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FABER POLYNOMIAL COEFFICIENT BOUNDS FOR ANALYTIC

BI-CLOSE-TO-CONVEX FUNCTIONS DEFINED BY

FRACTIONAL CALCULUS

F. MÜGE SAKAR, H. ÖZLEM GÜNEY

Abstract. In this study, we obtain coefficient expansions for analytic bi-close-
to convex functions defined by fractional calculus and determine coefficients for

such functions using the Faber Polynomials. Among other results, the general
coefficient bound |an| and the first two Taylor-Maclaurin coefficients |a2| and
|a3| are found in our investigation. Furthermore, we show the coefficient bound
for |a22 − a3|. We also show that our class is generalization class of them for

some special cases.

1. Introduction

We know that a function is univalent if it never takes the same value twice. Also
we know that a function is bi-univalent if both it and its inverse are univalent.

Let A denote the class of functions f which are analytic in the open unit disk
U = {z : z ∈ C and |z| < 1}. Let S denote the class of functions in A which are
univalent in U and normalized by the conditions f(0) = f ′(0) − 1 = 0 and having
the form:

f (z) = z +
∞∑

n=2

anz
n. (1)

For α; 0 ≤ α < 1, we let S∗(α) denote the class of function g ∈ S that are

starlike of order α in U, namely, Re
{

zg′(z)
g(z)

}
> α in U and C(α) indicate the class

of functions f ∈ S that are close-to-convex of order α in U, namely, if a function

g is in S∗(0) = S∗ so that Re
{

zf ′(z)
g(z)

}
> α in U (see [11] and [7]). We note that

S∗(α) ⊂ C(α) ⊂ S and that |an| ≤ n for f ∈ S by Bieberbach Conjecture (see [4]
and [7]).

The Koebe 1/4 Theorem [7] asserts that the image of U under each univalent
function f ∈ A contains the disk of radius 1/4. According to this, if F = f−1 is
the inverse of a function f ∈ S, then F has a Maclaurin series expansion in some
disk about the origin. So every function f ∈ S has an inverse f−1 which satisfies
f−1(f(z)) = z for z ∈ U and f(f−1(w)) = w for |w| < 1/4.
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A function f ∈ A is said to be bi-univalent in U if both f and F = f−1 are
univalent in U. Similarly, a function f ∈ A is said to be bi-close-to-convex of order
α if both f and F = f−1 are bi-close-to-convex of order α in U. Let Σ define the
class of all bi-univalent functions in U represented by the Taylor-Maclaurin series
expansion (1). For a short history and examples of functions in the class Σ, see [16]
(see also [6],[18],[12],[14]).

Faber polynomials, which is used by us in this paper, play a considerable act in
geometric function theory which was introduced by Faber [8].

Firstly, Lewin [12] considered the class of bi-univalent functions, obtaining the
estimate |a2| ≤ 1.51. Subsequently, Brannan and Clunie [5] developed Lewin’s re-

sult to |a2| ≤
√
2 for f ∈ Σ. Accordingly, Netanyahu [14] showed that |a2| ≤ 4

3 .
Brannan and Taha [6] defined certain subclasses of bi-univalent function class Σ
similar to the usual subclasses. In fact, the aforementioned work of Srivastava et
al. [16] essentially revived the investigation of various subclasses of bi-univalent
function class Σ in recent years. Lately, many mathematicians found bounds for
several subclasses of bi-univalent functions (see [16],[10],[20]). Only few papers de-
termine general coefficient bounds |an| for the analytic bi-close-to-convex functions
in the associated documents. Especially, in [9] Hamidi and Jahangiri introduced
the class of bi-close-to-convex functions and determined estimates for the general
coefficient |an| of bi-close-to-convex function under certain gap series condition by
using Faber polynomials.

A detailed operation is given in the books, which have the applications of the
fractional calculus, [15] by Oldham and Spanier, and [13] by Miller and Ross . For
the comprehensive concept of the fractional calculus, one can be seen to [17] .

λ-fractional operator was defined by Aydogan et al. in [3] as follows,

If f(z) defined by as (1) then Dλ
z f(z) = Dλ

z (z + a2z
2 + ...+ anz

n + ...)

Dλf(z) = Γ(2− λ)zλDλ
z f(z) = z +

∞∑
n=2

an
Γ(2− λ)Γ(n+ 1)

Γ(n+ 1− λ)
zn.

From the definition of Dλf(z) some properties can be written as follows,

i. D1f(z) = Df(z) = limλ→1D
λf(z) = zf ′(z) ,

ii. Dλ(Dδf(z)) = Dδ(Dλf(z))

= z +

∞∑
n=2

an
Γ(2− λ)Γ(2− δ)(Γ(n+ 1))2

Γ(n+ 1− λ)Γ(n+ 1− δ)
zn,

iii. D(Dδf(z)) = z +
∞∑

n=2

n
Γ(2− λ)Γ(n+ 1)

Γ(n+ 1− λ)
anz

n

= z(Dδf(z))′ = Γ(2− λ)zλ(λDδ
z + zDλ+1

z f(z));
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iv.
D(Dλf(z))

Dλf(z)
= z

f ′(z)

f(z)
for λ = 0.

= 1 + z
f ′′(z)

f ′(z)
for λ = 1.

Now we start by giving the function class KΣ(λ) as follows:

Definition 1.1 Let f(z) given by (1) be an element of S. Then f(z) is said to
be λ-fractional close-to-convex function in U if a function g(z) is in S∗ such that

ℜ
(
D(Dλf(z))

g(z)

)
> 0; for all z ∈ U. (2)

The class of these functions is represented by KΣ(λ).

It is trivial that KΣ(0) = K.

Let consider the Faber polynomial expansion of functions f ∈ A of the form (1).
So, the coefficients of its inverse map F = f−1 may be stated as, [1],

F (w) = f−1(w) = w +

∞∑
n=2

1

n
K−n

n−1(a2, a3, ..., an)w
n = w +

∞∑
n=2

Anw
n, (3)

and

G(w) = g−1(w) = w +

∞∑
n=2

1

n
K−n

n−1(a2, a3, ..., an)w
n = w +

∞∑
n=2

Bnw
n, (4)

where

K−n
n−1 =

(−n)!

(−2n+ 1)!(n− 1)!
an−1
2 +

(−n)!

(2(−n+ 1))!(n− 3)!
an−3
2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4
2 a4

+
(−n)!

(2(−n+ 2))!(n− 5)!
an−5
2 [a5 + (−n+ 2)a23]

+
(−n)!

(−2n+ 5)!(n− 6)!
an−6
2 [a6 + (−2n+ 5)a3a4] +

∑
j≥7

an−j
2 Vj , (5)

where Vj is a homogeneous polynomial in the variables a2, a3, ..., an (see [1]and [2]).
Especially, the first few terms of K−n

n−1 are given below:

K−2
1 = −2a2

K−3
2 = 3

(
2a22 − a3

)
and

K−4
3 = −4

(
5a32 − 5a2a3 + a4

)
.

Generally, for any p ∈ N an expansion of Kp
n is as, [1],

Kp
n = pan +

p(p− 1)

2
E2

n +
p!

(p− 3)!3!
E3

n + · · ·+ p!

(p− n)!n!
En

n , (p ∈ Z) (6)

where Z = {0,∓1,∓2, · · · } and Ep
n = Ep

n(a2, a3, . . .) and by [19],
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Em
n (a1, a2, . . . an) =

∞∑
m=2

m!(a2)
µ1 ...(an)

µn

µ1!...µn!
, for, m ≤ n, (7)

while a1 = 1 and the sum is taken over all non-negative integers µ1, µ2, ..., µn

satisfying  µ1 + µ2 + ...+ µn = m

µ1 + 2µ2 + ...+ nµn = n

(see, for details, [1] and [2]).
It is clearly that En

n(a1, a2, ..., an) = an1 .

In this paper, we firstly, obtain general coefficient expansions of |an| for analytic
bi-close to convex functions defined by fractional calculus using the Faber Polyno-
mials. Also, determine the first coefficients |a2|, |a3|, and |a22−a3| for such functions.
For some special cases, also we show that our class is generalization class of them.
The bi-close to convex functions considered in this paper are largest subclass of
bi-univalent functions and generalization of the results of the paper in [9].

2. Main Results

Our first theorem giving by Theorem 2.1 shows an upper bound for |an| of
analytic bi-univalent functions in the class KΣ(λ).

Theorem 2.1 Let the function f given by (1) be in the class KΣ(λ) (0 ≤ λ <
1, n ∈ N0 = {0, 1, 2...}), if ak = 0 for 2 ≤ k ≤ n− 1, then

|an| ≤
(n+ 2)Γ(n+ 1− λ)

nΓ(2− λ)Γ(n+ 1)
n ≥ 4.

Proof. First let f(z) = z +
∑∞

n=2 anz
n be close-to-convex in U. Therefore,

there exists a function g(z) = z +
∑∞

n=2 bnz
n ∈ S∗ so that ℜ

(
D(Dλf(z))

g(z)

)
>

0; for all z ∈ U.

The Faber polynomial expansion for D(Dλf(z))
g(z) and the inverse map D(DλF (w))

G(w)

is given by:

D(Dλf(z))

g(z)
= 1+

∞∑
n=2

[(
nΓ(2− λ)Γ(n+ 1)

Γ(n+ 1− λ)
an − bn

)

+
n−2∑
s=1

K−1
s (b2, b3, ..., bs+1)

(
(n− s)Γ(2− λ)Γ(n− s+ 1)

Γ(n− s+ 1− λ)
an−s − bn−s

)]
zn−1

(8)
and for its inverse map, F = f−1 we get

D(DλF (w))

G(w)
= 1+

∞∑
n=2

[(
nΓ(2− λ)Γ(n+ 1)

Γ(n+ 1− λ)
An −Bn

)
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+
n−2∑
s=1

K−1
s (B2, B3, ..., Bs+1)

(
(n− s)Γ(2− λ)Γ(n− s+ 1)

Γ(n− s+ 1− λ)
An−s −Bn−s

)]
wn−1.

(9)

On the other hand, since D(Dλf(z))
g(z) > 0 in U, there exists a positive real part

function

p(z) = 1+
∞∑

n=1

cnz
n ∈ A so that,

D(Dλf(z))

g(z)
= p(z) = 1 +

∞∑
n=1

cnz
n. (10)

Similarly for D(DλF (w))
G(w) > 0 in U, there exists a positive real part function

q(w) = 1+

∞∑
n=1

dnw
n ∈ A so that,

D(DλF (w))

G(w)
= q(w) = 1 +

∞∑
n=1

dnw
n. (11)

We know that the Carathéodory Lemma [7] gives |cn| ≤ 2 and |dn| ≤ 2.

Matching the corresponding coefficients of Eqs. (8) and (10) (for any n ≥ 2)
yields,(
nΓ(2− λ)Γ(n+ 1)

Γ(n+ 1− λ)
an − bn

)

+
n−2∑
s=1

K−1
s (b2, b3, ..., bs+1)

(
(n− s)Γ(2− λ)Γ(n− s+ 1)

Γ(n− s+ 1− λ)
an−s − bn−s

)
= cn−1.

(12)
Similarly, from Eqs. (9) and (11), we can find(
nΓ(2− λ)Γ(n+ 1)

Γ(n+ 1− λ)
An −Bn

)

+

n−2∑
s=1

K−1
s (B2, B3, ..., Bs+1)

(
(n− s)Γ(2− λ)Γ(n− s+ 1)

Γ(n− s+ 1− λ)
An−s −Bn−s

)
= dn−1.

(13)
For the special case n = 2 from Eqs. (12) and (13) respectively yield,

2Γ(2− λ)Γ(3)

Γ(3− λ)
a2 − b2 = c1 and − 2Γ(2− λ)Γ(3)

Γ(3− λ)
a2 −B2 = d1

solving for a2 and taking the absolute values we can obtain |a2| ≤ 2Γ(3−λ)
Γ(2−λ)Γ(3) .

But under the assumption ak = 0, 2 ≤ k ≤ n−1 Eqs. (12) and (13) respectively
yield,
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nΓ(2− λ)Γ(n+ 1)

Γ(n+ 1− λ)
an−bn = cn−1 and −nΓ(2− λ)Γ(n+ 1)

Γ(n+ 1− λ)
an−Bn = dn−1.

Solving either of above equations for an and taking the moduli values, also
applying the Carathéodory Lemma, we can obtain

|an| ≤
(n+ 2)Γ(n+ 1− λ)

nΓ(2− λ)Γ(n+ 1)
.

Noticing that |bn| ≤ n and |Bn| ≤ n.
When we take λ = 0 in our class KΣ(λ) we obtain, for α = 0 the result of Hamidi

and Jahangiri [9] as follows,

Corollory 2.2 For 0 ≤ α < 1 let the function f ∈ S be bi-close-to-convex of
order α in U. If ak = 0 for 2 ≤ k ≤ n− 1, then

|an| ≤ 1 +
2(1− α)

n
.

As a special case to Theorem 1 we derive the resulting estimates for the first coef-
ficients a2, a3 and |a22 − a3| of functions f ∈ KΣ(λ).

Theorem 2.3 Let the function f ∈ KΣ(λ) and F = f−1 ∈ KΣ(λ). Then,

|a2| ≤ min

{√
2Γ(3− λ)Γ(4− λ)

3Γ(3− λ)Γ(2− λ)Γ(4)− 2Γ(2− λ)Γ(3)Γ(4− λ)
,

2Γ(3− λ)

2Γ(2− λ)Γ(3)− Γ(3− λ)

}
,

|a3| ≤
[4Γ(2− λ)Γ(3) + 2Γ(3− λ)]Γ(4− λ)

[2Γ(2− λ)Γ(3)− Γ(3− λ)][3Γ(2− λ)Γ(4)− Γ(4− λ)]
,

and

∣∣a22 − a3
∣∣ ≤ 2Γ(4− λ)

3Γ(2− λ)Γ(4)− Γ(4− λ)
.

Proof.
For the function g(z) = Dλf(z) in the proof of Theorem 1, we have an = bn.

For n = 2 Eqs. (12) and (13) respectively yield,

a2

[
2Γ(2− λ)Γ(3)

Γ(3− λ)
− 1

]
= c1 and a2

[
−2Γ(2− λ)Γ(3)

Γ(3− λ)
+ 1

]
= d1.

Taking the absolute values of either of above two equations gives

|a2| ≤
2Γ(3− λ)

2Γ(2− λ)Γ(3)− Γ(3− λ)
.

For n = 3 Eqs. (12) and (13) respectively yield,[
3Γ(2− λ)Γ(4)

Γ(4− λ)
a3 − b3

]
+

[
2Γ(2− λ)Γ(3)

Γ(3− λ)
a2 − b2

]
(−b2) = c2
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and [
3Γ(2− λ)Γ(4)

Γ(4− λ)
A3 −B3

]
+

[
2Γ(2− λ)Γ(3)

Γ(3− λ)
A2 −B2

]
(−B2) = d2

when we make some simply arrangement we have

a3

[
3Γ(2− λ)Γ(4)

Γ(4− λ)
− 1

]
− a22

[
2Γ(2− λ)Γ(3)

Γ(3− λ)
− 1

]
= c2 (14)

and (
2a22 − a3

) [3Γ(2− λ)Γ(4)

Γ(4− λ)
− 1

]
+ a22

[
−2Γ(2− λ)Γ(3)

Γ(3− λ)
+ 1

]
= d2. (15)

Adding the above two equations and solving for |a2| by applying the Carathéodory
Lemma we obtain

|2a2|2 =
|c2 + d2| |Γ(3− λ)Γ(4− λ)|

|3Γ(3− λ)Γ(2− λ)Γ(4)− 2Γ(2− λ)Γ(3)Γ(4− λ)|
,

|a2| ≤

√
2Γ(3− λ)Γ(4− λ)

3Γ(3− λ)Γ(2− λ)Γ(4)− 2Γ(2− λ)Γ(3)Γ(4− λ)

Substituting a2 = c1
Γ(3−λ)

2Γ(2−λ)Γ(3)−Γ(3−λ) in Eqs. (14) gives

a3

[
3Γ(2− λ)Γ(4)

Γ(4− λ)
− 1

]
−c21

Γ(3− λ)

2Γ(2− λ)Γ(3)− Γ(3− λ)
= c2

|a3| ≤
|c2| |2Γ(2− λ)Γ(3)− Γ(3− λ)|+ |c1|2Γ(3− λ)

|2Γ(2− λ)Γ(3)− Γ(3− λ)|
Γ(4− λ)

|3Γ(2− λ)Γ(4)− Γ(4− λ)|

≤ [4Γ(2− λ)Γ(3) + 2Γ(3− λ)] Γ(4− λ)

[2Γ(2− λ)Γ(3)− Γ(3− λ)] [3Γ(2− λ)Γ(4)− Γ(4− λ)]
.

Lastly, Subtracting Eqs. (14) from (15), we have
∣∣a22 − a3

∣∣ as follows:∣∣a22 − a3
∣∣ ≤ 2Γ(4− λ)

3Γ(2− λ)Γ(4)− Γ(4− λ)
.

For λ = 0 we have for the first initial coefficients of |a2| and |a3| (the case α = 0)
of Hamidi and Jahangiri [9].

Corollory 2.4 For 0 ≤ α < 1 let the function f ∈ S∗(α) and F = f−1 ∈ S∗(α).
Then,

|a2| ≤


√
2(1− α); 0 ≤ α < 1

2

2(1− α); 1
2 ≤ α < 1.

and

|a3| ≤

 2(1− α); 0 ≤ α < 1
2

(1− α)(3− 2α); 1
2 ≤ α < 1.
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