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A STUDY OF MELLIN TRANSFORM OF FRACTIONAL
OPERATORS IN BICOMPLEX SPACE AND APPLICATIONS

RITU AGARWAL, MAHESH PURI GOSWAMI, RAVI P. AGARWAL

ABSTRACT. In this paper, we obtain the bicomplex Mellin transform of Riemann-
Liouville fractional integral and Caputo fractional derivative of order (> 0)
of certain functions and some of their properties. Application of bicomplex
Mellin transform has been illustrated to find the solution of differential equa-
tion involving fractional derivatives of bicomplex-valued functions. Bicom-
plex Mellin transform of fractional operators provide large class of frequency
domain, which are useful in solving the fractional differential equations of
bicomplex-valued functions. Also, the real world problems modelled via frac-
tional order derivatives present better results when matching their mathemat-
ical representation with experimental data.

1. INTRODUCTION
In 1892, Segre Corrado [6] defined bicomplex numbers as
Cy ={£: & =m0 +i121 + 272 + jx3| T, T1, 72, 73 € Co},

or
CQ = {§ : f =21 +i222‘ 21,29 € Cl}

where i; and iy are imaginary units such that i? = i3 = —1, dyip = igi; = J,

j? =1and Cy, C; and Cy are sets of real numbers, complex numbers and bicom-

plex numbers, respectively. The set of bicomplex numbers is a commutative ring

with unit and zero divisors. Hence, contrary to quaternions, bicomplex numbers

are commutative with some non-invertible elements situated on the null cone.

In 1928 and 1932, Futagawa Michiji originated the concept of holomorphic func-
tions of a bicomplex variable in a series of papers [15], [16]. In 1934, Dragoni [11]
gave some basic results in the theory of bicomplex holomorphic functions while
Price G.B. [9] and Rénn S. [29] have developed the bicomplex algebra and function
theory.

In recent developments, authors have done efforts to extend Polygamma function
[25], inverse Laplace transform, it’s convolution theorem [21], Stieltjes transform
[19], Tauberian Theorem of Laplace-Stieltjes transform [23] and Bochner Theorem
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of Fourier-Stieltjes transform [20] in the bicomplex variable from their complex
counterpart. In their procedure, the idempotent representation of bicomplex num-
bers plays a vital role.

Hjalmar Mellin (1854-1933, see, e.g. [2]) gave his name to the Mellin transform
that associates to a complex-valued function f(t) defined over the interval (0, c0),
the function of complex variable s, as

o0
fo)= [ s
0

The change of variables ¢t = e™* shows that the Mellin transform is closely related
to the Laplace transform. General properties of the Mellin transform are usually
treated in detail in books on integral transforms, like those of Poularikas A.D. [2]
and Davies B. [5]. In 1959, Francis R.G. [7] discussed the application of complex
Mellin transform to networks with time-varying parameters. In 1995, Flajolet P.
et al. [18] used Mellin transform for the asymptotic analysis of harmonic sums.
In 2016, Kilicamn and Omran [3] established some results on Mellin transform of
fractional integral and differential operators and discussed their properties.
Idempotent Representation: Every bicomplex number can be uniquely expressed as
a complex combination of e; and es, viz.

§ = (21 +i222) = (21 —i122)e1 + (21 +i122)ea,
(where e; = %,eg = %;el +ey=1and ejeg = ege; =0).

This representation of a bicomplex number is known as Idempotent Represen-
tation of £&. The coeflicients (21 — i122) and (21 + i122) are called the Idempotent
Components of the bicomplex number £ = 21 +i29 and {e1, e} is called Idempotent
Basis.

Cartesian Set: The Auxiliary complex spaces A; and As are defined as follows:

Ay ={wy =21 —i120, V21,20 € C1}, Ay = {wy = 21 + 1122, V 21,22 € C1 }.
A cartesian set X7 x. X5 determined by X; C A; and Xo C Ay and is defined as:
X1 Xe Xo = {Zl +i929 € Oy : 21 + 19290 = wie1 + Wwoeo, wy € X1, ws € XQ}.

With the help of idempotent representation, we define projection mappings P; :
02 — Al - 017 P CQ — A2 - Cl as follows:

Py (z1+1i222) = Pi[(21 —t122)e1+ (21 +i122)en]) = (21 —i122) € A1, V 2141220 € Co,

Py(z1+i222) = Paf(21 —i122)e1+ (21 +i122)ea] = (21 +14122) € Aa, V 21 +1i222 € Co.

In the following theorem, Price G.B. discuss the convergence of bicomplex func-
tion with respect to it’s idempotent complex component functions. This theorem
is useful in proving our results.

Theorem 1.1 (Price G.B. [9]). F(§) = Fe,(&1)er + Fey(§2)ea is convergent in
domain D C Cy iff Fe,(&1) and F., (&) under functions Py : D — Dy C C; and
Py : D — Dy C Cy are convergent in domains Dy and Dy, respectively.

1.1. Bicomplex Mellin Transform. Agarwal R. et al. [22] defined Mellin trans-
form in bicomplex variable and discussed its properties. Also, discussed its appli-
cation in solving the transmission line equation using bicomplex form.
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Definition 1.2. [22] Let f(t) be a bicomplez-valued continuous function on the
interval (0,00) with f(t) = O (t=%) ast — 07 and f(t) = O (t=7) ast — oo, where
a < B. Then bicomplex Mellin transform of f(t) defined as

M(f(1): €] = /O T (e = o), e

where f(€) is analytic and convergent in Q0 defined in
Q=A{¢ € Co:a+[Im;(§)] < Re(§) < B — [Im;(&)]} (1.1)
where Im;(§) denotes the imaginary part w.r.t. j unit of a bicomplex number.

1.2. Inverse of Bicomplex Mellin Transform. Agarwal R. et al. [22] defined
inverse Mellin transform in bicomplex variable as

Definition 1.3. Let f(£) be the bicomplexr Mellin transform of bicomplez-valued
continuous function f(t). Then inverse formula for bicomplex Mellin transform as

ft)

JREGL (1.2)
Q

- 27
where Q = (Q1,Q2) and Qy, Qo defined as

Q1 ={s1 € C1:a < Re(s1) < B} (1.3)
and

Qo ={s2 € C1 : a < Re(sq) < B}. (1.4)

In [28], Goyal S.P. et al. defined bicomplex gamma and beta function and dis-
cussed its various properties.

Definition 1.4 (Bicomplex Gamma function). Let £ € Cy, p = p1e; + paeg € Cy,
P1, P2 S (0,00), then

I = /He”’pgfldp (1.5)

where

H = (v1,72), 1 =7(p1)s 72 = 72(p2). (1.6)
T'(&) exist provided the integral exist.
Definition 1.5 (Bicomplex Beta function). Let & = uj + iqug, n = v1 +igvg € Co,

p = pire1 + paes € Ca, p1, p2 € [0, 1] with Re(uy) > [Im(uz)| and Re(vy) > |Im(vs)]
then

B(é,n)=/pr’1(1—p)”’1dp (1.7)

where H = (71,72), 71 = 71(p1) and v2 = v2(p2)-
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We shall be requiring following result in the sequel.
1—-t)1 0<t<1
0, t>1

Bicomplex Mellin transform of g(t) = { as follows:

Mg (t): €] = /0 T g

1
:/ 5711 — )2 tdt
0

where £ = & + i2&2 and a = ay + i with Re(§1) > [Im(&)| and Re(ay) >
Im(aw)|, then

Mg(t); €] = B, )
RN
Fé+a)’

Mellin convolution of two bicomplex-valued functions can be defined as:

o) = [ f@a (1) do
ftyog(t) = [ fatga)d

(1.8)

2. Basics oF FRACTIONAL CALCULUS

Fractional calculus is a generalization of the classical calculus and it has been
used in various fields of science and engineering. The fractional calculus is a pow-
erful mathematical tool for the physical description systems that have long-term
memory and long term spatial interactions (see, for details, Podlubny [12], Miller
and Ross [13], Hilfer [26], Kilbas et al. [1] and Samko et al. [27]).

In [17], Klimek M. and Dziembowski D. applied Mellin transform to find the solu-
tion of fractional differential equations of complex-valued function. In [8], Francisco
G.A.J. et al. proposed a fractional differential equation for the electrical RC and
LC circuit in terms of the fractional time derivative of the Caputo type. In [10],
Liang G. and Liu X. deduced a fractional-order model based on skin effect for
frequency dependent transmission line model. In this paper voltage and currents
at any location in transmission line can be calculated by the proposed fractional
partial differential equations.

In this section, we give the definitions of Riemann-Liouville and Caputo frac-
tional operators along the main properties.

Definition 2.1. (see, e.g. Miller and Ross [13, p. 45]). Let « > 0 and f be
piecewise continuous on (0,00) and integrable on any finite subinterval of [0, 00).
Then fort >0

b t — ) f(2)dx
| = @

the Riemann-Liouville fractional integral of f of order c.

oD f(t) =

Definition 2.2. (see, e.g. Miller and Ross [13, p. 82]). Let f be a function of class
C and let o > 0. Let n be the smallest integer that exceeds . Then the fractional
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derivative of f of order o is defined as
oDPf(t) = oD} oDy F(®)], a>0,t>0
where 8 =n—a > 0.
Some properties of Riemann-Liouville fractional operator are as follows:

Theorem 2.3. (see, e.g. Miller and Ross [13, Eq. 5.25, 6.1]). Let o, S are two
positive real number, then

(@) 007 (oD 7 F(1) = o D51 1),
(b) oDy oD; " f(t) = oDy * 7 f(1),
(¢) oDy “oD; P f(t) = oDy oD f(1).

For Riemann-Liouville operator ¢Df* and «,n > 0 the fractional derivative of
the power function " (see, e.g. Miller and Ross [13, p. 36]) is given by

I(n+1) _
D"t = ————t"7 . 2.1
0t '(n—a-+1) 2.1)
Definition 2.4. (Caputo M. [14] and see, e.g. Podlubny I. [12, Eq. (2.138)]). The
Caputo fractional derivative of f for a > 0 is defined as

o B 1 t ()
thf(t)_F(n—a)/o (t—a:)@+1—ndx’ n—1l<a<n (2.2)
§Dgf(t) = oDy " Vg(t), g(t) = (), n—1<a<n (2.3)

provided the integral exist.
Some properties of Caputo fractional derivative are as follows:

Theorem 2.5. (See, e.g. Kilbas A.A. et al. [1,p. 95,96]). Ifm—1<a<m, m¢€
N and function f s.t. integral (2.2) exist, then

(a) §DF (4D7°F (1) = (1),
(b) oD (§D7£(1)) = F(8) = X7 F9(0) (5) -

The organization of this paper is as follows:
In Section 3, we present some useful properties of bicomplex Mellin transform
in fractional calculus. In section 4, we discuss application of bicomplex Mellin
transform in finding the solution of bicomplex partial differential equation generated
by network model and last Section 5, contains the conclusion.

3. PROPERTIES OF BICOMPLEX MELLIN TRANSFORM

In this section, we discuss bicomplex Mellin transform of convolution of func-
tions, Riemann-Liouville fractional integral and Caputo derivative of order o« > 0
of certain functions and some of their properties.

Theorem 3.1. Let f(&) and g(&) are bicomplex Mellin transforms of bicomplex-
valued functions f(t) and g(t) respectively. Then
1

) gt = | [~ Lpala (1) dwie| = fwe. cen )
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and
MF(E) o 9(t); ] = M [ / f(xt)g(x)dx;s} —fOF1-¢)., ceQ (32

where Q is defined in (1.1).

Proof. We have, by definition,

() 905l = | [ g (1) dase
e e t\ dx
By changing the order of integration
_ [T [T, (L
= [ s@ % [Tty (1)

_ /OOO f(z)dz /Ooo(zy)glg(y)dy’ {y B ﬂ

= /OO ot f (@) da /Oo v g(y)dy
0 0

= f(€)3(8)-

Similarly, we have
()0 9056l =31 | [ flotigta)dsse]
_ /OOO 1 /OOO Flat)g(x)dz

By changing the order of integration

_ /OOO g(x)dz /OO 1471 f (at)dt

0

N N B o o Y .
/Og< >d/o y f)Z, =t

X

=/ wl‘g‘lg(w)dfC/ Y f(y)dy
0 0

O

In the following theorem, we make efforts to find the bicomplex Mellin transform
of the Riemann-Liouville fractional integrals.

Theorem 3.2. Let f(&) be the bicomplex Mellin transform of bicomplez-valued
function f(t). Then for a> 0

'l—¢—a)

M [0 Dy “ f(1);€] = T —¢)

fé+a), €+acQ (3.3)

where Q is defined in (1.1).
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Proof. Since we know that
(t— T)ailf(’l')d’r

J
:rf A%“ﬂf”ﬂmm% o= 1]
J

oDy “f(t) =

f(tx)g(x)dz (3.4)
where

{(175)"‘1, 0<t<l

0, t>1

Then using equations (1.8), (3.2), (3.4) and (3.5), we get

M [oD; “f(t);€] = af@+®BMJ—€—®

)
1
(
_PMi-¢-qa)
-9
]

In the following theorem, we make efforts to find the bicomplex Mellin transform
of the Riemann-Liouville fractional derivative.

Theorem 3.3. Let f(£) be the bicomplex Mellin transform of the bicomplex-valued
function f(t). Then for0<n—-1<a<mn

[ODaf Z 1_£+k [ D?klf(t)tf—k—l]go_i_r(ll__g;_a)f(é‘_a),
k=0

where 2 defined in (1.1).

Proof. By taking the bicomplex Mellin transform, we get

M oD f(1):€] = / 171 oD f(t)dt

= (/OO 511 OD?fl(t)dt> e + (/OO 1521 OD?fé(t)dt) €2
0 0

[Where § = sie1 + sae and f(t) = fi(t)er + fa(t)e2]

- n—1 (1 —s1+k) o oy —k—1 I(1-s+a) -
_<ZM[D f()t —k— ]0 +P(1—81)f1(81_a)> eq
[l —s24k)

T —s1) [OD?fg(t)tsszfl}go + M,}g(SQ — a)> €s
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[using [12, Eq. (2.287)]]

|
—-

_ F(l — 8161 — S2€92 + k) [OD?(fl(wel + f2(t)€2)tslel+8262_k_1]zo

—0 F(]. — §1€1 — 8262)

(1 — s1e1 — s2e2 + @)

=

+ (fi(s1 — a)er + fa(sz — a)ez)

I'(1 — s1e3 — sge2)
”i r(1— §+k) o D2 FHEH1] 4 I(l-¢+4a)

= Td ‘ 0 ﬁf(f—a) (3.7)

Remark 3.4. In its particular case, if 0 < ao < 1, then (3.7) becomes
Nl-¢+a)
ra-¢
If the function f(¢), Re(s1) and Re(sz2), where & = sje; + saeq are such that the

substitutions of the limit ¢ = 0 and ¢ = co make the first term of (3.8) zero, then
(3.8) reduces to the

Mo D§ f(1);:€] = [oD§ F ()1 + Fe—a). (3.8)

'l—§¢+w)
Ir'(t—¢)

In the following theorem, we have found the bicomplex Mellin transform of the
Caputo fractional derivative.

M oD f(t); ] = fg—a). (3.9)

Theorem 3.5. Let f(&) be the bicomplex Mellin transform of bicomplez-valued
function f(t), where 0 <n—1<a <n,néeN, then

n—1

1[50 £(03€] = 3 -t [ n] " He e e ),
k=0
E—aef (3.10)

where Q defined in (1.1).

Proof. By taking the bicomplex Mellin transform, we get

M [SDE f(1); €] = / (71D (1)t

= (/OO 511 gD?fl(t)dt) e+ (/OO 521 gD?fé(t)dt) €2
0 0

[where § = s1e1 + s2ep and f(t) = fi(t)er + fa(t)ez

- n—1 (Oé—|-k— 31) (k) o S F(l — 5 _|_a) ~
= (kzo ]_—‘(]_ — 5 ) |:f1k (t)t +k:|0 + m‘fl(sl — Oé)) el

( o+ k- 52) [ )y )tszmw]w T Mﬁ(% - a)) ez

=0 1 — So 0 F(l — 82)

M
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[using [12, Eq. (2.291)]]

! D(a+k— sje; — s2e9)

[(fl(k) (t)er + fz(k) (t)ez) t8151+52€2—a+k] >

0

OM

F 1— S1€1 — 8262)

F(l — s11 — S22 + @)

N [(1 = s1e1 — sze2) (fi(s1 = a)er + fo(sz — a)es)
nfll—‘(a-i-k 5 (k) o 0o F(1_§+OZ>—
k=0 ra [f Yo +k}0 + Wf(ﬁ —a). (3.11)
O

Remark 3.6. In its particular case, if 0 < o < 1, then (3.11) becomes
NG Nl—¢+a)
ra-¢ ra-¢

If the function f(¢), Re(s1) and Re(sz2), where £ = sje; + saeq are such that the

substitutions of the limit ¢ = 0 and ¢ = co make the first term of (3.11) zero, then
(3.11) reduces to the

M D7 f(1);€] = [FO] g + f€—a) (3.12)

I'l—¢+w)
I'(1-¢)

Theorem 3.7. Let f(&) be the bicomplex Mellin transform of bicomplez-valued
function f(t), where 0 <n—1<a <n,n €N, then

M (D7 oDy * f(1);€] = f(€), €€Q (3.14)

where Q defined in (1.1).

M [DF f(1);€] = Fle—a). (3.13)

Proof. Since we know that
§D7 [oD7f(B)] = £(D).
By taking the bicomplex Mellin transform on both side, we have

M [§Dg oD f(2): €] = f(E).

Deduction 3.8. If we take f(t) = t"U(t — tg), then
—ayn (t_to)a ! a—1 - rn n—r, T r
oDt U (t — to) = T )Y > (=) O T (E— to)"du. (3.15)
0

where U(t — to) is unit step function and hence
t§+n

E+n

m ﬁ SD?th“f(t);§] =—

, Re(§+n) < —[Imj(+n)|. (3.16)
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Proof. By applying the definition of Riemann-Liouville integral operator on t"U (t —
to)

—aun 1 ! a—1_n
oDyt U(t—to)—@/o (t — 2 2" U (& — to)da

_i ! —l'a_ll'nl'
=y [ e

R L e ]

n

—M lua71 _1\rn n—r, Ty T du
- “Ta) /0 > (=)t (t — to)"du.

r=0

Changing the order of integration and summation which is valid under the condi-
tions of convergence, we get

— a M 1
ODt_atnU(t _ to) _ (t tO) Z(_l)r nCTtn—r(t _ to)r / ua+r—1du

— LT — 1) (3.17)

1
1" a—l—r

ﬁMs

Therefore, making use of (3.14) and (3.17), we get the desired result (3.16). O

Theorem 3.9. Let f(&) be the bicomplex Mellin transform of bicomplez-valued
function f(t), where 0 <n—1<a <n,n €N, then

_ W0
M [0D; * §Df(): €] = f(€ Z kf . |[Imj(k+&)| < Re(k +€) (3.18)
k=0

where Q defined in (1.1).

Proof. Since we know that
oDy [CDa f(t) Z f(k) < > .
By taking the bicomplex Mellin transform on both side, we have
c t*
M [oDy “ 5D f(t);§] = M[f Zf ( );5

m—1
o JS®(0) Eth—1
= 7O- 3 |

,_.o

fM0)
Kk +€)
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Theorem 3.10. Let f(£) be the bicomplex Mellin transform of bicomplex-valued
function f(t), where 0 <n—1<a, 8<n,n €N, then

l—a—p-§;
Fi=g fla+B+E), (3.19)

Re(a++&) <1—|Imj(a+B+E)|, a+8+£€Q

m [, oD f1):] = 2

where Q defined in (1.1).

Proof. Since we know that
oDy oD, P f(t) = oDy I f (1),

By taking the bicomplex Mellin transform on both side, we have

M oD oD F(1);€] = am [oDy P f(t)s¢]

[e%e} 1 t
= t&li/ t— )Pl () dadt
A e A R
By changing the order of integration

1 oo oo
= — z)dx 1t — ) A1t
o | f@de [ e
Put ¢t = £, then

oo 1
/ $71(t — 2)o Pt = gotAre] / w1 ) gy
T 0

Therefore,
1 o0 1
D D*B £): _ a+p+E-1 d / —a=B=E(1 _)otB-1g
W (o070 D 0):€] = gy [ e @ [y
where a + > 0, and Re(a+ +§) <1 — [Imj(a+ 8+ §)|

After using beta function (1.7), we have

9 o0 007 (0)5€] = PG [T s
il-a-g-¢

=T Ta-g fla+B+8).

O

Deduction 3.11. For0<n—-1<a, f<n,neN

1 = nC
T oDy Y (S Tt~ t )B”} 33
r(g) " {ZO B+r ’

1—‘(170[7575) thraJrﬁJrn
r1—-¢ Ef+a+B8+n
(3.20)
Re(+a+p) <1—|Im;j((+a+P)], Re(€+a+B+n) < —|Im;({+a+B+n)|.

m

Proof. In the similar manner of equation (3.17) and using result (3.19), we get
F(l —a—-fB- g) t8+a+5+n
r1-¢ §+a+pB+n

m {OD;Q oD U (t - to)} —

L —a - 1\ "Cy n—riy B+r. __F(l_a_ﬁ_g) thraJrﬁJr’ﬂ
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O

Theorem 3.12. Let f(€) be the bicomplex Mellin transform of bicomplez-valued
function f(t), then

@ m[ephswie] = S sose- 5|, e jeo (321)
 m[olse = pm rwe-5] e-Fen (3.22)

where Q defined in (1.1) and oD "5 =1 D1 £,(t) vanishes as t — 0 and
t = oo forj=01---,n—1andi = 1,2. Where £ = sje; + saeq, f(t) =
filt)er + fa(t)ex and a = %, %

Proof. (a) By applying the definition of bicomplex Mellin transform, we get

o [fpd (i) = [ e ok sy

= (/ 511 tCDéOfl(t)dt) er + (/ 521 tCDéOfQ(t)dt> es
0 0

[Where f = 5161 + Sg€2 and f(t) = f1 (t)@l + fg(t)eg].

We know the result of fractional integration by parts (see, e.g. Almeida R. and
Torres D.F.M. [24]) as

b b n—1 ) ) ) b
/ g(t) Dy f(t)dt = / f(thD?g(t)dHZ[(—l)"ﬂ QD?“‘"g@)aDl“l‘ffu)]a

a a 7=0
(3.23)

By using (3.23) and using given conditions, we obtain

m [tDéof(t);g] - (/000 fl(t)opgtslldt> e1 + (/Ooo fQ(t)OD,}tsQldt) e

= I‘(Is‘fsi)l)m l:fl(t);sl — ;:| €1 + F(I;(Si)l)gﬁ |:f2(t);82 — ;:| €9
2 2
[using (2.1)]
I'(s1e e 1
- T (Sizll jr_iQZZ 2);) m [fl(t)el + fg(t)eg; s1€e1 + Sgeg — 2:|
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(b) Similarly,

m {fDif(t);g} = (/OOO fl(t)thgtsl‘ldt) er + (/OOO fQ(t)ODEtSQ—ldt> es

o F(Sl) . 3 F(Sg) . 3

= mﬁ)ﬁ |:f1(t),81 — 2:| €1 =+ mm |:f2(t)7 So — 2:| €9
r + 3

=T (55211641- SQZei)g) m |:f1 (t)er + fa(t)ea; sier + saea — 2]

O
Continuing by the induction, the results in Theorem 3.12 can be extended further

to fractional derivatives as in the following theorem:

Theorem 3.13. Let f(£) be the bicomplex Mellin transform of bicomplez-valued
function f(t) for alln —1 < a <n, n €N, then

M [(DLf(1);€] = =——M[f(t);( —a], E—a€Q (3.24)

where Q defined in (1.1) and oD "5 =1 D fi(t) vanishes as t — 0 and
t — o0 forj=0,1,---,n—1andi=1,2. Where £ = sie; + sz2ea and f(t) =
fit)er + fa(t)ea.

Theorem 3.14. Let f(£) be the bicomplex Mellin transform of bicomplex-valued
function f(t), then

1 1

(a) mt[t%ngof@),g]F(ﬁ(g?)zm[f(t);g], 5+§eﬂ (3.25)
3 3

(b) im[t%?DEOf( >,e}=”§(§)2)m[f<t>;ﬂ, §+§e9 (3.26)

where Q defined in (1.1) and oD "5 DIV fi(t) vanishes as t — 0 and
t - oo forj =0,1,--- ,n—1andi = 1,2. Where £ = sie1 + sqeq, f(t) =
filt)er + fa(t)es and a = %, %

Proof. (a) By applying the definition of bicomplex Mellin transform, we get

N

m[t3 (DR f(1):¢ :/OOO (DL (1)

- (/oo 5173 tCDéofl(t)dt> e1 + (/Ootsré tCDéof2(t)dt> e
0 0
[where £ = s1e1 + s2ez and f(t) = fi(t)er + fa(t)ez].

810\»—-

D
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By using (3.23) and using given conditions, we obtain

m {t% tCDif(t);é} = </0 fi(t) oDEtSl—%dt> er + (/0 fz(t)ODEtSQ—%dt) e

[using (2.1)]
T (3161 + sqgeq + %)

T (s1e1 + sa2e2) M [f1(t)er + fa(t)ez; sie1 + s2ea]

_(E+s) .
(b) Similarly,

m [t ,?D?of(t);g} - (/Ooo fl(t)ODE’tswédt) e1 + (/000 fz(t)ODEt52+%dt> e

_T(s+3)
- D(s1)
I (8181 + S9€9 + %)

N T'(s1e1 + sa2e2) M [f1(t)er + fa(t)ea; sier + saea]

1—‘(82-1-%)

m[fl(t)781] er+ 1—\(82)

M [f2(t); s2] €2

O
Following the similar technique as in the above theorem, follows Theorem 3.15.

Theorem 3.15. Let f(£) be the bicomplex Mellin transform of bicomplex-valued
function f(t) for alln —1 < a <mn, n €N, then
o Cra I'¢ + «

W[t DL A0sE] = TEMI@ie,  gracn  (@2)
where Q0 defined in (1.1) and oD "5 DIV fi(t) vanishes as t — 0 and
t — oo forj=0,1,---,n—1andi=1,2. Where £ = sie1 + s2es and f(t) =
fit)er + fa(t)ea.

4. APPLICATION

In this section, we discuss the application of bicomplex Mellin transform in
solving Caputo fractional equation of bicomplex-valued function.
In [22], Agarwal et al. defined bicomplex scalar field as

F=V+iyl (4.1)

where voltage V' and current I are complex scalars field. In this paper, authors
discussed an equivalent circuit of a transmission line of small length Az containing
resistance RAx, capacitance CAzx and inductance LAx. Then differential equation
of bicomplex-valued function as

2 2

0 50 0
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Agarwal et al. find the solution of the above differential equation and separate the
voltage and current.

In similar manner, we can write a Caputo fractional differential equation of
bicomplex-valued function of a circuit of transmission line as follows:

t* DY F(x,t) +t° ¥DE F(x,t) = AS(t — a)d(x — a), A€ Cy (4.2)
Taking the bicomplex Mellin transform of (4.2) w.r.t. ¢, we get

PE+a) o DE+H) o o o o
t F 8+ —pgey P8 = Ad(a —a)

- I(¢a*"!
L F(x,8) = Ad(x —a .
&) = A = e oy v e+ )

Taking the inverse bicomplex Mellin transform of F(x,¢), we get

A '(&)at?!

5 — a)/ 1t (E)a

2y o T(E+a)+T(E+0)
where Q = (Q1,Q2) as in Definition 1.3. By separating the bi-real and bi-imaginary
part of (4.3), we obtain the voltage and current of the given circuit of transmission
line.

Fa,t) =V +iy] =

¢ (4.3)

5. CONCLUSION

The concept of bicomplex functions has been applied for finding the solution of
transmission line equations in fractional form. In this paper, we find bicomplex
Mellin transform of some useful properties of fractional operators, which are use-
ful for finding the solution of fractional differential equation of bicomplex-valued
function.
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