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A VARIABLE FRACTIONAL ORDER NETWORK MODEL OF

ZIKA VIRUS

M. KHALIL , A. A. M. ARAFA , AMAAL SAYED

Abstract. A variable fractional-order network model of Zika is presented in

this paper. We also carry out a detailed analysis on the equilibrium points

and its stability. Numerical solutions are obtained using a predictor-corrector

method to handle the fractional derivatives. The fractional derivatives are de-

scribed in the Caputo sense. Numerical simulations are presented to illustrate

the results. Also, the numerical simulations show that, modeling the Zika vari-

able fractional order model has more advantages than classical integer-order

modeling.

1. Introduction

Human societies have been shocked because of the global rapid spread of Zika

virus infection in the last few years. World health organization (WHO) sounds the

alarms to make the world pay attention to the severity of this serious epidemic. Zika

virus is mosquito-borne disease. Zika virus can be transmitted to people primarily

through the bite of infected Aedes species mosquitoes. Also, it can be transmitted

by many ways such as during pregnancy, blood transfusion, breastfeeding and a

person with Zika virus can pass it to his or her sex partners [47]. Historically,

it was detected first in forests of Uganda in the middle of the previous century.

Recently, the virus hit South American continent and infected thousands of babies

with microcephaly. Mathematical models of infectious have become the backbones

of epidemiology. Decision making centers are interested in using mathematical

models of infectious diseases to take the necessary actions to eradicate infectious

diseases [13, 19, 20, 46]. The first mathematical model of Zika virus transmission

has been investigated in [23]. Also in [12], mathematical models of dengue and
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Zika outbreaks in Tropical Island have been illustrated. The impact of mosquito-

borne and sexual transmission on the spread of Zika virus has been studied in

[14]. Different preliminary population models [18, 21] like SIR, SEIR and SEI were

used to describe the transmission of dengue, Chikungunya or Zika virus through

populations and to study the dynamics of co-infection between two diseases in

the same population [16, 22, 43]. All these mentioned examples of Zika models

are integer order models in which the memory effect is ignored. In this paper, a

variable fractional order SIR model of Zika virus is presented to study the impact

of the memory on the spread of Zika virus through a population.

The fractional calculus has been investigated from more than 300 years [24, 27,

32]. It is considered as a mathematical tool for characterizing memory biological and

physical systems. The variable-order fractional derivative, which is an extension of

constant-order fractional derivative, has been introduced in several scientific fields

[5, 6, 25, 33, 35]. Therefore, the main contribution of this study is to investigate the

system behavior when the differential order of the system is fractional, continuous

function or discontinuous function.

The rest of this paper is organized as follows. Section 2 introduces some rules

about fractional calculus. Section 3 presents a variable fractional order model

on homogenous network of Zika. Section 4 illustrates the equilibrium points and

stability. Section 5 presents illustrative results of numerical simulations. Section 6

concludes this paper.

2. Preliminaries

To distinguish memory properties of dynamical systems in many scientific fields

is a crucial issue in modeling of complex systems. Fractional derivative has the

significant feature of capturing the history of the variable which cannot be easily

done in case of the integer order derivatives [31, 40]. The variable-order fractional

derivative, which is an extension of constant- fractional order derivative, is a pow-

erful tool to characterize memory that may vary from point to point. So it is clear

that the integer order derivative can be used to characterize the short memory of

systems, while the constant-order fractional derivative has advantages in charac-

terizing the long memory of systems. Furthermore, the variable-order fractional

derivative can be employed to depict the variable memory of systems [40]. In other

words, variable-order fractional derivative is good at depicting the memory prop-

erty which changes with time or spatial location [44]. It is clear that the integer

order derivative can be used to characterize the short memory of systems, while

the constant-order fractional derivative has advantages in characterizing the long

memory of systems. Furthermore, the variable-order fractional derivative can be

employed to depict the variable memory of systems [40].
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Several physical phenomena are often better described by fractional order mod-

els because fractional order operators are global not only local characteristics [42].

Furthermore, integer order models sometimes contradict the experimental results.

Recently, it has been found that, the order of derivative can be generalized to be

a bounded function. In other words, fractional order can vary with the variables

of fractional order differential equations (FDEs) [45]. The variable fractional or-

der behavior arises in numerous applications. Several theoretical studies coupled

with experimental studies related to the fractional variable order have been pre-

sented in the last few years. In [40], the variable fractional order is applied in

some applications of control theory. A generalization of the van der Pol equation

using the VODE formulation is analyzed in this paper. A new generalization of the

Schrodinger equation via the concept of space fractional variable-order derivative

has been presented in [7]. The stability and the convergence of the space fractional

variable-order Schrodinger equation were studied as well. Some experimental re-

sults have shown that variable-order fractional models are better to describe many

physical phenomena. Smit and de Vries [39] demonstrated that the stress-stain

behavior of viscoelastic materials with changing strain level can be characterized

by variable-order fractional differential equations. In [15] the authors showed that

the relaxation processes and reaction kinetics of proteins under different tempera-

tures show variable-order fractional operator properties. The experimental results

presented by H. Sheng et al [36] show that the order of the fractional operator is

the function of the temperature variable. D. Sierociuk et al [38] have presented

an experimental study of two types of electrical circuits. They verified that the

two types of circuits should be presented by variable-order systems. The fractional

differential order is a key factor that determines the final quality of the enhanced

image, whereas an extremely high fractional order will lead to bad quality of the

enhanced image. Hence, variable-order fractional differential operators may solve

this problem [44].

In this part, we give some definitions of variable-order fractional derivative which

is an extension of constant-order fractional derivative. There exist different ap-

proaches for defining the fractional derivatives.

Definition 2.1. (Riemann-Liouville fractional derivatives of order α (t))

Let α (t) be a continuous and bounded function, then Riemann-Liouville variable-

order fractional derivative of f (t) : [a, b] → R is defined as [45]:

(i) Left Riemann–Liouville derivative of order α(t) is defined by

RL
a D

α(t)

t f (t) =
1

Γ (1− α (t))

d

dt

∫ t

a

(t− τ)
−α(t)

f (τ) dτ, 0 < α (t) ≤ 1

(ii) Right Riemann–Liouville derivative of order α(t) is defined by
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RL
t D

α(t)

b f (t) =
−1

Γ (1− α (t))

d

dt

∫ b

t

(τ − t)
−α(t)

f (τ) dτ, 0 < α (t) ≤ 1

Definition 2.2. (Caputo fractional derivatives of order α (t))

Let α (t) be a continuous and bounded function, then the Caputo variable-order

fractional derivative of f (t) : [a, b] → R is defined as [45]:

(i) Left Caputo derivative of order α(t) is defined by

c
aD

α(t)
t f (t) =

1

Γ (1− α (t))

∫ t

a

(t− τ)
−α(t)

f ′ (τ) dτ, 0 < α (t) ≤ 1

(ii) Right Caputo fractional order derivative of order α(t) is defined by

c
tD

α(t)
b f (t) =

−1

Γ (1− α (t))

∫ b

t

(τ − t)
−α(t)

f ′ (τ) dτ, 0 < α (t) ≤ 1

Definition 2.3. (Grünwald-Letnikov fractional derivatives of order α (t))

Let α (t) be a continuous and bounded function, then the Grünwald-Letnikov

variable-order fractional derivative of f (t) : [a, b] → R is defined as [41]:

GL
0 D

α(t)

t f (t) = lim
h→0

h−α

[n]∑
j=0

(−1)
j

(
α(t)

j

)
f(t− jh)

Where h is the step size, n = t
h , [n] is the integer part of n and 0 < α (t) ≤ 1.

Some problems appeared when discrete time fractional order derivative is used

as follows [29]:

• Fractionalizing the discrete-time systems using classic tools have resulted

in finite dimension integer-order systems that are difficult to manipulate.

• Integer order discrete-time systems that is used to approximate continuous-

time fractional systems which have long memory, are known for their short

memory.

The above definitions show that the memory effect of considered system changes

with time and is determined by the current state. Therefore, variable order frac-

tional derivative can be used to characterize variable memory effect of the system.

Caputo derivative is attractive when physical models are presented due to the clar-

ity of the physical interpretation of the prescribed data [8]. Also Caputo derivative

is essential because the initial conditions for the fractional-order models with the

Caputo derivatives are the same as for the integer-order models [38].

Unfortunately, most variable-order fractional differential equations do not have

an exact analytical solution, so it is needed to use numerical methods to solve such

equations [1, 2].
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3. Model derivation

In most of all studies of epidemic spreading on complex networks, the population

dynamics factors are not considered. Authors in [17] have introduced a modified

epidemic model with birth and death on homogeneous and heterogeneous networks.

Through mean field analysis, they found that on homogeneous network, there is

an epidemic threshold while for a heterogeneous network, the epidemic threshold is

absent in the thermodynamic limit. Because as mentioned in [10, 11] that fractional

order models are useful in epidemic models to predict the spread of disease and how

to prevent epidemics and so much more, therefore, A fractional order network model

for Zika is presented in [9] and the authors expected that in the future the second

rote will be more difficult to control so they concluded that their model will be

useful a conceptual tool for modeling the impact of interventions aiming to control

the disease.

For the SIRS model, each individual can be in three states. S(t),I(t) and

R(t) introduce the susceptible, infected, and recovered or vaccinated individuals at

time t, respectively. First, a susceptible individual can acquire infection from an

infected neighbor at rate β. Then, an infected individual is cured at rate ε and

becomes susceptible again at rate γ. At the same time, the susceptible individual

is vaccinated at rate δ. The constant λ is the recruitment rate of susceptible

corresponding to births and immigration. µ is the natural death rate of population

and α is the disease related death rate [17]. The authors in [17] show that in order

to construct SIRS model based on homogenous network, we have to consider two

hypotheses

(1) Homogeneity: to make the network simpler, we consider each node’s degree

is < k > where < k > is the average connectivity of the network, so the

network is homogenous.

(2) Homogenous mixing: the strength of infection is proportional to the popu-

lation density.

The variable fractional order SIRS epidemic model on homogenous networks is

given by

Dα1(t)S(t) = λ− β ⟨k⟩SI
S + I +R

+ γ R− (δ + µ)S,

Dα2(t)I(t) =
β ⟨k⟩SI
S + I +R

− (ε+ µ+ α)I,

Dα3(t)R(t) = ε I − (µ+ γ)R+ δ S,

(1)

where λ, β, γ, δ, µ, α and ε are positive constants, and ⟨k⟩ is the average connectivity
in network neglecting the heterogeneity of the node degrees [17]. Beside the variable

order αi(t), i = 1, 2, 3 is a function of time
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4. Equilibrium Points and Stability

Consider the system (1) as follows:

Dα1(t)(S) = g1(S, I,R),

Dα2(t)(I) = g2(S, I,R),

Dα3(t)(R) = g3(S, I,R).

With αi(t) ∈ (0, 1], i = 1, 2, 3 and the initial conditions (S(0), I(0), R(0)).

To evaluate the equilibrium points of the fractional-order system (1), let

Dα1(t)(S) = Dα2(t)(I) = Dα3(t)(R) = 0

⇒ gi(Seq, Ieq, Req) = 0, i = 1, 2, 3.

From which we can get the equilibrium points (Seq, Ieq, Req).

To evaluate the asymptotic stability let

S(t) = Seq + ξ1(t),

I(t) = Ieq + ξ2(t),

R(t) = Req + ξ3(t).

So the equilibrium point (Seq, Ieq, Req) is locally asymptotically stable if all eigen-

values of Jacobian matrix evaluated at the equilibrium point satisfy [26]

|arg(σi)| >
α(t)π

2
, α(t) ∈ (0, 1], t ≥ 0, i = 1, 2, 3.

Now we evaluate the equilibrium points for system (1)

It has two steady states: E0 = ( λ(γ+µ)
µ(γ+µ+δ) , 0,

λδ
µ(γ+µ+δ) ) and E1 = (S∗, I∗, R∗)

where:
S∗ = λ(ε+µ+α)(µ+γ+ε)

(ε+µ+α)(µ+γ+δ)[µR0+α(R0−1)]+β⟨k⟩µε ,

I∗ = λ(ε+µ+α)(µ+γ+δ)(R0−1)
(ε+µ+α)(µ+γ+δ)[µR0+α(R0−1)]+β⟨k⟩µε ,

R∗ = εI∗+δ S∗

µ+γ .

Where the basic reproductive number R0 = β⟨k⟩(µ+γ)
(ε+µ+α)(µ+γ+δ) .

To study the stability we will get the eigenvalues of Jacobian matrix for the

system (1)

Firstly, at a disease-free equilibrium point E0 = ( λ(γ+µ)
µ(γ+µ+δ) , 0,

λδ
µ(γ+µ+δ) )

J(E0) =

 −δ − µ β⟨k⟩(µ+γ)
(µ+γ+δ) γ

0 β⟨k⟩(µ+γ)
(µ+γ+δ) − (ε+ µ+ α) 0

δ ε − (µ+ γ)


And the eigenvalues are

σ1 = −µ < 0,

σ2 = −(µ+ γ + δ) < 0,

σ3 = −(ε+ µ+ α)(1−R0) < 0 if R0 < 1.
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Therefore, if R0 < 1, a disease-free equilibrium point E0 is locally asymptotically

stable since |arg(σi)| = |−π| > α(t)π
2 , α(t) ∈ (0, 1], t ≥ 0, i = 1, 2, 3 and it is unstable

if R0 > 1.

Secondly, at an endemic equilibrium point E1 = (S∗, I∗, R∗)

The characteristic polynomial is given by:

σ3 +Aσ2 +Bσ + C = 0,

To facilitate analysis, letp = I∗

S∗ , τ = I∗

S∗+I∗+R∗ , w = (α+ µ+ ε).

Then

A = γ + 2µ+ δ + pw > 0,

B = (p− τ)w2 + (γp+ ετ + pµ+ τµ)w + γµ+ µδ + µ2 > 0,

C = wp[µ(γ + µ) + εµ] = wλ(R0 − 1)[µ(γ + µ) + εµ] > 0 if R0 > 1.

By using Theorem (Routh-Hurwitz criteria) [1] which states that stability con-

ditions are C > 0 and AB − C > 0 to get eigenvalues which are negative or have

negative real parts. Hence, if R0 > 1, the endemic equilibrium point E1 is locally

asymptotically stable since

|arg(σi)| = |−π| > α(t)π

2
, α(t) ∈ (0, 1], t ≥ 0, i = 1, 2, 3

5. Numerical Simulation and Discussion

We will introduce an algorithm of predictor-corrector method for solving the

following system of variable fractional order differential equations

Dα1(t)x(t) = f1(x(t), y(t), z(t)),

Dα2(t)y(t) = f2(x(t), y(t), z(t)), 0 ≤ t ≤ T

Dα3(t)z(t) = f3(x(t), y(t), z(t)),

With 0 < αi(t) ≤ 1 (i = 1, 2, 3) and initial condition (x0, y0, z0).

(1) Evaluate the predicted values as follows:

xp
n+1 = x0 +

∑n
j=0

β1,j,n+1

Γ(α1(tn+1))
f1(xj , yj , zj),

ypn+1 = y0 +
∑n

j=0
β2,j,n+1

Γ(α2(tn+1))
f1(xj , yj , zj),

zpn+1 = x0 +
∑n

j=0
β3,j,n+1

Γ(α3(tn+1))
f1(xj , yj , zj),

Where

βi,j,n+1 =
hαi(tn+1)

αi(tn+1)
[(n− j + 1)αi(tn+1) − (n− j)αi(tn+1)]. h = T/N, Tn = nh.

(2) Evaluate the corrected values as follows
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xn+1 = x0 +
hα1(tn+1)

Γ(α1(tn+1)+2) + f1(x
p
n+1, y

p
n+1, z

p
n+1) +

∑n
j=0

hα1(tn+1) γ1,j,n+1

Γ(α1(tn+1))+2) f1(xj , yj , zj),

yn+1 = y0 +
hα2(tn+1)

Γ(α2(tn+1)+2) + f2(x
p
n+1, y

p
n+1, z

p
n+1) +

∑n
j=0

hα2(tn+1) γ2,j,n+1

Γ(α2(tn+1))+2) f2(xj , yj , zj),

zn+1 = z0 +
hα3(tn+1)

Γ(α3(tn+1)+2) + f3(x
p
n+1, y

p
n+1, z

p
n+1) +

∑n
j=0

hα3(tn+1) γ3,j,n+1

Γ(α3(tn+1))+2) f3(xj , yj , zj),

where

γi,j,n+1 =


nαi(tn+1)+1 − (n− αi(tn+1))(n+ 1)αi(tn+1) , j = 0,

(n− j − 2)αi(tn+1)+1 + (n− j)αi(tn+1)+1 − 2(n− j + 1)αi(tn+1) , 1 ≤ j ≤ n,

1 , j = n+ 1

We applied the above predictor-corrector method to get numerical solu-

tion of the system (1). We investigate the system behavior in three cases.

First case when the variable order is αi(t) = 1− 0.004t. Second case when

the variable order is a periodic function αi(t) = 0.7− 0.01 sin(πt). Finally

we look into the case of the function of variable order is discontinuous as

follows:

αi(t) =

{
1 , t ∈ [0, 50]

0.8, t ∈ (50, 100].
, i = 1, 2, 3 (2)

Figure 1. The dynamic trajectory S(t) at α(t) = 1 (the solid line) and
at α(t) = 1− 0.004t (the dashed line)
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Figure 2. The dynamic trajectory S(t) at α(t) = 0.7 (the solid line)
and at α(t) = 0.7− 0.01sin(πt) (the dashed line)

Figure 3. The dynamic trajectory S(t) at α(t) = 0.8 (the solid line)

and at α(t) =

{
1 , t = [0, 50]
0.8, t = (50, 100].

(the dashed line).

Figure 4. The dynamic trajectory I(t) at α(t) = 1 (the solid line) and
at α(t) = 1− 0.004t (the dashed line).
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Figure 5. The dynamic trajectory I(t) at α(t) = 0.7 (the solid line)
and at α(t) = 0.7− 0.01sin(πt) (the dashed line).

Figure 6. The dynamic trajectory I(t) at α(t) = 0.8 (the solid line)

and at α(t) =

{
1 , t = [0, 50]
0.8, t = (50, 100].

(the dashed line).

Figure 7. The dynamic trajectory R(t) at α(t) = 1 (the solid line) and
at α(t) = 1− 0.004t (the dashed line).
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Figure 8. The dynamic trajectory R(t) at α(t) = 0.7 (the solid line)
and at α(t) = 0.7− 0.01sin(πt) (the dashed line).

Figure 9. The dynamic trajectory R(t) at α(t) = 0.8 (the solid line)

and at α(t) =

{
1 , t = [0, 50]
0.8, t = (50, 100].

(the dashed line).

The numerical results displayed in Figs. 1-9 for ⟨k⟩ = 6, λ = 1, β = 0.2, µ =

0.001, γ = 0.1, α = 0.00087, ε = 0.5, δ = 0.3 and initial conditions are S(0) =

450, I(0) = 550, R(0) = 0 we found that a disease equilibrium pointE0 = (251.87, 0, 748.13)

is locally asymptotically stable , the disease will eventually disappear where R0 =

0.6022 < 1.

In Figs. 10-18 we take ⟨k⟩ = 6, λ = 1, β = 0.2, µ = 0.001, γ = 0.1, α =

0.00087, ε = 0.5, δ = 0.005 and initial conditions are S(0) = 800, I(0) = 200, R(0) =

0 we found that a disease free equilibrium point

E0 = (952.83, 0, 47.1698) is unstable where R0 = 2.2783 > 1 and a unique en-

demic equilibrium point E1 = (386.518, 87.1414, 450.528) is locally asymptotically

stable.
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In Figs. 1, 4, 7, 10, 13, 16 we take the variable order αi(t) = 1−0.004t means the

memory in the system is a decreasing function so the system behavior is slower with

time. In Figs. 2, 5, 8,11,14,17 we take the variable order αi(t) = 0.7− 0.01 sin(πt)

means the memory in the system is a periodic function so the resulted system

behavior is a periodic. In Figs. 3, 6, 9, 12, 15, 18 we present the variable order as

stated in (2) means the memory has a jump so the behavior of the system also has

a jump.

Figure 10. The dynamic trajectory S(t) at α(t) = 1 (the solid line)
and at α(t) = 1− 0.004t (the dashed line).

Figure 11. The dynamic trajectory S(t) at α(t) = 0.7 (the solid line)
and at α(t) = 0.7− 0.01sin(πt) (the dashed line).
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Figure 12. The dynamic trajectory S(t) at α(t) = 0.8 (the solid line)

and at α(t) =

{
1 , t = [0, 50]
0.8, t = (50, 100].

(the dashed line).

Figure 13. The dynamic trajectory I(t) at α(t) = 1 (the solid line)
and at α(t) = 1− 0.004t (the dashed line).

Figure 14. The dynamic trajectory I(t) at α(t) = 0.7 (the solid line)
and at α(t) = 0.7− 0.01sin(πt) (the dashed line).
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Figure 15. The dynamic trajectory I(t) at α(t) = 0.8 (the solid line)

and at α(t) =

{
1 , t = [0, 50]
0.8, t = (50, 100].

(the dashed line).

Figure 16. The dynamic trajectory R(t) at α(t) = 1 (the solid line)
and at α(t) = 1− 0.004t (the dashed line).

Figure 17. The dynamic trajectory R(t) at α(t) = 0.7 (the solid line)
and at α(t) = 0.7− 0.01sin(πt) (the dashed line).
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Figure 18. The dynamic trajectory R(t) at α(t) = 0.8 (the solid line)

and at α(t) =

{
1 , t = [0, 50]
0.8, t = (50, 100].

(the dashed line).

6. Conclusion

This paper introduced a variable fractional order network model of Zika. It is

presented the equilibrium points and stability of the system. We used the numerical

results to show that according to the formula of the memory of the system such

as a decreasing function, periodic or discontinuous the behavior of the system has

the same properties of the memory function i.e. since the memory function is a

decreasing function so the system behavior is slower in time. And if the memory

function is a periodic function hence the behavior of the system is also periodic. In

addition, the system behavior has a jump when the memory function is discontinues

function.

References

[1] R. L. J. S. Allen, “An Introduction to Mathematical Biology”: New Jersey, Pearson Prentice

Hall, Upper Saddle River, 2006.

[2] A. A. M. Arafa, S.Z. Rida, and M. Khalil,” The effect of anti-viral drug treatment of human

immunodeficiency”, Appl. Math. Model., vol.37, no.4, pp. 2189–2196, 2013.

[3] A. Atangana, and A.H. Cloot, “Stability and convergence of the space fractional variable-

order Schrodinger equation”, Adv. Differ. Equ., vol.2013, no.80, 2013.

[4] A. H. Bhrawy, and M. A. Zaky, “Numerical simulation for two- dimensional variable-order

fractional nonlinear cable equation”, Nonlinear Dyn., vol.80, no. (1-2), pp.101-116, 2015.

[5] A. V. Chechkin, R. Gorenflo, and I.M. Sokolov, ”Fractional diffusion in inhomogeneous me-

dia”, J. Phys. A: Math. Gen., vol.38, no. 42, 2005.

[6] A. V. Chechkin, V. Yu. Gonchar, R. Gorenflo, N. Korabel, and I.M. Sokolov, “Generalized

fractional diffusion equations for accelerating sub diffusion and truncated Levy flights”, Phys.

Rev., vol. 78, no.2, 2008.

[7] G. Diaz, and C.F.M Coimbra, “Nonlinear dynamics and control of a variable order oscilla-

tor with application to the van del Pol equation”, Nonlinear Dyn., vol. 56,no.(1-2),pp.145-

157,2009.



JFCA-2018/9(1) A VARIABLE FRACTIONAL ORDER 219

[8] K. Diethelm, “Analysis of Fractional Differential Equation: An Application-Oriented Expo-

sition Using Differential Operators of Caputo Type”, Springer-Verlag, Berlin, Heidelberg,

2010.

[9] H. El saka, E. Ahmed,” a fractional order network model of Zika” ,BioRxiv,2016.

[10] H. A. El-Saka and A. El-Sayed, “Fractional Order Equations and Dynamical Systems”, Lam-

bert Academic Publishing, Germany, 2013.

[11] H. A. El-Saka, “The fractional-order SIR and SIRS epidemic models with variable population

size”, Math. Sci. Lett., vol.2, No. 3, pp. 1-6, 2013.

[12] S. Funk, A. J. Kucharski, A. Camacho, R. M. Eggo, L. Yakob, L. M. Murray, and W. John

Edmunds,” Comparative analysis of dengue and Zika outbreaks reveals differences by setting

and virus”, PLOS Negl.Trop. Dis., 2016.

[13] K. Gao, and D.Y. Hua,” Effects of immunity on global oscillations in epidemic spreading in

small-world networks”, Physics Procedia, vol.3, no.5, pp.1801–1809, 2010.

[14] D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell, and S. Ruan,” Prevention

and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical

modeling analysis”, Scientific Reports, vol.6, 2016.

[15] W. G. Glockle, T. F. Nonnenmacher,”A fractional calculus approach of self-similar protein

dynamics”, Biophys. J., vol.68, no.1, pp. 46–53, 1995.

[16] H. W. Hethcote,” The mathematics of infectious diseases”. SIAM Rev., vol. 42, no.4, pp.599–

653, 2000.

[17] Y. Hua, Lequan Minab and Y. Kuang, “Modeling the dynamics of epidemic spreading on

homogenous and heterogeneous networks”, Applicable Analysis: An International Journal,

vol. 94, no.11, pp.1308-2330, 2015.

[18] R. Isea, and E. Karl Lonngren, “A Preliminary Mathematical Model for the Dynamic Trans-

mission of Dengue, Chikungunya and Zika”, American Journal of Modern Physics and Ap-

plication, Vol. 3, No. 2, pp.11-15, 2016.

[19] V. Isham, S. Harden, and M. Nekovee, “Stochastic epidemics and rumors on finite random

networks,” Physica A, vol. 389, no. 3, pp. 561–576, 2010.

[20] M. J. Keeling, and P. Rohani,” Modeling Infectious Diseases in Humans and Animals”, NJ,

Princeton University Press, 2008.

[21] M. Khalid, and Fareeha Sami Khan, “Stability Analysis of Deterministic Mathematical Model

for Zika Virus”, British Journal of Mathematics & Computer Science, vol.19, no.4, pp.1-10,

2016.

[22] G. C. Korobeinikov Wake, ”Lyapunov functions and global stability for SIR, SIRS, and SIS

epidemiological models”, Appl. Math. Lett., vol.15, no.8, pp. 955–960, 2002.

[23] A. j. Kucharski, S. Funk, R.M. Eggo, H.P. Mallet, W. J. Edmunds, E. J. Nilles, “Transmission

dynamics of Zika virus in island populations: a modeling analysis of the 2013-14 French

Polynesia outbreak”, PLOS Negl. Trop. Dis., vol. 10, no. 5, pp. e0004726, 2016.

[24] C. Li, and W. Deng, ”Remarks on fractional derivatives”, Appl. Math. Comput., vol.187,

no.2, pp.777-784, 2007.

[25] C. F. Lorenzo, and T.T. Hartley, ”Variable order and distributed order fractional operators”,

Nonlinear Dyn., vol.29, no.1, pp.57-98, 2002.

[26] D. Matignon, “Stability results for fractional differential equations with applications to con-

trol processing”, In: IEEE-SMC Proceedings, Computational Engineering in Systems Appli-

cations Multi-Conference ,IMACS , vol. 2, pp. 963–968,1996.



220 M. KHALIL , A. A. M. ARAFA , AMAAL SAYED JFCA-2018/9(1)

[27] C. A. Monje, Y. Q. Chen , B. M. Vinagre, D. Xue, and V. Feliu , “Fractional-order Systems

and Controls”: Fundamentals and Applications. Springer-Verlag, London, 2010.

[28] Z. Odibat, and N. Shawagfeh, “Generalized Taylor’s formula”, Appl. Math. Comput., vol.186,

no.1, pp.286-293, 2007.

[29] M. D. Ortigueira, F.J. V. Coito and J.J. Trujillo,” Discrete-time differential systems. Signal

Processing”, vol. 107, no.22, pp.198–217, 2015.

[30] L. M. Petrovic, D.T. Spasic, and T. M. Atanackovic, “On a mathematical model of a human

root dentin”, Dental Materials, vol. 21, no.2, pp. 125-128, 2005.

[31] C. M. A. Pinto and J. A. T. Machado,”Fractional model for malaria transmission under

control strategies”, Computers and Mathematics with Applications, vol. 66, no.5,pp. 908–

916, 2013.

[32] I. Podlubny, “Fractional Differential Equations”, Academic Press, San Diego. California,

USA, 1999.

[33] S. G. Samko, “Fractional integration and differentiation of variable order”, Analysis Mathe-

matics, vol. 21, no.3, p.213-236, 1995.

[34] S. Samko, “Fractional integration and differentiation of variable order: an overview”, Non-

linear Dyn., vol.71, no.4, pp.653-662, 2013.

[35] S. G. Samko, and B. Ross,”Integration and differentiation to a variable fractional order”,

Integral Transform. Spec. Funct., vol.1, no.4, pp. 277-300, 1993.

[36] H. Sheng, H. G. Sun, C. Coopmans, Y. Q. Chen, and G. W. Bohannan ,”A Physical exper-

imental study of variable-order fractional integrator and differentiator”, Eur. Phys. J. Spec.

Top.,vol.193,no.1,pp.93-104 ,2011.

[37] Li. Shujuan , D.H. Gouge, K. Walker, Al Fournier, Shaku Nair, M. Wierda, and J. Hurley,

”The Zika Virus”, University of Arizona Cooperative Extension, Arizona pest management

center,2016.

[38] D. Sierociuk, I. Podlubny, and I. Petras,” Experimental evidence of variable-order behavior

of ladders and nested ladders”, IEEE Trans. Control Syst. Technol., vol. 21, no.2, pp.459-466,

2013.

[39] W. Smit, and H. de Vries, ”Rheological models containing fractional derivatives”, Rheol

Acta,vol.9,no.4,pp.525-534,1970.

[40] H. G. Sun, W. Chen, H. Wei, and Y. Q. Chen, ”A comparative study of constant-order and

variable-order fractional models in characterizing memory property of systems”, Eur. Phys.

J. Special Topics,vol.193,no.1,pp.185-192,2011.

[41] N. H. Sweilam, S.M.AL-Mekhla?, “Numerical study for multi-strain tuberculosis (TB) model

of variable-order fractional derivatives”, J.Adv. Res., vol.7, no.2, pp.271-283, 2015.

[42] D. Tavares, R. Almeida, D. F. M. Torres, “Caputo derivatives of fractional variable order:

numerical approximations”. Commun. Nonlinear. Sci. Numer. Simul., vol.35, pp.69-87, 2016.

[43] Yi. Xiao, Yicang Zhou, Sanyi Tang,” Modeling disease spread in dispersal networks at two

levels”. Math Med Biol, vol.28, no.3,pp.22-244,2011.

[44] M. Xu, J. Yang, D. Zhao and H. Zhao, “An image-enhancement method based on variable-

order fractional differential operators”, Bio-Medical Materials and Engineering, vol. 26, no.s1,

pp.S1325-S1333, 2015.

[45] Xu. Yufeng and He. Zhimin,”Existence and uniqueness results for Cauchy problem of variable-

order fractional differential equations”, J. Appl. Math. Comput vol.43, no.(1-2), pp.295-306,

2013.



JFCA-2018/9(1) A VARIABLE FRACTIONAL ORDER 221

[46] G. Zhu, X. Fu, and G. Chen,” Spreading dynamics and global stability of a generalized

epidemic model on complex heterogeneous networks”, Appl. Math. Model., vol.36, no.12,

pp.5808-5817, 2012.

[47] Center of disease control and prevention: https://www.cdc.gov/zika/transmission/index.html

M. Khalil

Department of mathematics, Faculty of Engineering, October university for modern

sciences and arts (MSA), Giza, Egypt

E-mail address: mkibrahim@msa.eun.eg

A. A. M. Arafa

Department of mathematics, Faculty of Science, Port Said University, Port Said, Egypt

E-mail address: anaszi2@yahoo.com

Amaal Sayed

Department of mathematics, Faculty of Science, Port Said University, Port Said, Egypt

E-mail address: amal wa84@yahoo.com


