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OPTIMALITY CONDITIONS OF FRACTIONAL DIFFUSION

EQUATIONS WITH WEAK CAPUTO DERIVATIVES AND

VARIATIONAL FORMULATION

G. M. BAHAA AND QING TANG

Abstract. In this paper we start by using a new definition of weak Caputo

derivative in the sense of distributions, and we give a variational formulation
to a fractional diffusion equation with Caputo derivative. We first prove the
existence of the solution to this weak formulation and use it to obtain a result
on distributed and boundary Fractional Optimal Control Problem (FOCP).

Then we show that the considered optimal control problem has a unique so-
lution. The performance index of a (FOCP) is considered as a function of
both state and control variables, and the dynamic constraints are expressed
by a Partial Fractional Differential Equation (PFDE). The time horizon is

fixed. We impose some constraints on the boundary control. Interpreting
the Euler-?Lagrange first order optimality condition with an adjoint problem
defined by means of right fractional weak Caputo derivative, we obtain an op-
timality system for the optimal control. Finally we discuss the controllability

of the fractional distributed Dirichlet problem with weak Caputo fractional
derivatives. Some examples are analyzed in details.

1. Introduction

The study of fractional calculus (noninteger order) is gaining more and more
attention. Compared with classical integer-order models, fractional-order models
can describe reality more accurately, which has been shown recently in a variety of
fields such as physics, chemistry, biology, economics, signal and image processing,
control, porous media, aerodynamics, and so on see( [1]-[8]).

In this paper, we study fractional diffusion equations with controls by the method
of an abstract variational formulation. There has been a large and fast increasing
literature on diffusion equations with time fractional derivatives [23].

An important obstacle to study solutions in fractional Sobolev spaces is that the
Caputo derivative was not clearly defined when the first order derivative does not
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exist in the strong sense. In the recent work of Gorenflo et al. [14], they gave a defi-
nition of the Caputo derivative in fractional Sobolev space. Based on this reason in
this paper we attempt to use a new definition of the weak fractional Caputo deriv-
ative via distribution theory and an integration by parts formula. This definition
makes it very natural to adopt the theory of operational differential equations ([19])
and gives an abstract variational formulation of the fractional diffusion equation.

We will study this weak formulation with the classic Lax-Milgarm method and
the integration by parts technique. We note that the integration by parts technique
has been developed and extensively used in the theory of fractional calculus of
variations, of which we refer to the monograph of Malinowska and Torres [18].

We obtain a solution in the functional setting of a fractional Sobolev space due
to the following fact: the L2- fractional derivative is the fractional power of the
realization of a derivative in L2?space [12]. For a detailed analysis and charac-
terization of the fractional power of differential operator in the setting of Sobolev
space, we refer to [12]-[13].

Using the fractional integration by parts formula, we can also construct the
adjoint system to our variational (weak) formulation. By a classic result of convex
analysis we can characterize the optimal control of a system of partial differential
equations and inequalities, which can be applied to concrete fractional diffusion
equations.

This paper is organized as follows. In section 2, we introduce some basic def-
initions for the weak Caputo fractional operators. In section 3, we formulate the
fractional distributed Dirichlet problem. In section 4, we show that our fractional
optimal control problem holds and gives the optimality system for the optimal con-
trol. In section 5, we formulate the fractional boundary Neumann problem. In
section 6, the minimization problem is formulated and we state some illustrative
examples. In section 7, we discuss the controllability of the fractional distributed
Dirichlet problem with weak Caputo fractional derivatives. In section 8, we give
the conclusion in the final section.

2. Preliminaries

Fractional differential equations have been studied by many investigators in re-
cent years. The notion of fractional order (non-integer order) operator is much
more recently improved. Different authors have presented different definitions of
fractional order differential operators. The object of this section is to give the
definition of some fractional integrals and fractional derivatives of function in the
Riemann-Liouville sense and Caputo sense see [5]-[8]. Also we give a definition of
fractional Hilbert spaces.

Let n ∈ N∗ where (N∗ = N ∪ {0}, N is a set of natural numbers) and Ω be
a bounded open subset of Rn with a smooth boundary Γ of class C2. For a time
T > 0, we set Q = Ω× (0, T ) and Σ = Γ× (0, T ).
Definition 1 Let 0 < β ≤ 1, 0 < t < T , f ∈ L1(0, T ), and Γ be the Gamma
function. i.e.

Γ(z) =

∫ ∞

0

e−ttz−1dt.

Then

(Jβf)(t) = 0I
β
t f(t) =

∫ t

0

1

Γ(β)
(t− s)β−1f(s)ds,
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is called the left Riemann-Liouville integral of fractional order β, while

tI
β
T f(t) =

∫ T

t

1

Γ(β)
(s− t)β−1f(s)ds,

is called the right Riemann-Liouville integral of fractional order β.

Definition 2 Let 0 < β < 1, 0 < t < T , 0I
1−β
t f ∈ AC(0, T ) ( Admissible

cone to the set (0, T )). Then the left Riemann-Liouville fractional derivative of
fractional order β of f is defined by:

0D
β
t f(t) =

∂

∂t
0I

1−β
t f(t) =

∂

∂t

∫ t

0

1

Γ(1− β)
(t− s)−βf(s)ds,

while the right Riemann-Liouville fractional derivative of fractional order β of f

such that tI
1−β
T f ∈ AC(0, T ) is defined by:

tD
β
T f(t) = − ∂

∂t
tI

1−β
T f(t) =

∂

∂t

∫ T

t

−1

Γ(1− β)
(s− t)−βf(s)ds.

Definition 3 Let 0 < β < 1, 0 < t < T , 0I
1−β
t f ∈ AC(0, T ). Then the left Caputo

fractional derivative of fractional order β of f is defined by:

∂βt f(t) =
C
0 D

β
t f(t) = 0I

1−β
t

∂

∂t
f(t) =

∫ t

0

1

Γ(1− β)
(t− s)−β

∂

∂s
f(s)ds,

while the right Caputo fractional derivative of fractional order β of f such that

tI
1−β
T f ∈ AC(0, T ) is defined by:

C
t D

β
T f(t) = −tI1−βT

∂

∂t
f(t) =

∫ T

t

−1

Γ(1− β)
(s− t)−β

∂

∂s
f(s)ds.

The Caputo fractional derivative is a sort of regularization in the time origin for
the Riemann-Liouville fractional derivative.

From this definition we see that for ?∂βt f(t) to be well defined, ? ∂∂tf(t) must be
well defined. This is quite restrictive in applications, hence motivating our study
of the weak Caputo derivative.
Definition 4 Let 0 < β < 1. Let g ∈ Lp(0, T ), 1 ≤ p ≤ ∞ and ϕ :]0, T ] 7→ R+ be

the function defined by: ϕ(t) = t−β

Γ(1−β) .

Then for almost every t ∈ [0, T ], the function s → ϕ(t − s)g(s) is integrable on
[0, T ]. Set

ϕ ∗ g(t) =?

∫ t

0

ϕ(t− s)g(s)ds

.
Then ϕ ∗ g(t) ∈ Lp(0, T ) and

||ϕ ∗ g||Lp(0,T ) ≤ ||ϕ||L1(0,T ).||g||Lp(0,T ).

When f ∈ L1(0, T ), the left Riemann-Liouville integral can also be defined via
a convolution [25]:

(Jβf)(t) = (gβ ∗ f)(t),
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where

gβ(t) =

{ 1
Γ(β) t

β−1, t > 0;

0, t ≤ 0.

We denote by Hβ(0, T ) the fractional Sobolev space of order β on (?0, T ) and

0H
β(0, T ) = {y ∈ Hβ(0, T ) : y(0) = 0}.

For details of these definitions we refer to ([19].
It has been verified in previous literature that the Riemann-Liouville integral

operator is injective ([16], hence we can define a new operator J−β as the inverse
operator of Jβ . By definition, D(J−β) = R(Jβ).
Lemma 1 Let T > 0, u ∈ Cm([0, T ]), p ∈ (m − 1,m),m ∈ N and v ∈ C1([0, T ]).
Then for t ∈ [0, T ], the following properties hold

0D
p
t v(t) =

d

dt
0I

1−p
t v(t), m = 1,

0D
p
t 0I

p
t v(t) = v(t);

0I
p
t 0D

p
t u(t) = u(t)−

m−1∑
k=0

tk

k!
u(k)(0);

lim
t→0+

C
0 D

p
t u(t) = lim

t→0+
0I
p
t u(t) = 0.

Note also that when T = +∞, C0 D
β
t f(t) is the Weyl fractional integral of order β

of f ′.
We use the following result regarding a solution to a fractional differential equa-

tion [16]:

∂βy = f, f ∈ L2(0, T )

is given by y = Jβf with the range of this operator Jβ being

R(Jβ) =


Hβ(0, T ), 0 ≤ β < 1

2 ,

0H
β(0, T ), 1

2 < β ≤ 1,

{y ∈ H
1
2 (0, T ) :

∫ T
0
t−1|y(t)|2dt <∞}, β = 1

2 .

(1)

In the literature of interpolation theory, one sometimes denotes

[0H
1(0, T ), H0(0, T )] 1

2
= 0H

1
2
0 (0, T ) = {y ∈ H

1
2 (0, T ) : t

1
2 y ∈ L2(0, T )}

With the above definitions we have the following result.
Lemma 2 ([25] The norms ||Jβy||L2(0,T ) and ||y||Hβ(0,T ) are equivalent for y ∈
R(Jβ).

We denote byHβ(0, T ;V, V ′) the vector valued fractional Sobolev space. W β,p(0, T ;V, V ′)
is the restriction on (0, T ) of W β,p(−∞,∞;V, V ′) given by the Fourier transform
and

Hβ(0, T ;V, V ′) =W β,2(0, T ;V, V ′).

Next we give a lemma from [25], which gives the embedding between fractional
Sobolev spaces and spaces of continuous functions, for vector spaces on the interval
(0, T ).
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Lemma 3 [25] Denote by Cu(0, t;H) the space of uniformly continuous functions
from (0, T ) into H. Suppose β > 1/p (?0 < β < 1, 1 < p ≤ ∞). Then

W β,p(0, T ;V, V ′) ↪→ Cu(0, t;H) with compact embedding.

Lemma 4 [25] Let β, p and q satisfy
if β > 1/p then p ≤ q ≤ ∞,
if β = 1/p then p ≤ q <∞,
if β < 1/p then p ≤ q ≤ p∗, where β− 1/p = −1/p∗, that is p∗ = p/(1− βp)(0 <

β < 1, 1 ≤ p ≤ q ≤ ∞. Then

W β,p(0, T ;V, V ′) ↪→ Lq(0, t;H) with compact embedding.

In order to use the theory of operational differential equations, we need to in-
terpret the weak Caputo derivative in the sense of distributions, through fractional
integration by parts in the formula∫ T

0

(∂βt y(t), ψ(t))dt =

∫ T

0

(y(t), Ct D
β
Tψ(t))dt+ [tI

1−β
T ψ(t).y(t)]T0 , ψ(t) ∈ D(]0, T [).

(2)
For y(0) = 0, ψ(T ) = 0, we have

[tI
1−β
T ψ(t).y(t)]T0 = 0.

Hence we can proceed to the construction of a weak Caputo derivative in the
sense of distributions, note that if a distribution function is infinitely differentiable
then its Caputo fractional derivative must also exist. It greatly simplifies the situ-
ation since we have the initial condition y(0) = y0 = 0. We denote by D(]0, T [) the
space of infinitely differentiable functions in ]0, T [ with compact support.We call
every continuous linear mapping of D(]0, T [) into E a vectorial distribution over
]0, T [ with values in a Banach space E, and we denote

D′(]0, T [;E) = L(D(]0, T [);E).

Definition 5 [25] Define the test function ϕ ∈ D(]0, T [) for the function y such

that y(0) = 0, we call ∂βt y a distributional weak Caputo derivative if it is a linear

functional on D(]0, T [) that sends ϕ into
∫ T
0
(y, Ct D

β
Tϕ(t))dt i.e.

(∂βt y)ϕ(t) =

∫ T

0

(y, Ct D
β
Tϕ(t))dt

Our new definition of a weak Caputo derivative generalizes the (left) Caputo
derivative (Definition 3) since it is well defined even when ∂y/∂s does not exist in
the strong sense. It coincides with the Caputo derivative if ∂y/∂s does exist.

Lemma 5 ?[25] ∂βt (y(.), v) =< ∂βt y(.), v > in D(]0, T [), for y ∈ 0H
β(0, T ;V, V ′),

v ∈ V . Here (, ) denotes duality in H, <,> denotes a duality pairing of V and V ′.

Moreover, the weak Caputo derivative ∂βt y = J−βy in L2(0, T )? for y ∈ R(Jβ).
Proof Denote the function ϕ ∈ D(]0, T [). For all t, ϕ(t) is a scalar. We can write
v(t) = ϕ(t)v. Observe y(t), v ∈ V ⊂ H and the duality <,> is compatible with the
identification of H with its dual. This implies

< v, y(t) >= (v, y(t)) = (y(t), v).
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From Definition 5 and (2) we obtain∫ T

0

< ∂βt y(t), v > ϕ(t)dt =

∫ T

0

< v, y(t) > C
t D

β
Tϕ(t)dt =

∫ T

0

(y(t), v)Ct D
β
Tϕ(t)dt

=

∫ T

0

∂βt (y(t), v)ϕ(t)dt,

hence ?∂βt (y(t), v) =< ∂βt y(t), v > in D(]0, T [).
Since the Sobolev space 0H

2(0, T ) is dense in R(Jβ), for each y ∈ R(Jβ) we can
construct an approximating sequence ϕn such that

lim
n→∞

?ϕn = y, ϕn ∈ 0H
2(0, T ).

By the Hahn-Banach theorem we can uniquely extend the domain of linear operator

y →?∂βt y from 0H
2(0, T ) to R(Jβ). From [16] (Lemma 3.1) we know ?

∂βt ϕn = J−βϕn, ϕn ∈0 H
2(0, T ),

hence we obtain∫ T

0

(∂βt y(t), ϕ(t))dt =

∫ T

0

(J−βy(t), ϕ(t))dt, y ∈ R(Jβ).

From Definition (5) and the fact that D(]., T [) ⊂ L2(0, T ) we obtain the weak

Caputo derivative ?∂βt y(t) = J−βy(t) in L2(0, T ) for y ∈ R(Jβ).
From Lemma (2) and Lemma (5)?we obtain the following: suppose we have a

sequence of approximating solutions ym ∈ R(Jβ); if we have a priori estimates

independent of m, such that ym(t) ∈ L2?(?0, T ;V ) and ∂βt ym(t) ∈ L2(0, T ;V ′),
then we have ym(t) ∈ Hβ(0, T ;V, V ′).
Lemma 6 (Green’s Theorem for fractional operators).

Let 0 < β ≤ 1− 1
n , n ∈ N . Then for any ϕ ∈ C∞(Q) we have∫ T

0

∫
Ω

(∂βt y(x, t) +Ay(x, t))ϕ(x, t)dxdt =
∫
Γ

y(x, T )tI
1−β
T ϕ(x, T )dΓ−∫

Γ

y(x, 0)tI
1−β
T ϕ(x, 0)dΓ−

∫ T

0

∫
Γ

y(x, t)
∂ϕ(x, t)

∂νA
dΓdt

+

∫ T

0

∫
Γ

∂y(x, t)

∂νA
ϕdΓdt+

∫ T

0

∫
Ω

y(x, t)(Ct D
β
Tϕ(x, t) +A∗ϕ(x, t))dxdt.

(3)

where A is a given operator which is defined by

Ay = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂y

∂xj

)
+a0(x)y, (4)

where aij , i, j = 1, 2, ..., n, be given function on Ω with the properties

a0(x), aij(x) ∈ L∞(Ω) (with real values),

a0(x) ≥ α > 0,
n∑

i,j=1

aij(x)ξiξj ≥ α(ξ21 + ...+ ξ2n), ∀ξ ∈ Rn,

almost everywhere on Ω and

∂y

∂νA
=

n∑
i,j=1

aij
∂y

∂xj
cos(n, xj) onΓ, (5)
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cos(n, xj) is the i-th direction cosine of n,n being the normal at Γ exterior to Ω.

Proof Let ϕ ∈ C∞(Q), we have∫ b

a

∫
Ω

(CaD
β
t y(x, t) +Ay(x, t))ϕ(x, t)dxdt =

∫ b

a

∫
Ω

(CaD
β
t y(x, t))ϕ(x, t)dxdt

+

∫ b

a

∫
Ω

Ay(x, t)ϕ(x, t)dxdt (6)

we have:∫ b

a

∫
Ω

Ay(x, t)ϕ(x, t)dxdt = −
∫ b

a

∫
Γ

y(x, t)
∂ϕ(x, t)

∂νA
dΓdt+

∫ b

a

∫
Γ

∂y(x, t)

∂νA
ϕ(x, t)dΓdt

+

∫ b

a

∫
Ω

y(x, t)A∗ϕ(x, t)dxdt. (7)

∫ b

a

∫
Ω

(CaD
β
t y(x, t))ϕ(x, t)dxdt =

∫ b

a

∫
Ω

y(x, t)(tD
β
b ϕ(x, t))dxdt+∫ b

a

∫
Γ

y(x, t)(tI
1−β
b ϕ(x, t))dΓdt =

∫ b

a

∫
Ω

y(x, t)(tD
β
b ϕ(x, t))dxdt

+

∫
Γ

y(x, b)tI
1−β
b ϕ(x, b)dΓ−

∫
Γ

y(x, a)tI
1−β
b ϕ(x, a)dΓ

(8)

substitute from (8) and (7) into (6) we deduce (3), which completes the proof.
Definition 6 We also introduce the space

W(0, T ) := {y : y ∈ L2(0, T ; 0H
β(Ω)), ∂βt y(x, t) ∈ L2(0, T ; 0H

−β(Ω))}

in which a solution of a differential systems is contained. The spaces considered in
this paper are assumed to be real.

3. Fractional Dirichlet problem with weak Caputo derivative

Let us consider the fractional partial differential system:

∂βt y(x, t) +Ay(t) = f(t), t ∈ [0, T ], (9)

y(x, 0) = y0, x ∈ Ω, (10)

y(x, t) = 0, x ∈ Γ, t ∈ (0, T ), (11)

where 1
n < β < 1, n ∈ N , y0 ∈ H2(Ω)

∩
H1

0 (Ω), the function f belongs to L2(Q).

The fractional derivative ∂βt y(t) is understood here in the weak Caputo sense (Def-
inition 5), Ω has the same properties as in section 2. The operator A in the state

equation (9) is a second order operator given by (4) and A ∈ L
(
H1

0 (Ω),H
−1
0 (Ω)

)
.

For this operator we define the bilinear form as follows:
Definition 7 For each t ∈]0, T [, we define a family of bilinear forms π(t; y, ϕ) on
H1

0 (Ω) by:

π(t; y, ϕ) = (Ay, ϕ)L2(Ω), y, ϕ ∈ H1
0 (Ω), (12)
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where A maps H1
0 (Ω) onto H

−1
0 (Ω) and takes the form (6). Then

π(t; y, ϕ) =

(
Ay, ϕ

)
L2(Ω)

=

(
−

n∑
i,j=1

∂

∂xi

(
aij(x)

∂y

∂xj

)
+a0(x)y, ϕ(x)

)
L2(Ω)

=

∫
Ω

n∑
i,j=1

aij
∂

∂xi
y(x)

∂

∂xj
ϕ(x)dx+

∫
Ω

a0(x)y(x)ϕ(x)dx.

Lemma 7 The bilinear form π(t; y, ϕ) is coercive on H1
0 (Ω) that is

π(t; y, y) ≥ λ ||y||2H1
0 (Ω), λ > 0. (13)

Proof It is well known that the ellipticity of A is sufficient for the coerciveness of
π(t; y, ϕ) on H1

0 (Ω).
Since

π(t; y, ϕ) =

∫
Ω

n∑
i,j=1

aij
∂

∂xi
y(x)

∂

∂xj
ϕ(x)dx+

∫
Ω

a0(x)y(x)ϕ(x)dx,

then we get

π(t; y, y) =

∫
Ω

n∑
i,j=1

aij
∂

∂xi
y(x)

∂

∂xj
y(x)dx+

∫
Ω

a0(x)y(x)y(x)dx

=
n∑

i,j=1

aij ||
∂

∂xi
y(x)||2L2(Ω) + ||y(x)||2L2(Ω)

≥ λ||y||2H1
0 (Ω), λ > 0.

Lemma 8 Also we assume that ∀y, ϕ ∈ H1
0 (Ω) the function t → π(t; y, ϕ) is

continuously differentiable in ]0, T [ and the bilinear form π(t; y, ϕ) is symmetric,

π(t; y, ϕ) = π(t;ϕ, y) ∀y, ϕ ∈ H1
0 (Ω). (14)

The equations (9)-(11) constitute a fractional Dirichlet problem. First by using
the Lax-Milgram lemma, we prove sufficient conditions for the existence of a unique
solution of the mixed initial-boundary value problem (9)-(11).
Lemma 9 (see [6]-[8]) (Fractional Green’s formula). Let y be the solution of system
(9)-(11). Then for any ϕ ∈ C∞(Q) such that ϕ(x, T ) = 0 in Ω and ϕ = 0 on Σ, we
have ∫ T

0

∫
Ω

(∂βt y(x, t) +Ay(x, t))ϕ(x, t)dxdt = −
∫
Γ

y(x, 0)tI
1−β
T ϕ(x, 0)dΓ

−
∫ T

0

∫
Γ

y(x, t)
∂ϕ(x, t)

∂νA
dΓdt+

∫ T

0

∫
Γ

∂y(x, t)

∂νA
ϕdΓdt

+

∫ T

0

∫
Ω

y(x, t)(Ct D
β
Tϕ(x, t) +A∗ϕ(x, t))dxdt.

(15)
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Definition 8 ?We define the variational fractional equation (we also call it a
fractional operational differential equation). Suppose f ∈ L2(?0, T ;V ′),

{
∂βt (y(t), ϕ) + π(t; y(t), ϕ) = L(ϕ), inD′(]?0, T [), t ∈ (0, T ],∀ϕ ∈ V,
y0 = 0.

(16)

Here ∂βt y(t) is defined in the weak sense (Definition 5).
From Lemma ?(5) we see that the first equation of (3) is equivalent to

∂βt y +A(t)y = f in the sense ofL2?(0, T ;V ′), t ∈ (?0, T ]. (17)

Definition 9 y is a (distributional) weak solution to system (9)-(11); it satisfies
(3) with

y ∈


Hβ(0, T ;V, V ′), 0 ≤ β < 1

2 ,

0H
β(0, T ;V, V ′), 1

2 < β ≤ 1,

{y ∈ H
1
2 (0, T ;V, V ′) :

∫ T
0
t−1|y(t)|2dt <∞}, β = 1

2 .

(18)

and V = H1
0 (Ω).

Lemma 10 If and hold, then the problem admits a unique solution y ∈ W(0, T ).
Proof Uniqueness. Suppose there exist two different solutions y1 and y?2, y3 =
y1 − y2, then

?∂βt y3 +A(t)y3 = 0,

∫ T

0

(∂βt y3(t), y3(t))dt+

∫ T

0

π(t; y3(t), y3(t))dt = 0

Suppose y3(t) ∈ V ⊂ H, we know the following inequality (inequality (3.1)([25]);∫ T

0

(
d

dt
(g1−β ∗ y3(t)), y3(t))Hdt ≥ g1−β(T )

∫ T

0

||y3(t)||2Hdt.

Since y is a weak solution hence by Definition (3) and Lemma (5) we have ?

∂βt y3(t) =
d

dt
(J1−βy3(t)) =

d

dt
(g1−β ∗ y3(t)).

Hence we have∫ T

0

(∂βt y3(t), y3(t))dt ≥ g1−β(T )

∫ T

0

||y3(t)||2Hdt

and from condition (A3) we obtain

g1−β(T )

∫ T

0

||y3(t)||2Hdt+ θ

∫ T

0

||y3(t)||2Hdt ≤ 0,

hence ||y3(t)||V = 0 and the solution to is unique.
Existence. From the coerciveness condition and using the Lax-Milgram lemma,

there exists a unique element y(t) ∈ H1
0 (Ω) such that

(∂βt y(t), ϕ)L2(Q) + π(t; y, ϕ) = L(ϕ) for all ϕ ∈ H1
0 (Ω), (19)

which is equivalent to there exists a unique solution y(t) ∈ H1
0 (Ω) for

(∂βt y(t), ϕ)L2(Q) + (Ay(t), ϕ)L2(Q) = L(ϕ) for all ϕ ∈ H1
0 (Ω),
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i.e. for

(∂βt y(t) +Ay(t), ϕ(x))L2(Q) = L(ϕ),

which can be written as∫
Q

(∂βt y(t) +Ay(t))ϕ(x)dxdt = L(ϕ) for all ϕ ∈ H1
0 (Ω). (20)

This is know as the variational fractional Dirichlet problem, where L(ϕ) is a con-
tinuous linear form on H1

0 (Ω) and takes the form

L(ϕ) =

∫
Q

fϕ dxdt−
∫
Γ

y0 tI
1−β
T ϕ(x, 0)dΓ, f ∈ L2(Q), y0 ∈ L2(Ω). (21)

Then equation (20) is equivalent to∫
Q

(∂βt y(t)+Ay(t))ϕ(x)dxdt =
∫
Q

fϕ dxdt−
∫
Γ

y0 tI
1−β
T ϕ(x, 0)dΓ for all ϕ ∈ H1

0 (Ω),

(22)
that is, the FPDE

∂βt y(t) +Ay(t) = f,

”tested” against ϕ(x).
Applying Green’s formula (Lemma 9) to equation (22), we have

−
∫
Γ

y(x, 0)tI
1−β
T ϕ(x, 0)dΓ−

∫ T

0

∫
∂Ω

y
∂ϕ

∂ν
dΓdt+

∫ T

0

∫
∂Ω

∂y

∂ν
ϕdΓdt

+

∫ T

0

∫
Ω

y(x, t)(Ct D
β
Tϕ(x, t) +A∗ϕ(x, t))dxdt =

∫
Q

fϕ dxdt−
∫
Γ

y0 tI
1−β
T ϕ(x, 0)dΓ∫

Γ

y(x, 0)tI
1−β
T ϕ(x, 0)dΓ =

∫
Γ

y0 tI
1−β
T ϕ(x, 0)dΓ

Then for any ϕ ∈ C∞(Q) such that ϕ(x, T ) = 0 in Ω and ϕ = 0 on Σ, we deduce
(10) and (11).

4. Fractional optimal control problem of variational formulation

For a control u ∈ L2(Q) the state y(u) of the system is given by

∂βt y(u) +Ay(u) = u, (x, t) ∈ Q (23)

y(u)|Σ = 0, (24)

y(x, 0;u) = y0(x), x ∈ Ω. (25)

The observation equation is given by

z(u) = y(u), (26)

The cost function J(v) is given by

J(v) =

∫
Q

(y(v)− zd)
2dxdt+ (Nv, v)L2(Q)

where zd is a given element in L2(Q) andN ∈ L(L2(Q), L2(Q)) is hermitian positive
definite operator:

(Nu, u) ≥ c||u||2L2(Q), c > 0. (27)
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Control Constraints: We define Uad( set of admissible controls) as closed, convex
subset of U = L2(Q). Control Problem: We want to minimize J over Uad i.e.
find u such that

J(u) = inf
v∈Uad

J(v). (28)

Under the given considerations we have the following theorem:
Theorem 1 The problem (28) admits a unique solution given by (23)-(25) and∫

Q

(p(u) +Nu)(v − u) dxdt ≥ 0, (29)

where p(u) is the adjoint state.
Proof Since the control u ∈ Uad is optimal if and only if

J ′(u)(v − u) ≥ 0 for all v ∈ Uad

The above condition, when explicitly calculated for this case, gives

(y(u)− zd, y(v)− y(u))L2(Q) + (Nu, v − u)L2(Q) ≥ 0

i.e. ∫
Q

(y(u)− zd)(y(v)− y(u))dxdt+ (Nu, v − u)L2(Q) ≥ 0. (30)

For the control u ∈ L2(Q) the adjoint state p(u) ∈ L2(Q) is defined by

C
t D

β
T p(u) +A∗p(u) = y(u)− zd, inQ, (31)

p(u) = 0, onΣ, (32)

p(x, T ;u) = 0, inΩ, (33)

where A∗ is the adjoint operator for the operator A, which is given by

A∗p = −
n∑

i,j=1

∂

∂xj

(
aij(x)

∂p

∂xi

)
+a0(x)p.

Now, multiplying the equation (31) by (y(v) − y(u)) and applying Green’s for-
mula,

∫ T

0

∫
Ω

y(x, t)(Ct D
β
Tϕ(x, t) +A∗ϕ(x, t))dxdt =

∫
Γ

y(x, 0)tI
1−β
T ϕ(x, 0)dΓ

+

∫ T

0

∫
Γ

y(x, t)
∂ϕ(x, t)

∂νA
dΓdt

−
∫ T

0

∫
Γ

∂y(x, t)

∂νA
ϕdΓdt

+

∫ T

0

∫
Ω

(C0 D
β
t y(x, t) +Ay(x, t))ϕ(x, t)dxdt,

(34)

we obtain
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∫
Q

(y(u)− zd)(y(v)− y(u))dxdt =

∫
Q

(Ct D
β
T p(u) +A∗p(u))(y(v)− y(u)) dxdt

=

∫
Γ

(y(v;x, 0)− y(u;x, 0))tI
1−β
T p(x, 0)dΓ

−
∫
Σ

p(u)(
∂y(v)

∂νA
− ∂y(u)

∂νA
) dΣ

+

∫
Σ

∂p(u)

∂νA
(y(v)− y(u)) dΣ

+

∫
Q

p(u)(C0 D
β
t +A)(y(v)− y(u)) dxdt.

Since from (23), (24) we have

(∂βt +A)(y(v)− y(u)) = v − u, y(u)|Σ = 0, p(u)|Σ = 0.

Then we obtain∫
Q

(y(u)− zd)(y(v)− y(u))dxdt =

∫
Q

p(u)(v − u)dxdt,

and hence (30) is equivalent to∫
Q

p(u)(v − u) dxdt+ (Nu, v − u)L2(Q) ≥ 0

i.e. ∫
Q

(p(u) +Nu)(v − u) dxdt ≥ 0

which completes the proof.
Example 1 In the case of no constraints on the control (Uad = U). Then (29)
reduces to

p+Nu = 0 inQ

The optimal control is obtained by the simultaneous solution of the following
system of fractional partial differential equations:

∂βt y +Ay = f −N−1p, C
t D

β
T p+A∗p = y − zd inQ,

y = 0, p(u) = 0 onΣ,

y(x, 0) = y0(x), p(x, T ) = 0 x ∈ Ω,

further
u = −N−1p inQ.

Example 2 We consider the fractional diffusion equation with weak Caputo frac-
tional derivatives:

∂βt y(t)−∆y(t) = v, t ∈ [0, T ] (35)

y(0) = y0, x ∈ Ω, (36)

y(x, t) = 0, x ∈ Γ, t ∈ (0, T ), (37)

where y0 ∈ H2(Ω)∩H1
0 (Ω),∆ is the Laplace operator and the control v belongs

to L2(Q). We can minimize

J(v) = ||y(v)− zd||2L2(Q) +N ||v||2L2(Q), zd ∈ L2(Q), N > 0 (38)
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subject to system (35)-(37) and the optimal control v will be characterized by
system (35)-(37) with the adjoint system

C
t D

β
T p(t)−∆p(t) = y − zd, t ∈ [0, T ] (39)

p(x, t) = 0, x ∈ Ω, t ∈ (0, T ) (40)

p(x, T ) = 0, x ∈ Γ, (41)

and with the optimality condition

u = −N−1p inQ. (42)

Example 3 We can also consider the fractional diffusion equation with weak
Riemann-Liouville fractional derivatives:

∂βt y(t)−∆y(t) = v, t ∈ [0, T ] (43)

0I
1−β(t)
T y(0+) = y0, x ∈ Ω, (44)

y(x, t) = 0, x ∈ Γ, t ∈ (0, T ), (45)

where 0I
1−β(t)
T y(0+) = limt→0+ 0I

1−β(t)
T y(t), the control v belongs to L2(Q). We

can minimize (3.16) subject to system (43)-(45) and the optimal control v will be
characterized by system (43)-(45) with the adjoint system (39)-(41) and with the
optimality condition (42).

5. Fractional Neumann control problem

Since H1
0 (Ω) ⊂ H1(Ω) we can show that the bilinear form (12) is coercive in

H1(Ω) that is

π(y, y) ≥ c||y||2H1(Ω), c > 0 for all y ∈ H1(Ω). (46)

From the above coerciveness condition (46) and using the Lax-Milgram lemma
we have the following lemma which define the fractional Neumann problem for the
operator A with A ∈ L(H1(Ω), H−1(Ω)) and enables us to obtain the state of our
control problem.
Lemma 11 If (46) is satisfied then there exists a unique element y ∈ H1(Ω)
satisfying the fractional Neumann problem with β is a constant that is non-integer.

∂βt y +Ay = f inQ, (47)

∂y

∂νA
= h onΣ, (48)

y(x, 0) = y0(x), x ∈ Γ, (49)

Proof From the coerciveness condition (46) and using the Lax-Milgram lemma,
there exists a unique element y ∈ H1(Ω) such that∫

Q

y(x, t)(Ct D
β
Tψ(x, t) +A∗ψ(x, t))dxdt =M(ψ) for all ψ ∈ H1(Ω). (50)
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This know as the fractional Neumann problem, where M(ψ) is a continuous linear
form on H1(Ω) and takes the form

M(ψ) =

∫
Q

fψ dxdt+

∫
Γ

y0(x) tI
1−β
T ψ(x, 0)dΓ−

∫
Σ

h
∂ψ

∂νA∗
dΣ, (51)

f ∈ L2(Q), y0 ∈ L2(Ω), h ∈ H1(Σ).

The equation (50) is equivalent to

∂βt y(x, t) +Ay(x, t) = f onQ. (52)

Let us multiply both sides in (52) by ψ(x, t) such that ∂ψ(x,t)
∂νA

= 0 on Γ, and
applying Green’s formula, we have∫ T

0

∫
Ω

(∂βt y(x, t) +Ay(x, t))ψ(x, t)dxdt = −
∫
Γ

y(x, 0)tI
1−β
T ψ(x, 0)dΓ

+

∫ T

0

∫
Γ

∂y(x, t)

∂νA
ψdΓdt

+

∫ T

0

∫
Ω

y(x, t)(Ct D
β
Tψ(x, t) +A∗ψ(x, t))dxdt

=

∫
Q

fψ(x, t)dxdt,

(53)

whence comparing with (50), (51)

∫
Γ

y(x, 0)tI
1−β
T ψ(x, 0)dΓ−

∫ T

0

∫
Γ

∂y(x, t)

∂νA
ψdΓdt =

∫
Γ

y0(x)tI
1−β
T ψ(x, 0)dΓ−

∫ T

0

∫
∂Ω

hψdΓdt.

(54)

From this we deduce (48) and (49).

6. Fractional boundary control problem

We consider the space U = L2(Σ) (the space of controls), for every control u ∈ U ,
the state of the system y(u) ∈ H1(Ω) is given by the solution of

∂βt y(u) +Ay(u) = f inQ, (55)

∂y(u)

∂νA
= u onΣ, (56)

y(x, 0;u) = y0(x), x ∈ Ω. (57)

For the observation, we consider the following two cases:

(i)

z(u) = y(u) (58)

(ii) observation of final state

z(u) = y(x, T ;u) (59)

Case (i)



114 G. M. BAHAA AND QING TANG JFCA-2018/9(1)

The cost function is given by

J(v) =

∫
Q

(y(v)− zd)
2 dxdt+ (Nv, v)L2(Σ), zd ∈ L2(Q), (60)

where N ∈ L(L2(Σ), L2(Σ)), N is hermitian positive definite

(Nu, u)L2(Σ) ≥ c||u||2L2(Σ), c > 0. (61)

Control Constraints: We define Uad( set of admissible controls) as closed, convex
subset of U = L2(Σ). Control Problem: We wish to find

inf
v∈Uad

J(v). (62)

Under the given considerations we have the following theorem.
Theorem 2 Assume that (61) holds and the cost function being given by (60).
The optimal control u is characterized by (55), (56), and (57) together with

C
t D

β
T p(u) +A∗p(u) = y(u)− zd inQ, (63)

∂p(u)

∂νA∗
= 0 onΣ, (64)

p(x, T ;u) = 0, x ∈ Ω, (65)

and the optimality condition is∫
Σ

(p(u) +Nu)(v − u)dΣ ≥ 0 ∀ v ∈ Uad (66)

where p(u) is the adjoint state.
Proof Since the control u ∈ Uad is optimal if and only if

J ′(u)(v − u) ≥ 0 ∀v ∈ Uad (67)

that is (
y(u)− zd, y(v)− y(u)

)
L2(Q)

+ (Nu, v − u)U ≥ 0. (68)

The adjoint state is given by the solution of the adjoint Neumann problem (63),
(64) and (65). Now, multiplying the equation in (63) by y(v)− y(u) and applying
Green’s formula, with taking into account the conditions in (55), (56), we obtain∫

Q

(y(u)− zd)(y(v)− y(u)) dxdt =

∫
Q

(Ct D
β
T p(u) +A∗p(u))(y(v)− y(u)) dxdt

= −
∫
Ω

p(x, 0)tI
1−β
T (y(v;x, 0)− y(u;x, 0))dx

+

∫
Σ

p(u)(
∂

∂νA
y(v)− ∂

∂νA
y(u)) dΣ

−
∫
Σ

∂

∂νA∗
p(u)(y(v)− y(u)) dΣ

+

∫
Q

p(u)((∂βt +A)(y(v)− y(u)) dxdt

=

∫
Σ

p(u)(v − u) dΣ.

(69)
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Hence we substitute from (69) in (68), to get∫
Σ

p(u)(v − u) dΣ+ (Nu, v − u)L2(Σ) ≥ 0

i.e. ∫
Σ

(p(u) +Nu)(v − u)dΣ ≥ 0 ∀ v ∈ Uad

which completes the proof.
Example 4

In the case of no constraints on the control (Uad = U). Then (66) reduces to

p+Nu = 0 onΣ.

The optimal control is obtained by the simultaneous solution of the following
system of fractional partial differential equations:

∂βt y +Ay = f, C
t D

β
T p+A∗p = y − zd inQ,

∂y

∂νA
|Σ +N−1p|Σ = 0,

∂p

∂νA∗
= 0 onΣ,

y(x, 0) = y0(x), p(x, T ) = 0 x ∈ Ω,

further
u = −N−1(P |Σ).

Example 5 If we take

Uad =
{
u|u ∈ L2(Σ), u ≥ 0 almost everywhere on Σ

}
.

The optimal control is obtained by the solution of the fractional problem

∂βt y +Ay = f, C
t D

β
T p+A∗p = y − zd inQ,

∂y

∂νA
≥ 0,

∂p

∂ν∗A
= 0 onΣ,

p+N
∂y

∂νA
≥ 0,

∂y

∂νA
[p+N

∂y

∂νA
] = 0 onΣ,

y(x, 0) = y0(x), p(x, T ) = 0 x ∈ Ω,

hence

u =
∂y

∂νA
|Σ.

Case (ii) observation of final state

z(u) = y(x, T ;u).

The cost function is given by

J(v) =

∫
Ω

(y(x, T ; v)− zd)
2 dx+ (Nv, v)L2(Σ), zd ∈ L2(Ω).

The adjoint state is defined by

C
t D

β
T p(u) +A∗p(u) = 0 inQ,

∂p(u)

∂νA∗
= 0 onΣ,
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p(x, T ;u) = y(x, T ;u)− zd(x), x ∈ Ω,

and the optimality condition is∫
Σ

(p+Nu)(v − u)dΣ ≥ 0 ∀ v ∈ Uad, (70)

where p(u) is the adjoint state.
Example 6 In the case of no constraints on the control (Uad = U). Then (70)
reduces to

p+Nu = 0 onΣ.

The optimal control is obtained by the simultaneous solution of the following
system of variable order fractional differential systems

∂βt y +Ay = f, C
t D

β
T p+A∗p = 0 inQ,

∂y

∂νA
|Σ +N−1p|Σ = 0,

∂p

∂ν∗A
= 0 onΣ,

y(x, 0) = y0(x), p(x, T ) = y(x, T ;u)− zd(x) x ∈ Ω,

further

u = −N−1(P |Σ).

Example 7 If we take

Uad =
{
u|u ∈ L2(Σ), u ≥ 0 almost everywhere on Σ

}
.

Then (70) is equivalent to

u ≥ 0, p(u) +Nu ≥ 0, u(p(u) +Nu) = 0 on Σ.

Example 8 We consider the Neumann fractional diffusion equation with weak
Caputo fractional derivatives:

∂βt y(u)−∆y(u) = f, t ∈ [0, T ] (71)

∂y

∂ν
y(u) = u, x ∈ Ω, (72)

y(x, t;u) = 0, x ∈ Γ, t ∈ (0, T ), (73)

We can minimize

J(v) = ||y(v)− zd||2L2(Q) +N ||v||2L2(Q), zd ∈ L2(Q), N > 0 (74)

subject to system (71)-(73) and the optimal control v will be characterized by
system (71)-(73) with the adjoint system

C
t D

β
T p(t)−∆p(t) = y − zd, t ∈ [0, T ] (75)

∂y

∂ν
p(x, t) = 0, x ∈ Ω, t ∈ (0, T ) (76)

p(x, T ) = 0, x ∈ Γ, (77)

and with the optimality condition

u = −N−1p inQ. (78)
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Example 9 We can also consider the Neumann fractional diffusion equation with
weak Riemann-Liouville fractional derivatives:

∂βt y(t)−∆y(t) = v, t ∈ [0, T ] (79)

0I
1−β(t)
T y(0+) = y0, x ∈ Ω, (80)

∂y

∂ν
y(x, t) = 0, x ∈ Γ, t ∈ (0, T ), (81)

We can minimize the cost function (74) subject to system (79)-(81) and the
optimal control v will be characterized by system (79)-(81) with the adjoint system
(75)-(77) and with the optimality condition (78).

7. Controllability of fractional problem

This section is devoted to study the controllability of the fractional differential
system (23),(24), and (25). We begin by the following definition.
Definition 10 [[19]] The system whose state is defined by (23),(24), and (25) is
said to be controllable if as u is varied without any constraints, the observation
Cy(u) generates a dense (affine) subspace of the space of observations.

Let us consider the the case of section 4. Hence for a control u ∈ L2(Q) the state
of the system y(u) is given by

∂βt y(u) +Ay(u) = u, (x, t) ∈ Q

y(u)|Σ = 0,

y(x, 0;u) = y0(x), x ∈ Ω.

The observation y(y) is in L2(Q) and given by

z(u) = y(u).

As u ranges over L2(Q), y(u) generates a dense (affine) subspace of L2(Q); hence
the system is controllable.

To see this, let us first remark that by translation we may always reduce the
problem to the case where y0(x) = 0.

Let ψ ∈ L2(Q) be the orthogonal to the subspace generated by y(u);∫
Q

y(u)ψdxdt = 0 ∀u.

We consider ξ as the solution of

C
t D

β
T ξ +A∗ξ = ψ, (x, t) ∈ Q

ξ|Σ = 0,

ξ(x, T ) = 0, x ∈ Ω.
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Then ∫
Q

ψy(u)dxdt =

∫
Q

(Ct D
β
T ξ +A∗ξ)y(u)dxdt

= −
∫
Ω

ξ(x, 0)tI
1−β
T y(u;x, 0)dx+

∫
Σ

ξ
∂y(u)

∂νA
dΣ

−
∫
Σ

∂ξ

∂νA
y(u) dΣ+

∫
Q

ξ(∂βt +A)y(u) dxdt

=

∫
Q

ξudxdt = 0 ∀u;

hence ξ = 0 and hence ψ = 0.
Remark 1 We can also study by a similar manner the controllability of the system
whose state is given by (55),(56), and (57).
Remark 2 If we take β = 1 in the previous sections we obtain the classical results
in the optimal control with integer derivatives.

8. Conclusions

In this work we considered fractional diffusion equation with Dirichlet and Neu-
mann boundary conditions with distributed and boundary control using the weak
formulation. The fractional derivatives were defined in the weak Caputo sense. The
analytical results were given in terms of Euler-Lagrange equations for the fractional
optimal control problems. The formulation presented and the resulting equations
are very similar to those for classical optimal control problems. The optimization
problem presented in this paper constitutes a generalization of the optimal control
problems of parabolic systems with Dirichlet and Neumann boundary conditions
considered in [[19]] to fractional optimal control problems. Also the main result of
the paper contains necessary and sufficient conditions of optimality for non-integer
order fractional systems that give characterization of optimal control (Theorems 1
and 2).
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