
dτds

wwww2

H

≤M2

∫ t

0

∫ s

0

(t− s)2(qβ−1)µ(t− s)

(×)E
wwww(−A )βA1

(
τ, xrτ + vτ ,

∫ τ

0

a(τ, µ, xrµ + vµ)dµ

)wwww2

dτds

≤M2NA1,(−A )β
T 2qβ

q2β2

(
4K∗1

2r(1 +Na) + C4

) ∫ T

0

µ(s)ds.

J5 ≤ E
wwww∫ t

0

Tq(t− s)Buλ(s)ds

wwww2

H

≤M2M2
BT

∫ t

0

E‖uλ(s)‖2ds, where‖B‖ =MB

≤M2M2
BT

2E‖uλ(s)‖,

where

E‖uλ(s)‖2 ≤ 11
M2

BM2

λ2

[
2E‖yT ‖2 + 2

∫ T

0

E‖ϕ(s)‖2ds+M2(‖ϕ‖2B +B)

+M2NA1
(1 + ‖ϕ‖2B) +NA1

(
4K∗1

2r(1 +Na) + C3

)
+M2NA1,(−A )β

T 2qβ

q2β2

(
1 +

∫ T

0

µ(s)ds

)[
4K∗1

2r(1 +Na) + C4

]
+M2T 2

(
2Nk + 2Tr(Q)Nh(4K∗1

2r + C2) sup
t∈I

m(s)

)
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+M2T 2(2Ñg + 2
√
Lg)(1 + 4K∗1

2r + C1) sup
s∈I

n(s)

+M2
n∑
p=1

(4K∗1
2r + C1)

(
NIp sup

s∈I
θp(s) +NIp sup

s∈I
θp(s)

]
,

where

B = ‖ϕ‖2B + ‖m1(yt1 , yt2 , · · · , ytm)(t)‖2H + ‖ξ‖2B.

Thus, we have

J5 ≤ (M2M2
BT

2)

(
11

λ2
M2M2

B

)
NR,

and

NR = 2E‖yT ‖2 + 2

∫ T

0

E‖ϕ(s)‖2ds+M2(‖ϕ‖2B +B) +M2NA1(1 + ‖ϕ‖2B)

+NA1

(
4K∗1

2r(1 +Na) + C3

)
+M2NA1,(−A )β

T 2qβ

q2β2

(
1 +

∫ T

0

µ(s)ds

)
(×)
[
4K∗1

2r(1 +Na) + C4

]
+M2T 2

(
2Nk + 2Tr(Q)Nh(4K∗1

2r + C2) sup
t∈I

m(s)

)
+M2T 2(2Ng + 2

√
Lg)Ñg(1 + 4K∗1

2r + C1) sup
s∈I

n(s)

+M2
n∑
p=1

(4K∗1
2r + C1)

(
NIp sup

s∈I
θp(s) +NIp sup

s∈I
θp(s)

)
.

J6 ≤ E
wwww∫ t

0

Tq(t− s)
[ ∫ s

−∞
h(τ, xr%(τ,xrτ+vτ ) + v%(τ,xrτ+vτ ))dW (τ)

]
ds

wwww2

H

≤M2T 2

[
2Nk + 2Tr(Q)

∫ t

0

E‖h(τ, xr%(τ,xrτ+vτ ) + v%(τ,xrτ+vτ ))

wwww2

B

dτ

]
≤M2T 2

[
2Nk + 2Tr(Q)Nh(4K∗1

2r + C2) sup
s∈I

m(s)

]
.

J7 ≤ E
wwww∫ t

0

∫
Z

Tq(t− s)g(s, xrs + vs, z)Ñ(ds, dz)

wwww2

≤ 2M2

∫ t

0

∫
Z

E‖g(s, xrs + vs, z)‖2Hκ(dz)ds

+ 2M2

(∫ t

0

∫
Z

E‖g(s, xrs + vs, z)‖4Hκ(dz)ds

) 1
2

≤M2(2Ñg + 2
√
Lg)

∫ t

0

(1 + ‖xrs + vs‖2B)ds

≤M2T 2(2Ñg + 2
√
Lg)(1 + 4K∗1

2r + C1) sup
s∈I

n(s).
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J8 ≤ E
wwww ∑

0<tp<t

Tq(t− tp)Ip(xrtp + vtp)

wwww2

≤M2
n∑
p=1

θp(s)NIp
(
‖xtp + vrtp‖

2
)

≤M2
n∑
p=1

NIp(4K∗1
2r + C1) sup

s∈I
θp(s).

J9 ≤M2
n∑
p=1

NIp(4K∗1
2r + C1) sup

s∈I
θp(s).

Combining the estimations (J1)− (J9) together with (3.6) we have

r ≤ Ñs + 36(1 +Na)

(
NA1

+M2NA1,(−A )β
T 2qβ

q2β2

(
1 +

∫ T

0

µ(s)ds

))
K∗1

2r

+ 72M2T 2Tr(Q)Nh(K∗1
2r) sup

s∈I
m(s) + 72M2T 2(Ñg +

√
Lg)(K

∗
1

2r) sup
s∈I

n(s)

+ 36M2
n∑
p=1

NIp(K∗1
2r) sup

s∈I
θp(s) + 36M2

n∑
p=1

NIp(K∗1
2r) sup

s∈I
θp(s)

+
99

λ2
(M4M4

BT
2)NR,

where

Ñs = 9M2NA1(1 + ‖ϕ‖2B) + 9NA1C3 + 9M2C4NA1,(−A )β
T 2qβ

q2β2

+ 9M2C1NA1,(−A )β
T 2qβ

q2β2

∫ T

0

µ(s)ds+ 18M2T 2(Nk + Tr(Q)NhC2) sup
s∈I

m(s)

+ 18M2T 2(Ñg +
√
Lg)(1 + C1) sup

s∈I
n(s) + 9M2C1

n∑
p=1

NIp sup
s∈I

θp(s)

+ 9M2C1

n∑
p=1

NIp sup
s∈I

θp(s),

and C1, C2, C3 and C4 are independent of r defined priviously. Then, dividing both
sides of above equation by r, and letting as r →∞, for p = 1, 2, · · · , n

9

(
1 +

11M4M4
BT

2

λ2

)[
4(1 +Na)

(
NA1 +M2NA1,(−A )β

T 2qβ

q2β2

)(
1 +

∫ T

0

µ(s)ds

)
K∗1

2

+ 8M2T 2K∗1
2[Tr(Q)Nh sup

s∈I
m(s) + (Ñg +

√
Lg) sup

s∈I
n(s)

]
+ 4M2K∗1

2

[ n∑
p=1

NIp sup
s∈I

θp(s) +

n∑
p=1

NIp sup
s∈I

θp(s)]

]]
> 1,

which is a contradiction to our assumption (A). Thus for each λ > 0, there exists
a non-negative number r such that Φ(Br) ⊂ Br. �

Lemma 8. Let us assume (H1)− (H9) holds. Then Φ1 is contraction.
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Proof. Let x, x ∈ Br. Then for p = 1, 2, · · · , n, by using (H6), (H8) and (H9) we
have

E‖(Φ1x)(t)− (Φ1x)(t)‖2H
≤ 4NA1

(1 +N ∗a ) sup
0≤s≤t

E‖x(s)− x(s)‖2H + 4M2NIp sup
0≤s≤t

E‖x(s)− x(s)‖2H

+ 4M2NIp sup
0≤s≤t

E‖x(s)− x(s)‖2H + 4M2N0NA1,(−A )β (1 +N ∗a )

(×)
T 2qβ

q2β2
sup

0≤s≤t
E‖x(s)− x(s)‖2H, ‖A −β‖2 = N0,

≤

[
4M2

(
NA1

+N0NA1,(−A )β
T 2qβ

q2β2

)
(1 +N ∗a )

+ 4NIp + 4NIp

]
sup

0≤s≤t
E‖x(s)− x(s)‖2H.

Hence Φ1 is a contraction mapping. �

Lemma 9. Let assumptions (H1) − (H9) hold. Then Φ2 maps bounded sets into
itself in Br.

Proof. For all t ∈ I , x ∈ Br and λ > 0, we have

E‖xt + vt‖2B ≤ 4K∗1r + C1 = r̃, E‖x%(t,xt+vt) + v%(t,xt+vt)‖
2 ≤ 4K∗1r + C2 = r∗.

E‖(Φ2x)(t)‖2H

≤ 4E
wwww∫ t

0

∫ s

0

Tq(t− s)A2(t− s)A1

(
τ, xτ + vτ ,

∫ τ

0

a(τ, µ, xµ + vµ)dµ

)
dτds

wwww2

H

+ 4E
wwww∫ t

0

Tq(t− s)Buλ(s)ds

wwww2

H
+ 4E

wwww∫ t

0

Tq(t− s)

(×)

[ ∫ s

−∞
g(τ, x%(t,xt+vt) + v%(t,xt+vt))dW (τ)

]
ds

wwww2

H

+ 4E
wwww∫ t

0

∫
Z

Tq(t− tp)g(s, xs + vs, z)Ñ(ds, dz)

wwww2

H

≤ 4M2NA1,(−A )β
T 2qβ

q2β2

(
1 + r̃ +Na(1 + r̃)

) ∫ T

0

µ(s)ds+ 4

(
11

β2
(MMB)4T 2NR

)
+ 4M2T 2(2Nk + 2Tr(Q)Nhr∗ sup

s∈I
m(s)) + 4M2T 2(2Ñg + 2

√
Lg)r̃ sup

s∈I
n(s)

= ∆̃.

Thus for each x ∈ Br,E‖(Φ2x)(t)‖2H ≤ ∆̃. �

Lemma 10. Let us assume (H1)− (H9) hold. Then the set {Φ2x : x ∈ Br} is an
equicontinuous of family of functions on I .
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Proof. Let 0 < ε1 < t < T and λ1 > 0 such that ‖Tq(s1) − Tq(s2)‖ < ε1 with
|s1 − s2| < λ1 for s1, s2 ∈ I . For x ∈ Br, 0 < |q1| < λ1, t+ q1 ∈ I , we have

E‖Φ2x(t+ q1)− Φ2x(t)‖2H

≤ 8M2E
wwww∫ t+q1

t

∫ s

0

A2(s− τ)A1

(
τ, xτ + vτ ,

∫ τ

0

a(τ, µ, xµ + vµ)dµ

)
dτds

)wwww2

H

+ 8E
wwww∫ t

0

∫ s

0

[Tq(t+ q1 − s)− Tq(t− s)]A2(s− τ)

(×)A1

(
τ, xτ + vτ ,

∫ s

0

a(τ, µ, xµ + vµ)dµ

)
dτds

wwww2

H

+ 8M2E
wwww∫ t+q1

t

Buλ(s)ds

wwww2

H
+ 8E

wwww∫ t

0

[Tq(t+ q1 − s)− Tq(t− s)]Buλ(s)ds

wwww2

H

+ 8M2E
wwww∫ t+q1

t

[ ∫ s

−∞
g(τ, x%(τ,xτ+vτ ) + v%(τ,xτ+vτ ))dW (τ)

]
ds

wwww2

H

+ 8E
wwww∫ t

0

[Tq(t+ q1 − s)− Tq(t− s)]

(×)

[ ∫ s

−∞
g(τ, x%(τ,xτ+vτ ) + v%(τ,xτ+vτ ))dW (τ)

]
ds

wwww2

H

+ 8M2E
wwww∫ t+q1

t

Tq(t+ q1 − s)
[ ∫

Z

g(s, xs + vs, z)Ñ(ds, dz)

]wwww2

H

+ 8E
wwww∫ t

0

[Tq(t+ q1 − s)− Tq(t− s)]
∫
Z

g(s, xs + vs, z)Ñ(ds, dz)

wwww2

H

By using our assumptions (H1)− (H9), we get

E‖Φ2x(t+ q1)− Φx(t)‖2H

≤ 8M2NA1,(−A )β
T qβ

qβ

∫ t+q1

t

(t+ q1 − s)qβ−1r̃(1 +Na)

∫ T

0

µ(s)dsdτ

+ 8ε21NA1,(−A )β
T qβ

qβ

∫ t

0

[(t+ q1 − s)qβ−1 − (t− s)qβ−1]r̃(1 +Na)

∫ T

0

µ(s)dsdτ

+ 8M2M2
B

∫ t+q1

t

E‖uλ(s)‖2ds+ 8ε21M2
B

∫ t

0

E‖uλ(s)‖2ds

+ 8M2

∫ t+q1

t

[2Nk + 2Tr(Q)m(s)Nhr∗]ds+ 8ε21

∫ t

0

[2Nk + 2Tr(Q)m(s)Nhr∗]ds

+ 8M2

∫ t+q1

t

(2Ñg + 2
√
Lg)n(s)r̃ds+ ε21

∫ t

0

(2Ñg + 2
√
Lg)n(s)r̃ds

Hence, for ε1 sufficiently small, the right hand side of the above inequality → 0
as q1 tends to zero. On the other hand, the compactness of Tq(t), t > 0 implies
the continuity in the uniform operator topology. Thus, the set {Φ2x : x ∈ Br} is
equicontinuous family of functions. �

Lemma 11. Let us assume (H1)−(H9) hold. Then Φ2 maps Br into a precompact
set in Br.
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Proof. Let 0 < t ≤ T be fixed and ε1 be a real number that satisfy 0 < ε1 < t. For

λ1 > 0, define the operator Φε1,λ1

2 on Br by

Φε1,λ1

2 = −
∫ t−ε1

0

Tq(t− s)A2(s− τ)

[ ∫ s

0

A1

(
τ, xt + vt,

∫ τ

0

a(τ, µ, xµ + vµ)dµ

)
dτ

]
ds

+

∫ t−ε1

0

Tq(t− s)Buλ(s)ds+

∫ t−ε1

0

Tq(t− s)

(×)

[ ∫ s

−∞
g(τ, x%(τ,xτ+vτ ) + v%(τ,xτ+vτ ))dW (τ)

]
ds

+

∫ t−ε1

0

Tq(t− s)
[ ∫

Z

g(s, xs + vs, z)Ñ(ds, dz)

]
.

But for t > 0 , Tq(t) is a compact operator. Hence the set {(Φε1,λ1

2 x)(t) : x ∈ Br}
is precompact in H for every ε1 ∈ (0, t), λ1 > 0. Also for each x ∈ Br, we have

E‖(Φ2x)(t)− (Φε1,λ1

2 x)(t)‖2H

≤ 4ε21E
wwww∫ t

t−ε1
Tq(t− s)A2(s− τ)

[ ∫ s

0

A1

(
τ, xt + vt,

∫ τ

0

a(τ, µ, xµ + vµ)dµ

)
dτ

]
ds

wwww2

H

+ 4ε21E
wwww∫ t

t−ε1
Tq(t− s)Buλ(s)ds

wwww2

H

+ 4ε21E
wwww∫ t

t−ε1
Tq(t− s)

[ ∫ s

−∞
g(τ, x%(τ,xτ+vτ ) + v%(τ,xτ+vτ ))dW (τ)

]
ds

wwww2

H

+ 4ε21E
wwww∫ t

t−ε1
Tq(t− s)

∫
Z

[
g(s, xs + vs, z)Ñ(ds, dz)

]
ds

wwww2

H

≤ 4ε21M2

∫ t

t−ε1

[
T qβ

qβ
NA1,(−A )β (t− s)qβ−1

(
1 + r̃(1 +Na)

) ∫ T

0

µ(s)ds

+M2
B

11

λ2
M2M2

BNR + 2Nk + 2Tr(Q)m(s)Nhr∗

+ 2(Ñg + 2
√
Lg)n(s)(1 + r̃)

]
ds→ 0 as ε1, λ1 → 0−.

From the above inequality E‖(Φ2x)(t)−(Φε1,λ1

2 x)(t)‖2H tends to zero as ε1, λ1 → 0−.
Therefore, there are relatively compact sets arbitrarily close to the set {(Φ2x)(t) :
x ∈ Br}, t > 0. Thus, the set Φ2x(t) is also precompact in Br.

As a consequence of Lemmas 3.7-3.11 with Arezela - Ascoli’s theorem, Φ satisifes
all the conditions of Sadovskii’s fixed point theorem on Br. Which is the solution of
fractional stochastic control system (1.1)-(1.5). Therefore, the problem (1.1)-(1.5)
has a mild solution on [0, T ]. �

4. Approximate controllability

Theorem 4.1. Suppose that the assumptions of theorem 3.1 hold and the functions
A1,A2, h and g are uniformly bounded, and Rq(t) and Tq(t) are compact, then
the stochastic integro-differential equations with state-dependent delay system (1.1)-
(1.5) is approximately controllable on I .
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Proof. Let xλ be a fixed point of Φλ in Br. By theorem 3.1 and the stochastic
Fubini’s theorem, we have

xλ(T ) = yT − λ(λI + ΓT0 )−1

[
EyT +

∫ T

0

ϕ(s)dW (s)−Rq(T )
[
ϕ(0) +A1(0, ϕ, 0)

+m1(yt1 , yt2 , · · · , ytm)(0)
]

+A1

(
T, yλT ,

∫ T

0

a(T, s, yλs )ds

)]
− λ

∫ T

0

(λI + ΓT0 )−1A Tq(T − s)A1

(
s, yλs ,

∫ s

0

a(s, τ, yλτ )dτ

)
ds

− λ
∫ T

0

∫ s

0

(λI + ΓT0 )−1Tq(T − s)A2(T − s)A1

(
τ, yλτ ,

∫ τ

0

a(τ, µ, yλµ)dµ

)
dτds

+ λ

∫ T

0

(λI + ΓT0 )−1Tq(T − s)
∫ s

−∞
h(τ, yλ%(τ,yτ ))dW (τ)ds

+ λ

∫ T

0

∫
Z

(λI + ΓT0 )−1Tq(T − s)g(s, yλs , z)Ñ(ds, dz)

+ λ(λI + ΓT0 )−1
∑

0<tp<t

Tq(T − tp)Ip(yλtp)

+ λ(λI + ΓT0 )−1
∑

0<tp<t

Tq(T − tp)Ip(yλtp).

The properties of A1, h and g implies that
wwh(τ, yλ%(τ,yτ ))

ww2
+
wwg(s, yλs , z)

ww2 ≤

M1 and
wwA1

(
s, yλs ,

∫ s

0

a(s, τ, yλτ )dτ
)ww2

H ≤ M2. Also the properties of Ip and Ip

implies that ‖Ip(yλtp)‖ ≤ M3 and ‖Ip(yλtp)‖2 ≤M4. Then the subsequence

{
A1

(
s, yλs ,

∫ s

0

a(s, τ, yλτ )dτ

)
, h(τ, yλ%(ξ,yξ)), g(s, yλs ), Ip(yλtp), Ip(yλtp)

}

converges weakly to, say, {A1(s), h(s, τ), g(s, z), Ip(y), Ip(y)}. Then, we have

E‖xλ(T )− xT ‖2

≤ 15

wwwwλ(λI + ΓT0 )−1[EyT +Rq(T )
[
ϕ(0) +A1(0, ϕ, 0) +m1(yt1 , yt2 , · · · , ytm)(0)

]wwww2

+ 15E
wwwwλ(λI + ΓT0 )−1A1

(
T, yT ,

∫ T

0

a(T, s, ys)ds

)wwww2

+ 15E
(∫ T

0

wwwwλ(λI + ΓT0 )−1ϕ(s)

wwww2

L 0
2

ds

)

+ 15E
(∫ T

0

wwwwλ(λI + ΓT0 )−1A Tq(T − s)
[
A1

(
s, yλs ,

∫ s

0

a(s, τ, yλξ )dτ

)
−A1(s)

]wwwwds)2



250 S. SELVARASU, P. KALAMANI, M. MALLIKA ARJUNAN JFCA-2018/9(2)

+ 15E
(∫ T

0

wwwwλ(λI + ΓT0 )−1A Tq(T − s)A1(s)

wwwwds)2

+ 15E
(∫ T

0

∫ s

0

wwwwλ(λI + ΓT0 )−1Tq(T − s)A2(T − s)

(×)

[
A1

(
s, yλs ,

∫ s

0

a(s, τ, yλξ )dτ

)
−A1(s)

]wwwwds)2

+ 15E
(∫ T

0

∫ s

0

wwwwλ(λI + ΓT0 )−1Tq(T − s)A2(T − s)A1(s)

wwwwds)2

+ 15E
(∫ T

0

wwwwλ(λI + ΓT0 )−1Tq(T − s)
[ ∫ s

−∞
[h(τ, yλξ(τ,yτ ))− h(s, τ)]

]wwwwds)2

+ 15E
(∫ T

0

wwwwλ(λI + ΓT0 )−1Tq(T − s)
[ ∫ s

−∞
h(s, τ)

]wwwwds)2

+ 15E
(∫ T

0

∫
Z

wwwwλ(λI + ΓT0 )−1Tq(T − s)[g(s, yλs , z)− g(s, z)]Ñ(ds, dz)

wwwwds)2

+ 15E
(∫ T

0

∫
Z

wwwwλ(λI + ΓT0 )−1Tq(T − s)g(s, z)Ñ(ds, dz)

wwwwds)2

+ 15E
wwww ∑

0<tp<t

λ(λI + ΓT0 )−1Tq(T − tp)[Ip(yλtp)− Ip(y)]

wwww2

+ 15E
wwww ∑

0<tp<t

λ(λI + ΓT0 )−1Tq(T − tp)Ip(y)

wwww2

+ 15E
wwww ∑

0<tp<t

λ(λI + ΓT0 )−1Tq(T − tp)[Ip(yλtp)− Ip(y)]

wwww2

+ 15E
wwww ∑

0<tp<t

λ(λI + ΓT0 )−1Tq(T − tp)Ip(y)

wwww2

Hence for all 0 ≤ s ≤ T , the operator λ(λI + ΓT0 )−1 → 0 strongly as λ → 0
and moreover ‖λ(λI + ΓT0 )−1‖ ≤ 1. Thus by the Lebesque dominated convergence
theorem and the compactness of Rq(t) and Tq(t) implies that E‖xλ(T )−xT ‖2 → 0.
This gives the approximate controllability of the control system (1.1)-(1.5). �

5. Example

Consider the folllowing fractional order partial differential system in the form

CDq
t

[
y(t, z) +

∫ t

−∞

∫ π

0

e1(t− s, µ, z)y(s, µ)dµds+

∫ t

0

∫ s

−∞
b1(s− τ, µ, z)y(τ, µ)dµdτ

]
=

∂2

∂z2
y(t, z) + β(t, z) +

∫ t

0

(t− s)δe−γ(t−s) ∂
2

∂z2
y(s, z)ds+

∫ t

−∞
a1(s− t)y(s, z)dW (s)

+

∫
Z

α

(∫ t

−∞

∫ s

−∞
a2(s− t)b2(y(τ, %1(τ)%2(‖y(τ)‖), z))y(τ, z)ds

)
Ñ(dt, dα),

(t, z) ∈ I × [0, π], 0 ≤ t ≤ T, 0 ≤ z ≤ π. (5.1)
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y(t, 0) = y(t, π) = 0, t ∈ I , (5.2)

y(θ, z) = ϕ(θ, z) +

m∑
i=0

Ciy(ti + z), θ ≤ 0, z ∈ [0, π], t ∈ (−∞, 0], (5.3)

[y(t+p )− y(t−p )]z = Ip(y(tp))z =

∫ t

−∞
cp(tp − s)y(s, z)ds, p = 1, 2, · · · , n, (5.4)

[y′(t+p )− y′(t−p )]z = Ip(y(tp))z =

∫ t

−∞
dp(tp − s)y(s, z)ds, p = 1, 2, · · · , n, (5.5)

where CDq
t is the Caputo fractional partial derivative of order 1 < q < 2, β ∈

I × [0, π] → [0, π] is continuous. cp, dp are continuous for p = 1, 2, · · · , n and
Ci, i = 1, 2, · · · ,m are fixed numbers. Define the operator m1 : Bm

h → Bh by

m1(yt1 , yt2 , · · · , ytm)(z) =
m∑
i=0

Ciy(ti+z) and ‖m1(·)‖2H ≤Mm1
. Ip and Ip : H → H

are approximate functions. Let 0 = t0 < t1 < t2 < · · · < tn < T be the given time
points and the symbol ∆ζ(t) represents the jump of the function ζ at t defined by
∆ζ(t) = ζ(t+)−ζ(t−). Also, W (t) denotes a standard one-dimensional Wiener pro-
cess defined on a stochastic basis (Ω, {Ft},F,P). To write the above system (5.1)-
(5.5) into the abstract form (1.1)-(1.5), we can choose the spaceH = U = L2([0, π]).

Bh is the phase space. Define A : D(A ) ⊆ H → H by A z = z′′, (A y)(z) = ∂2y(z)
∂z2

with the domain D(A ) = {z ∈ H, z, z′ are absolutely continuous, z′′ ∈ H and
z(0) = z(π) = 0}. The operator A is the infinitesimal generator of an analytic
semigroup φ(A ) = C{−n2 : n ∈ N} and for v ∈ (0, 1) and qv ∈ (π2 , π) there exists

Mqv > 0 such that ‖R(λ,A )‖ ≤ Mqv|λ|−1 for all λ ∈
∑
qv and the fractional power

(−A )γ : D((−A γ)) ⊂ H → H of A is given by (−A )γz =
∞∑
n=1

n2γ 〈z,Wn〉Wn,

where D((−A γ)) = {z ∈ H : (−A γ)z ∈ H}. Hence, A is sectorial of type and the
properties (P1) hold. We also consider the operator A2(t) : D(A ) ⊆ H → H, t ≥
0,A2(t)z = tδe−γtA z for z ∈ D(A ). Moreover, it is easy to verify that conditions
(P2) and (P3) are satisfied with e1(t) = tδe−γt and D = C∞0 ([0, π]) is the space of
infinitely differentiable functions that vanish at z = 0 and z = π. Define the opera-
tors A1 : I ×Bh×H → H, h : I ×Bh → H, g : I ×Bh×Z → H, % : I ×Bh → H
and Ip, Ip : H → H by

A1(ψ)(z) =

∫ 0

−∞

∫ π

0

e1(s, µ, z)ψ(s, µ)dµds,

h(ψ)(z) =

∫ 0

−∞
a1(s)ψ(s, x)dW (s),

g(ψ)(z) =

∫ t

−∞
a2(s)ψ(s, x)ds,

Ip(ψ)(z) =

∫ t

−∞
cp(s)ψ(s, x)ds, p = 1, 2, · · · , n,

Ip(ψ)(z) =

∫ t

−∞
dp(s)ψ(s, x)ds, p = 1, 2, · · · , n.

Then the functions A1, h and g are continuous. The bounded linear operator B :
U → H is defined by Bu(t) = β(t, z), 0 ≤ z ≤ π. Hence with the choices of [29],
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the system (5.1)-(5.5) can be rewritten to the abstract form (1.1)-(1.5) and all the
conditions of Theorem 3.1 are satisfied. Thus there exists a mild solution for the
system (5.1)-(5.5). Moreover, all the conditions of Theorem 4.1 are satisfied and
hence the system (5.1)-(5.5) is approximately controllable on [0, T ].
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