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FABER POLYNOMIAL COEFFICIENT BOUNDS FOR ANALYTIC
BI-CLOSE-TO-CONVEX FUNCTIONS DEFINED BY
FRACTIONAL CALCULUS

F. MUGE SAKAR, H. OZLEM GUNEY

ABSTRACT. In this study, we obtain coefficient expansions for analytic bi-close-
to convex functions defined by fractional calculus and determine coefficients for
such functions using the Faber Polynomials. Among other results, the general
coefficient bound |an,| and the first two Taylor-Maclaurin coefficients |a2| and
|as| are found in our investigation. Furthermore, we show the coefficient bound
for \a% — ag|. We also show that our class is generalization class of them for
some special cases.

1. INTRODUCTION

We know that a function is univalent if it never takes the same value twice. Also
we know that a function is bi-univalent if both it and its inverse are univalent.

Let A denote the class of functions f which are analytic in the open unit disk
U={z: z€Cand|z| <1}. Let S denote the class of functions in A which are
univalent in U and normalized by the conditions f(0) = f/(0) — 1 = 0 and having
the form:

f(2) :z—i—Zanz". (1)

For a; 0 < a < 1, we let S*(«) denote the class of function g € S that are
starlike of order v in U, namely, Re { Zg/(z)} >« in U and C(a) indicate the class

9(z)
of functions f € S that are close-to-convex of order « in U, namely, if a function

g is in S*(0) = S* so that Re {%} > « in U (see [11] and [7]). We note that
S*(a) € C(a) C S and that |a,| < n for f € S by Bieberbach Conjecture (see [4]

and [7]).

The Koebe 1/4 Theorem [7] asserts that the image of U under each univalent
function f € A contains the disk of radius 1/4. According to this, if F = f~! is
the inverse of a function f € S, then F has a Maclaurin series expansion in some
disk about the origin. So every function f € S has an inverse f~! which satisfies
FHf(2)) =z for z € Uand f(f ! (w)) =w for |w| < 1/4.
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A function f € A is said to be bi-univalent in U if both f and F = f~!
univalent in U. Similarly, a function f € A is said to be bi-close-to-convex of order
a if both f and F = f~! are bi-close-to-convex of order a in U. Let ¥ define the
class of all bi-univalent functions in U represented by the Taylor-Maclaurin series

expansion (1). For a short history and examples of functions in the class X, see [16]
(see also [6],[18],[12],[14]).

Faber polynomials, which is used by us in this paper, play a considerable act in
geometric function theory which was introduced by Faber [§].

Firstly, Lewin [12] considered the class of bi-univalent functions, obtaining the
estimate |az| < 1.51. Subsequently, Brannan and Clunie [5] developed Lewin’s re-
sult to |az| < V2 for f € ¥. Accordingly, Netanyahu [14] showed that |as| < 3
Brannan and Taha [6] defined certain subclasses of bi-univalent function class X
similar to the usual subclasses. In fact, the aforementioned work of Srivastava et
al. [16] essentially revived the investigation of various subclasses of bi-univalent
function class ¥ in recent years. Lately, many mathematicians found bounds for
several subclasses of bi-univalent functions (see [16],[10],[20]). Only few papers de-
termine general coefficient bounds |a,,| for the analytic bi-close-to-convex functions
in the associated documents. Especially, in [9] Hamidi and Jahangiri introduced
the class of bi-close-to-convex functions and determined estimates for the general
coefficient |a,| of bi-close-to-convex function under certain gap series condition by
using Faber polynomials.

A detailed operation is given in the books, which have the applications of the
fractional calculus, [15] by Oldham and Spanier, and [13] by Miller and Ross . For
the comprehensive concept of the fractional calculus, one can be seen to [17] .

AM-fractional operator was defined by Aydogan et al. in [3] as follows,

If f(z) defined by as (1) then D} f(z) = DX (z + a2z + ... + a,2" +...)

_ Ln+1) ,
D f(2) =T(2 — \)2* D) f( fz+z +1—>\) 2"

From the definition of D* f(z) some properties can be written as follows,

i.  D'f(2) = Df(2) = limyx_ 1D f(2) = zf'(2) ,

ii.  DMND’f(z)) = D°(D*f(2))

_ NI(2-0)(n+1)* ,
Z+Za" +1—)\)F(n+1—5) o

o0
re-— 1
ii.  D(D° —Z—G-Zn Hi‘; L

= Z(D‘Sf(Z)) = F(2 = N)AAD? + 2D f(2));
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o DDME) _ Fe)

R 22 5 T
= Zf”(z) or =
=1+2%3 for A=1

Now we start by giving the function class Kx () as follows:

Definition 1.1 Let f(z) given by (1) be an element of S. Then f(z) is said to
be A-fractional close-to-convex function in U if a function g(z) is in S* such that

(22
9(2)
The class of these functions is represented by Kx(X).

) > 0; for all zeU. (2)

It is trivial that Kx(0) = K.

Let consider the Faber polynomial expansion of functions f € A of the form (1).
So, the coefficients of its inverse map F = f~! may be stated as, [1],

oo 1 o0
F(w) = fHw) =w+ Z gK;fl(ag, a3y .oy )W" = w4 Z Apw™,  (3)
n=2 n=2

and
G(w) = g H(w) =w + Z K, " (a2,as3,...,a,)w" = w+ Z Byw™,  (4)
where
—-n (_n)' n—1 (—TL)' n—
K. = (—2n+ D)l(n - 1)!02 + 2(—n+1))l(n —3)I"2 3as
(_n)' n—
AT Ty LA
(771)' n—>5

ay~’las + (—n + 2)a3]

T eCnr2)n 5

(—n)!

T sl o)

ab " %ag + (—2n + 5)azaq] + Z a;_jVj, (5)
327
where V; is a homogeneous polynomial in the variables ag, as, ..., a, (see [1]and [2]).
Especially, the first few terms of K", are given below:
Kl_z = —2@2
K;?=3 (2@% — a3)
and
K3_4 =—4 (5a§ — basasz + a4) .
Generally, for any p € N an expansion of K? is as, [1],
plp—1) p! 3 p!
E e —————— 7 €z 6
> oo Tt T e e (6)
where Z = {0, F1,F2,--- } and E? = EP(ag, as,...) and by [19],

K} = pa, + E721+
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o0
m!(az)"t...(an)H"
E?(al,ag,...an): Z ( 2)' ('n) ) fOT; mgna (7)
e JZARERyy 7
while a3 = 1 and the sum is taken over all non-negative integers pi, pto, ..., tin

satisfying
p1t+pe+ o+ =m

w1+ 2pe + ... +npy =n
(see, for details, [1] and [2]).
It is clearly that E*(aq,as,...,a,) = af.

In this paper, we firstly, obtain general coefficient expansions of |a,| for analytic
bi-close to convex functions defined by fractional calculus using the Faber Polyno-
mials. Also, determine the first coefficients |as|, |ag|, and |a3 —az| for such functions.
For some special cases, also we show that our class is generalization class of them.
The bi-close to convex functions considered in this paper are largest subclass of
bi-univalent functions and generalization of the results of the paper in [9].

2. MAIN RESULTS

Our first theorem giving by Theorem 2.1 shows an upper bound for |a,| of
analytic bi-univalent functions in the class Kx(\).

Theorem 2.1 Let the function f given by (1) be in the class K5 (A) (0 < A <
1,neNyg={0,1,2...}), if ar = 0 for 2 < k <n — 1, then

| (n+2)I'(n+1-X)

" al(2-M(n+1)

Proof. First let f(2) = 2z + ..~ ,a,2" be close-to-convex in U. Therefore,

there exists a function g(z) = z 4+ Y .-, b,2" € S* so that %(7D(D(f)(z))) >
0; for all zeU.

n > 4.

The Faber polynomial expansion for %Zf)(z)) and the inverse map %

is given by:

L 1+2[<”f;2<n:5£”; o)

b (]
. (®)

and for its inverse map, F = f~! we get

e[ - )
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(n=s)I'2—=ANT'(n—s+1)
F'n—s+1-X\)

wn—l

A= B
©)

A
On the other hand, since W > 0 in U, there exists a positive real part
function

n—2
+Y K;'(By, Bs, ..., Beya) (
s=1

p(z) = 1+Z cn2” € A so that,
n=1
D(D*f())

) =p(z)=1+ Z cnz”. (10)

A
Similarly for W > 0 in U, there exists a positive real part function

q(w) = 1—|—Z dow™ € A so that,

n=1

DD F(w)) _ N
W—q(w)—l—k;dnw . (11)

We know that the Carathéodory Lemma [7] gives |¢,| < 2 and |d,| < 2.
Matching the corresponding coefficients of Egs. (8) and (10) (for any n > 2)
yields,

(mcarsn, )

n—2
! (n—s)I'2—-NI'(n—s+1) - -
+; K (b2, b3,y bs541) ( Tl —s+1—) Uns —bps | = Cn_1.

(12)
Similarly, from Egs. (9) and (11), we can find
nl'(2 — NI'(n + 1)An B,
T(n+1-\)
n—2
B P2 - ND(n— s+ 1)
K=Y(Bs, Bs, ..., B, (n—s) Ay o—By o) =d,_
+; s ( 2,350 +1)( F(n—s—|—1—)\) 1
(13)
For the special case n = 2 from Eqgs. (12) and (13) respectively yield,
oT(2 — \)I(3) 9T(2 — NI(3)
——Cay — by = d — 2 — Ba=d
T3 - az — by =c; an NEEDY as 2 =d1
solving for as and taking the absolute values we can obtain |as| < ng%ﬁ‘é)

But under the assumption a;, = 0,2 < k <n—1 Eqs. (12) and (13) respectively
yield,
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nl'(2 = MN'(n+1)
T(n+1- )

nl'(2 - MNI(n+1)
 Tn+1-X)

an—b, = cp_1 and an—B, =d,_1.

Solving either of above equations for a, and taking the moduli values, also
applying the Carathéodory Lemma, we can obtain
n+2)P(n+1-2X)
nL(2—Al(n+1) "
Noticing that |b,| < n and |B,| < n.

When we take A = 0 in our class K () we obtain, for a = 0 the result of Hamidi
and Jahangiri [9] as follows,

la,| <

Corollory 2.2 For 0 < a < 1 let the function f € S be bi-close-to-convex of
order o in U. If a =0 for 2 < k <n —1, then
21—«
lan] < 1+ %
As a special case to Theorem 1 we derive the resulting estimates for the first coef-

ficients ag, ag and |a3 — as| of functions f € Kxn()).
Theorem 2.3 Let the function f € Kx()\) and F = f~! € Kx(\). Then,

o o0(3 — MI(4 — \) o0(3 — A)
la2] < it SR T T @ = @) —2r@ = NTETE =N T2 = VT@) — TG =N

[AT(2 — A)T(3) + 20'(3 — A)JT(4 — A)

9] < BEE = NT(E) —TB - NJBIE - AT@) —TE =)’
and

62 — 0o < o (4 — \)
2= 3r@—Nr@) —Ta—N)

Proof.

For the function g(z) = D*f(z) in the proof of Theorem 1, we have a,, = b,,.

For n = 2 Eqs. (12) and (13) respectively yield,

9T(2 — \I(3)
INGEPY)

—2I(2 — A)L(3)

1| = d,.
TG-n !

as -1 = and as

Taking the absolute values of either of above two equations gives
oT(3 — \)
|az| <
(2 - NI(3)—T(3—\)
For n = 3 Egs. (12) and (13) respectively yield,

3T(2 — MI(4) 2T'(2 — MI'(3)
K- ) b} * { WESY

az — by (*b2) =C2

2
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and
3r(2—-NTI'4) 22 = MI'(3) B
N e e R
when we make some simply arrangement we have
32 - ANI'4) 2I'(2 — MI'(3)
T e [ e )
and

, 30(2 — A)T(4) L [—20(2 — MI(3)
(20t — o) | R 1]t | G

Adding the above two equations and solving for |as| by applying the Carathéodory
Lemma we obtain

+ 1] = dy. (15)

245> = 2 + da| T(3 = NT(4 — )|
2l = |3T0(3 — A)(2 = MT(4) — 2I(2 — NT'(3)I'(4 — M|’

B 90(3 — A)(4 — \)
92l <\ | Sr B =T @ = (@) = 20 (@ = NTEITE =N

Substituting as = ¢; 2F(2_/\1)“§3(g)>\_)r(3_)\) in Egs. (14) gives
SLR-NCE) ] (3 - \) B
3 { TA—) ] TP —AIB) —L(B-N) 2
_ leaf 1202 = N(3) = T3 = N)| + |ea 2T (3 = A) T(4— )
las] < 20(2— NT(3) —T(3 — )| 30(2— NI(4) — (4 — V)]

B [AT(2 — MT(3) + 2I'(3 — A)] T(d — \)
= M2 - ANT3) T3 - N [B0E - NLC@) —T(Ed-— N

Lastly, Subtracting Eqs. (14) from (15), we have |a3 — ag| as follows:

, . 20(4 — \)
a3 — as] < 3T(2— ND(4) —T(4—\)

For A = 0 we have for the first initial coefficients of |az| and |as| (the case a = 0)
of Hamidi and Jahangiri [9].

Corollory 2.4 For 0 < o < 1 let the function f € S*(a) and F = f~! € S*(a).
Then,

and

21-a); 0<a<}
las| <

(1—0a)(3—2a); <a<l.

=
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