
Journal of Fractional Calculus and Applications

Vol. 8(2) July 2017, pp. 40-67.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

————————————————————————————————

CLASSIFICATION OF PHASE PORTRAITS OF LINEAR AND

NONLINEAR FRACTIONAL ORDER SYSTEMS

V. VAFAEI, H. KHEIRI, M. JAVIDI, A. JODAYREE AKBARFAM

Abstract. In this paper, we study the equilibrium points classification of
linear and nonlinear fractional order differential equations defined by differ-
ential operators of Caputo type. We consider both cases commensurate and
incommensurate. We discuss about the qualitative type of phase portrait and

stabiity of equilibrium points. Also, we attempt to generalize the Hartman-
Grobman theorem, which is fundamental for the nonlinear dynamics of ordi-
nary differential equations, to show that the dynamics of nonlinear fractional
order systems are topologically equivalent to those of linear fractional systems

locally. Simulation results are demonstrated for some examples of fractional
order systems to illustrate the effectiveness of the analytical results.

1. Introduction

Fractional calculus is more than 300 years old, but it did not attract enough inter-
est at the early stage of development [42]-[41]. An approach to geometric and physi-
cal interpretation of fractional integration and differentiation has been suggested by
[37]. In the last three decades, fractional calculus has become popular among sci-
entists in order to many systems in interdisciplinary fields can be described by the
fractional differential equations, such as diffusion waves [20], nonlinear oscillation
of earthquakes [18], viscoelastic material models [32], robotic manipulating sys-
tems [21], hydrologic models [7], wave propagation in nonlocal elastic continua [43],
world economies models [46], gyros systems [2], energy supply-demand equations
[1] and muscular blood vessel model [3]. Moreover, the fractional order equations
are naturally related to systems with memory which exists in most biological sys-
tems. Also, they are closely related to fractals which are abundant in biological
systems. Hence, fractional order equations are more suitable than integer order ones
in biological, economic and social systems where memory effects are important [5].
Recent advances in fractional calculus have been reported in [28].

The solution of differential equations of fractional order has been much involved.
Some analytical methods have been presented, such as the popular Laplace trans-
form method [38, 40], the Fourier transform method [33], the iteration method
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[42], Green function method [44, 29] and the fractional functional variable method
[27]. Numerical schemes for solving fractional differential equations have been in-
troduced, for example, in [17, 35].

Recently, study on the dynamics of fractional order differential systems has
greatly attracted the interest of many researchers. For instance, dynamics of the
fractional order Hastings-Powell food chain model has been studied in [31]. The
stability results of the fractional order differential equations systems have been a
main goal in researches. For example, Matignon [30] considered the stability of
fractional order differential equations system in control processing. Also, Ahmed
et al. [6] considered the stability of fractional order predator-prey and rabies mod-
els. The stability of fractional order differential equations system with time delay
and rational orders has been studied in [14, 36]. The stability in the sense of Lya-
punov has also been studied by using Gronwall’s lemma and Schwartz inequality
[34]. In [25, 24], the Mittag-Leffler stability and the fractional Lyapunov’s second
method were proposed. At last, some stability and asymptotic stability results of
nonlinear fractional order differential equations were proposed in [13, 8]. In [4] it
has been shown that a limit cycle can be generated in the fractional order Wien
bridge oscillator. Existence of a limit cycle for the fractional Brusselator has been
shown in [48]. El-Saka et al [19] suggested some conditions on existence of Hopf
bifurcation in fractional order dynamical systems. The pitchfork bifurcation and
vibrational resonance in a fractional-order Duffing oscillator have been studied in
[49]. Also, numerous fractional order chaotic systems have already been introduced
and their chaotic behaviours have been investigated in detail, such as the frac-
tional order Duffing system [22], fractional-order Chen system [11], fractional order
memristor-based system [10], fractional order financial system [9], fractional order
neural network [23] and so on. Also, some investigations are devoted to achieve
chaos stabilization and synchronization in fractional order chaotic or hyperchaotic
systems [26, 47].

In this paper, we study the phase portraits classification of linear and nonlinear
fractional order differential equations. We consider both cases commensurate and
incommensurate. We discuss about the qualitative type of phase portrait and
stability of equilibrium points. Also, the Hartman-Grobman theorem is one of the
most powerful tools used in dynamical systems. The Hartman-Grobman theorem
allows us to represent the local phase portrait about certain types of equilibrium
point in a nonlinear system of ordinary differential equations by a similar, simpler
linear system that we can find by computing the system’s Jacobian matrix at the
equilibrium point. If this theorem is established for fractional order differential
equations? In this paper, we will answer to this question.

The paper is organized as follows. In Section 2, we first recall some definitions
and theorems used throughout the paper. In Section 3, the equilibrium points of
linear fractional differential systems are classified. The equilibrium points classifica-
tion of nonlinear fractional differential systems and generalization of the Hartman-
Grobman theorem to fractional order dynamical systems are studied in Sections 4.
Numerical simulations are given in Section 5. Conclusions are included in Section
6.
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2. Preliminaries

In this section, we recall the most commonly used definitions and theorems of
fractional order systems.
Definition 1 Let α ∈ R+. The operator Jα

a , defined on L1[a, b] by

Jα
a f(x) :=

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt

for a ≤ x ≤ b, is called the Riemann-Liouville fractional integral operator of order
α.
Definition 2 Let α ∈ R+. The Caputo differential operator of order α is defined
by

C
a D

α
t f(t) := Jm−α

a Dmf(t), (1)

whenever Dmf ∈ L1[a, b] and m := ⌈α⌉ = min{z ∈ Z : z ≥ α}.
Definition 3 Let α > 0. The function Eα defined by

Eα(z) :=

∞∑
j=0

zj

Γ(jα+ 1)
,

whenever the series converges is called the Mittag-Leffler function of order α.
Theorem 1 Let α > 0. The Mittag-Leffler function Eα behaves as follows:

(a) Eα(re
iϕ) → 0 for r → ∞ if | ϕ |> απ

2 ,

(b) Eα(re
iϕ) remains bounded for r → ∞ if | ϕ |= απ

2 ,

(c) | Eα(re
iϕ) |→ ∞ for r → ∞ if | ϕ |< απ

2 .

Proof. Refer to [15].
Consider the Caputo fractional autonomous system [39, 45]

C
t0D

α
t x(t) = f(x), (2)

with initial condition x(t0), and α = [α1, α2, . . . , αn] indicates the fractional orders,
i.e. Dα = [Dα1 , Dα2 , . . . , Dαn ]T where αi ∈ (0, 1), f : Ω → Rn is locally Lipschitz
in x on Ω, and Ω ∈ Rn is a domain that contains the origin x = 0. If α1 = α2 =
. . . = αn, system (2) is called a commensurate order, otherwise system (2) indicates
an incommensurate order system. The equilibrium point of system (2) is defined
as follows:
Definition 4 The constant x0 is an equilibrium point of Caputo fractional dynamic
system (2), if and only if f(x0) = 0.
Remark 1 When α ∈ (0, 1), it follows from (1) that the Caputo fractional system
(2) has the same equilibrium points as the integer order system ẋ(t) = f(x).
Remark 2 For convenience,we state all definitions and theorems for the case when
the equilibrium point is the origin of Rn; i.e. x0 = 0. There is no loss of generality
in doing so because any equilibrium point can be shifted to the origin via a change
of variables. Suppose the equilibrium point for (2) is x̄ ̸= 0 and consider the change
of variable y = x− x̄. The αth order derivative of y is given by

C
t0D

α
t y =C

t0 Dα
t (x− x̄) = f(x) = f(y + x̄) = g(y),

where g(0) = 0 and in the new variable y, the system has equilibrium at the origin.
Remark 3 Until now, we considered the fractional derivative C

a D
α
t with fixed

lower terminal a and moving upper terminal t. For simplicity of notation, in the
following we eliminate the left subscript a and the right subscript t. Thus, we use
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the notation CDα for Caputo fractional derivative.
Definition 5 The zero solution of fractional differential system (2) is said to be
stable if, for any initial values xk ∈ Rn, there exists ϵ > 0 such that any solution
x(t) of (2) satisfied ∥ x(t) ∥< ϵ for all t > t0. The zero solution is said to be
asymptotically stable if, in addition to being stable, ∥ x(t) ∥→ 0 as t → +∞.
Theorem 2 Let α > 0, m = ⌈α⌉ and λ ∈ R. The solution of the initial value
problem

CDαx(t) = λx(t) + q(t), x(k)(0) = x
(k)
0 , k = 0, 1, . . . ,m− 1, (3)

where q ∈ C[0, h] is a given function, can be expressed in the form

x(t) =

m−1∑
k=0

x
(k)
0 uk(t) + x̃(t)

with

x̃(t) =


Jα
0 q(t) λ = 0,

1
λ

∫ t

0
q(t− τ)u′

0(τ)dτ λ ̸= 0,

where uk(t) := Jk
0 eα(t), k = 0, 1, . . . ,m− 1, and eα(t) := Eα(λt

α).
Proof. Refer to [15].
Remark 4 In the case 0 < α < 1, we can rewrite the solution of the initial value
problem (3) in the form

x(t) = x
(0)
0 Eα(λt

α) + α

∫ t

0

q(t− τ)τα−1E′
α(λτ

α)dτ.

Theorem 3 Consider the commensurate fractional differential equation

CDαx(t) = Λx(t) + q(t),

with 0 < α < 1, an N × N matrix Λ, a given function q : [0, h] → CN and an
unknown solution x : [0, h] → CN . For each k-fold eigenvalue λ of the matrix
Λ we have k linearly independent solutions of the homogeneous linear differential
equation CDαx(t) = Λx(t) that can be represented in the form

xl(t) = π(l)(t), l = 1, 2, . . . , k,

where the π(l)(t) are N -dimensional vectors whose component functions π
(l)
j ,

j = 1, 2, . . . , N , are of the form

π
(l)
j (t) =

l−1∑
µ=0

c
(l,µ)
j tµαDµEα(λt

α),

where the vectors c
(l,µ)
j can be obtained as the eigenvectors and suitable multiples

of the generalized eigenvectors of Λ.
The combination of these solutions for all eigenvalues leads to N linearly inde-

pendent solutions of the system CDαx(t) = Λx(t), i.e. to a basis of the space of all
solutions of this system.
Proof. Refer to [15].

As it was noted in [15], in the context of single-order fractional differential equa-
tions whose order is greater than 1, we may rewrite the given an initial value
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problem of the form

CDαx(t) = f(t, x(t)), x(k)(0) = x
(k)
0 , k = 0, 1, . . . , n− 1,

with some non-integer α > 1, n− 1 < α ≤ n and n is integer, in the equvalent form

D1x1(t) =x2(t),

D1x2(t) =x3(t),

...

D1xn−1(t) =xn(t),

CDβxn(t) =f(t, x1(t)),

where α = n− 1 + β and thus 0 < β ≤ 1, with initial conditions

xk(0) = x
(k−1)
0 , k = 1, 2, . . . , n,

i.e. as multi-order system with orders less than or equal to 1. Therefore, without
loss of generality, we consider fractional order systems of order 0 < α ≤ 1.

3. Linear fractional order systems

In this section, we consider the commensurate and incommensurate linear frac-
tional order systems. Consider the following linear fractional order system

CDᾱx(t) = Ax(t), (4)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn, matrix A ∈ Rn×n, ᾱ = [α1, α2,

. . . , αn]
T , CDᾱx(t) = [CDα1x(t),C Dα2x(t), . . . ,C Dαnx(t)]T and 0 < αi ≤ 1, for

i = 1, 2, . . . , n. In particular, if α1 = α2 = . . . = αn = α, then fractional differential
system (4) can be written as the following same order linear system

CDαx(t) = Ax(t). (5)

We can divide the system (4) or (5) into two systems: simple systems and non-
simple systems.

3.1. Simple systems. We first consider simple linear fractional order systems.
Definition 6 Linear fractional order system (4) or (5) is simple if det(A) ̸= 0.

For commensurate fractional order system (5) and 0 < α ≤ 1, Matignon firstly
gave a well-known stability result by an algebraic approach combined with the
use of asymptotic results, where the necessary and sufficient conditions have been
derived, the specific result is as follows [30, 6].
Theorem 4 The autonomous same order system (5) with Caputo derivative and
initial value x0 = x(0), where 0 < α ≤ 1, is

• asymptotically stable if and only if | arg(eig(A))| > απ
2 . In this case the

components of the state decay towards 0 like t−α.
• stable if and only if either it is asymptotically stable, or those critical eigen-
values which satisfy | arg(eig(A))| = απ

2 have geometric multiplicity one.

Proof. Refer to [30, 6].
The equilibrium points may be classified depending upon the type of egienvalues.

Here, we consider the case in R2, the case for higher dimension will be the same.
Using linear algebra, the phase portrait of any linear fractional systems of the

form (4) can be transformed to a canonical form CDᾱy(t) = Jy(t) by applying a
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transformation x = Py, where P is to be determined and J = P−1AP is of one of
the following forms:

a) J1 =

(
λ1 0
0 λ2

)
, b) J2 =

(
λ1 0
0 λ1

)
,

c) J3 =

(
λ1 1
0 λ1

)
, d) J4 =

(
a −b
b a

)
, b > 0;

(6)

where λ1,2, a and b are real constants and J is Jordan canonical form of the matrix
A. Matrix J1 has two real distinct eigenvalues, matrices J2 and J3 have repeated
eigenvalues, and matrix J4 has complex eigenvalues. The qualitative type of phase
portrait is determind from each of these canonical forms. Now, we state the main
theorem of this subsection.
Theorem 5 Let 0 < α ≤ 1, and x̄ be the equilibrium point of the commensurate
linear autonomous system (5). The type of phase portrait of system (5) depends
on the eigenvalues of matrix A, λ1 and λ2, as summarized below:

I. If the eigenvalues are distinct, real, and they have the same signe, then the
equilibrium point is a node (asymptotically stable if λ1,2 < 0; unstable if
λ1,2 > 0).

II. If one eigenvalue is positive and the other negative, then the equilibrium
point is a saddle point or col.

III. If the eigenvalues are equal and real, then the equilibrium point is a node
(asymptotically stable if λ < 0; unstable if λ > 0).

– If there are two linearly independent eigenvectors, J is diagonal (i.e.
(6(b))), then the equilibrium point is a star node.

– If there is one linearly independent eigenvector, J is not diagonal (i.e.
(6(c))), then the equilibrium point is a improper node.

IV. If the eigenvalues are complex; λ = a ± ib, and a ̸= 0, then the equilib-
rium point is a focus (asymptotically stable if | arg(λ)| > απ

2 ; unstable if
| arg(λ)| < απ

2 ).
V. If the eigenvalues are complex; λ = a± ib, and a = 0, then

– the equilibrium point is a center for α = 1;
– the equilibrium point is a focus for 0 < α < 1 (asymptotically stable

if | arg(λ)| > απ
2 ; unstable if | arg(λ)| < απ

2 ).

Proof. In the case α = 1, we recover a standard result from the theory of ordinary
differential equations (of integer order). Therefore, here we consider only the case
0 < α < 1.

I. Suppose matrix A has two real and distinct eigenvalues. In this case, J is given
by (6(a)) with λ1 and λ2 non-zero. Thus the canonical form of system (5) is

CDαy1 = λ1y1,

CDαy2 = λ2y2.
(7)

According to Remark 4, system (7) has the solution

y1(t) = y1(0)Eα(λ1t
α),

y2(t) = y2(0)Eα(λ2t
α).

In Theorem 1, let r = t ∈ R and arguments of λ1 and λ2 correspond to ϕ. First, let
λi < 0, i = 1, 2. Thus, | arg(λi)| = π, i = 1, 2, and limt→∞ Eα(λit

α) → 0, i = 1, 2.
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Therefore, limt→∞ yi(t) = 0, i = 1, 2, and the equilibrium point is asymptptically
stable.

If λi > 0, i = 1, 2, then | arg(λi)| = 0, i = 1, 2, and limt→∞ Eα(λit
α) → ∞,

i = 1, 2. Therefore, limt→∞ yi(t) = ∞, i = 1, 2, and the equilibrium point is
unstable.

The solution curves near the equilibrium point may be found by solving the
differential equation given by

dy2
dy1

=
d(y2(0)Eα(λ2t

α))

d(y1(0)Eα(λ1tα))
=

y2(0)λ2Eα(λ2t
α)

y1(0)λ1Eα(λ1tα)
=

λ2

λ1

y2
y1

which is integrable. The solution curves are given by | y2 |λ1= k | y1 |λ2 or

y2 = Ky
λ2
λ1
1 . The equilibrium point at the origin of the y1y2-plane is a node.

II. If λ1 and λ2 have opposite signs, without loss of generality, let λ1 > 0 and
λ2 < 0. Then, | arg(λ1)| = 0 and | arg(λ2)| = π. Thus, limt→∞ y1(t) = ∞ and
limt→∞ y2(t) = 0. The canonical form of system (5) is the same system (7).

The cordinate axes (excluding the origin) are the unions of special trajectories,
called separatrices. These are only trajectories that are radial straight lines. A
particular coordinate axis contains a pair of separatrices (remember the origin is a
trajectory in its own right) which are directed towards (away from) the origin if the
corresponding eigenvalue is negative (positive). The remaining trajectories, they

are given by y2 = Ky
λ2
λ1
1 , have the separatrices as asymptotes; first approaching

the equilibrium point as t increases from −∞, passing through a point of closet
approach and finally moving away again. In this case the equilibrium point of
origin is a saddle point.

III. Let λ1 = λ2 = λ0 ̸= 0. Then, the canonical matrices are of the form J3 or
J4. If J is diagonal, the canonical system has solutions given by

y1(t) = y1(0)Eα(λ0t
α),

y2(t) = y2(0)Eα(λ0t
α).

The solution curves near the origin can be obtained by solving the differential
equation

dy2
dy1

=
y2(0)

y1(0)
:= k.

Therefore, the slope of solutions is constant and the non-trivial trajectories are all
radial straight lines, y2(t) = ky1(t). Thus, the equilibrium point is a star node.

If λ0 < 0, then limt→∞ yi(t) = 0; i = 1, 2, and the equilibrium point is asymp-
totically stable star node. If λ0 > 0, then limt→∞ yi(t) = ∞; i = 1, 2, and the
equilibrium point is unstable star node.

Now, soppose J is not diagonal (i.e. (6(c))). Then, we must consider

CDαy1 = λ0y1 + y2,
CDαy2 = λ0y2.

Using Theorem 3, this system has solutions

Y (t) = y1(0)u
(1)Eα(λ0t

α) + y2(0)[u
(2,0)Eα(λ0t

α) + u(2,1)tαλ0Eα(λ0t
α)]

= Eα(λ0t
α)[y1(0)u

(1) + y2(0)(u
(2,0) + u(2,1)λ0t

α)].
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Thus, the origin is said to be an improper node (asymptotically stable λ0 < 0;
unstable λ0 > 0).

IV. Let λ1,2 = a± ib. The canonical system is CDαy(t) = Jy(t), where J is given
by (6(d)). Note that if V = [v1 v2]

T is an eigenvector associated to a+ib, then the
vector V̄ = [v̄1 v̄2]

T (where v̄ is the conjugate of v) is an eigenvector associated
to a− ib. On the other hand, we know that Eα((a+ ib)tα) and Eα((a− ib)tα) are
solutions. We have

Eα(λt
α) =

∞∑
k=0

λktαk

Γ(αk + 1)
.

On the other hand, if we write λ = reiθ, where r =
√
a2 + b2 and θ = tan−1( ba ),

then λk = rkeikθ = rk(cos kθ + i sin kθ). Therefore, we can obtain

Eα(λt
α) =

∞∑
k=0

rktαk

Γ(αk + 1)
(cos kθ + i sin kθ).

Note that these solutions are complex functions. In order to find real solutions, we
set

V =

(
v1
v2

)
=

(
u1 + iw1

u2 + iw2

)
= U + iW.

Then, we have

Eα((a+ ib)tα)v1 =

∞∑
k=0

rktαk

Γ(αk + 1)
(cos kθ + i sin kθ)(u1 + iw1)

=
∞∑
k=0

rktαk

Γ(αk + 1)
{(u1 cos kθ − w1 sin kθ)

+ i(w1 cos kθ + u1 sin kθ)}.

Similarly, we have

Eα((a+ ib)tα)v2 =

∞∑
k=0

rktαk

Γ(αk + 1)
{(u2 cos kθ − w2 sin kθ)

+ i(w2 cos kθ + u2 sin kθ)}.

Putting everything together we get

Eα((a+ ib)tα)V =

∞∑
k=0

rktαk

Γ(αk + 1)

(
(u1 cos kθ − w1 sin kθ) + i(w1 cos kθ + u1 sin kθ)
(u2 cos kθ − w2 sin kθ) + i(w2 cos kθ + u2 sin kθ)

)
Clearly, this implies Eα((a+ ib)tα)V = Y1 + iY2 where

Y1 =
∞∑
k=0

rktαk

Γ(αk + 1)

(
u1 cos kθ − w1 sin kθ
u2 cos kθ − w2 sin kθ

)
,

Y2 =

∞∑
k=0

rktαk

Γ(αk + 1)

(
w1 cos kθ + u1 sin kθ
w2 cos kθ + u2 sin kθ

)
.

It is easy to see that we have Eα((a− ib)tα)V̄ = Y1 − iY2. If Y1 + iY2 is a complex
solution of the system CDαy(t) = Jy(t), then its real and imaginary parts, Y1 and
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Y2, are solutions to this system. These are real solutions. It is possible to show
that they are linearly independent. Then, the general solution is

Y = c1Y1 + c2Y2,

where c1 and c2 are arbitrary constants. Therefore, we have

Y =

∞∑
k=0

rktαk

Γ(αk + 1)

{
c1

(
u1 cos kθ − w1 sin kθ
u2 cos kθ − w2 sin kθ

)
+ c2

(
w1 cos kθ + u1 sin kθ
w2 cos kθ + u2 sin kθ

)}

=
∞∑

k=0

rktαk

Γ(αk + 1)
{c1(U cos kθ −W sin kθ) + c2(W cos kθ + U sin kθ)}

=

∞∑
k=0

rktαk

Γ(αk + 1)

(
c1 c2

)( cos kθ − sin kθ
sin kθ cos kθ

)(
U
W

)
.

Note that the matrix

R :=

(
cos kθ − sin kθ
sin kθ cos kθ

)
represents a rotation through kθ radians. Therefore, the trajectories of (5) spiral
in the equilibrium point if and only if | arg(λ)| > απ

2 , and the trajectories of (5)
spiral away from the origin if and only if | arg(λ)| < απ

2 .
V. This case is special case of IV for a = 0.

Corollary 1 Let 0 < α ≤ 1 and λ1,2 = a± ib. If a < 0, then the equilibrium point
of system (5) is asymptotically stable.
Proof. When a < 0, we have π

2 < | arg(λ)| < π. On the other hand, since
0 < α ≤ 1 then 0 < απ

2 ≤ π
2 . Therefore, we have | arg(λ)| >

απ
2 and the equilibrium

point is asymptotically stable.
Corollary 2 Let λ1,2 = ±ib. If 0 < α < 1, then the equilibrium point of system
(5) is asymptotically stable and if 1 < α < 2, then the equilibrium point of system
(5) is unstable.
Proof. When λ1,2 = ±ib, then | arg(λ)| = π

2 . If 0 < α < 1 then 0 < απ
2 < π

2 .
Therefore, we have | arg(λ)| > απ

2 and the equilibrium point is asymptotically
stable. On the other hand, if 1 < α < 2 then π

2 < απ
2 < π. Therefore, we have

| arg(λ)| < απ
2 and the equilibrium point is unstable.

Now we consider incommensurate linear fractional order system (4). The above
two theorems deal with the same order fractional differential system. For the multi-
order linear fractional differential system, Deng et al. firstly studied the case that
αi’s are rational numbers between 0 and 1, for i = 1, 2, . . . , n, where the following
result [14] was introduced.
Theorem 6 Consider incommensurate linear fractional order system (4) where
αi’s are rational numbers between 0 and 1, for i = 1, 2, . . . , n. Let M be the lowest
commen multiple (LCM) of the denominators ui of αi’s, where αi =

vi

ui
, the greatest

common divisor of ui and vi is 1, i.e. (ui, vi) = 1, ui, vi ∈ Z+, i = 1, 2, . . . , n and
set γ = 1

M . Then the zero solution of system (4) with initial value x0 = x(0) is

• asymptotically stable if and only if any zero solution of the polynomial

∆(λ) = det(diag(λMα1 , λMα2 , . . . , λMαn)−A) (8)

satisfies | arg(λ)| > γπ
2 , the components of the state variable (x1(t), x2(t), . . .

, xn(t))
T ∈ Rn decay towards 0 like t−α1 , t−α2 , . . . , t−αn , respectively.
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• stable if and only if either it is asymptotically stable or those critical zero
solutions λ of the polynomial (8) satisfy | arg(λ)| = γπ

2 have geometric
multiplicity one.

Proof. Refer to [14].
Theorem 7 Assume the hypotheses of Theorem 6. Moreover, assume x̄ be the equi-
librium point of the incommensurate linear system (4). The type of phase portrait
of system (4) depends on the eigenvalues of matrix A, λ1 and λ2, as summarized
below:

I. If the eigenvalues are distinct, real, and they have the same signe, then the
equilibrium point is a node.

II. If one eigenvalue is positive and the other negative, then the equilibrium
point is a saddle point or col.

III. If the eigenvalues are equal and real, then the equilibrium point is a node.
– If there are two linearly independent eigenvectors, J is diagonal (i.e.

(6(b))), then the equilibrium point is a star node.
– If there is one linearly independent eigenvector, J is not diagonal (i.e.

(6(c))), then the equilibrium point is a improper node.
IV. If the eigenvalues are complex; λ = a± ib, and a ̸= 0, then the equilibrium

point is a focus.
V. If the eigenvalues are complex; λ = a± ib, and a = 0, then

– the equilibrium point is a center for α = 1;
– the equilibrium point is a focus for 0 < α < 1.

Proof. Note that since αi’s are not integer, i = 1, . . . , n, thus we have M ≥ 2 and
hence 0 < γ ≤ 1

2 . The proof proceed along the same lines as the proof of Theorem
5. We omit the details.

3.2. Non-simple systems. Now, We consider non-simple linear fractional order
systems.
Definition 7 Linear Fractional order system (4) is non-simple if the matrix A is
singular (i.e. det(A) = 0, and at least one of the eigenvalues is zero).

It follows that there are non-trival solutions to Ax = 0 and the system has
equilibrium points other than x = 0. For linear systems in the plane, there are only
two possibilities: either the rank of A is one; or A is null. In the first case there is
a line of equilibrium points passing through the origin; in the second, every point
in the plane is a equilibrium point. Of cours, the rank of J is equal to the rank of
A, so that the canonical systems exhibit corresponding non-simple behavior.

4. Nonlinear fractional order systems

In this section, we consider the commensurate and incommensurate nonlinear
fractional order systems. Consider the following nonlinear fractional order system

CDᾱx(t) = f(x(t)), (9)

where f is a continuously differentiable and nonlinear function, x(t) = [x1(t),
x2(t), . . . , xn(t)]

T ∈ Rn, ᾱ = [α1, α2, . . . , αn]
T , CDᾱx(t) = [CDα1x(t),C Dα2x

(t), . . . ,C Dαnx(t)]T and 0 < αi ≤ 1, for i = 1, 2, . . . , n. Suppose that system
(9) has an equilibrium point at x̄. The linearized system is then of the form

CDᾱx(t) = J |x̄x(t), (10)
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where J = ∂f
∂x is the Jacobian matrix.

In particular, if α1 = α2 = . . . = αn = α, then fractional differential system (9)
can be written as the following same order nonlinear system

CDαx(t) = f(x(t)), (11)

and the linearized system (10) can be written as

CDαx(t) = J |x̄x(t). (12)

Definition 8 An equilibrium point of nonlinear system (9) or (11) is called simple
if its linearized system is simple.
Definition 9 An equilibrium point of nonlinear system (9) or (11) is called hyper-

bolic if the real part of the eigenvalues of the Jacobian matrix J = ∂f
∂x are nonzero.

If the real part of either of the eigenvalues of the Jacobian are equal to zero, then
the equilibrium point is called nonhyperbolic.
Theorem 8 Consider the commensurate fractional order system (11) with 0 < α ≤
1 and x ∈ Rn. The equilibrium points of system (11) are calculated by solving the
following equation: f(x) = 0. These points are locally asyptotically stable if all

eigenvalues λi of the Jacobian matrix J = ∂f
∂x evaluated at the equilibrium points

satisfy: | arg(λi)| > απ
2 .

Proof. Refer to [6, 16].
Now, we state the main theorem of this section about commensurate nonlinear

fractional order systems.
Theorem 9 Let 0 < α ≤ 1, and x̄ be the equilibrium point of the nonlinear
commensurate system (11). The type of phase portrait of system (11) depends on
the eigenvalues of Jacobian matrix J , λ1 and λ2, as summarized below:

I. If the eigenvalues are distinct, real, and they have the same signe, then the
equilibrium point is a node (asymptotically stable if λ1,2 < 0; unstable if
λ1,2 > 0).

II. If one eigenvalue is positive and the other negative, then the equilibrium
point is a saddle point or col.

III. If the eigenvalues are equal and real, then the equilibrium point is a node
(asymptotically stable if λ < 0; unstable if λ > 0).

– If there are two linearly independent eigenvectors, J is diagonal (i.e.
(6(b))), then the equilibrium point is a star node.

– If there is one linearly independent eigenvector, J is not diagonal (i.e.
(6(c))), then the equilibrium point is a improper node.

(Note that here J is Jordan canonical form of the Jacobian matrix J .)
IV. If the eigenvalues are complex; λ = a ± ib, and a ̸= 0, then the equilib-

rium point is a focus (asymptotically stable if | arg(λ)| > απ
2 ; unstable if

| arg(λ)| < απ
2 ).

V. If the eigenvalues are complex; λ = a± ib, and a = 0, then
– the equilibrium point is either a center or a focus for α = 1;
– the equilibrium point is a focus for 0 < α < 1 (asymptotically stable

if | arg(λ)| > απ
2 ; unstable if | arg(λ)| < απ

2 ).

Proof. This theorem can be proved by using Theorems 8 and 5, so it is omitted
here.
Remark 5 Corollaries 1 and 2 are satisfied for commensurate nonlinear fractional
order systems.
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Now, we consider incommensurate nonlinear fractional order systems.
Theorem 10 Consider incommensurate nonlinear fractional order system (9) where
αi’s are rational numbers between 0 and 1, for i = 1, 2, . . . , n. Let M be the lowest
commen multiple (LCM) of the denominators ui of αi’s, where αi =

vi
ui
, (ui, vi) = 1,

ui, vi ∈ Z+, i = 1, 2, . . . , n and set γ = 1
M . Then the zero solution of system (9)

with initial value x0 = x(0) is

• asymptotically stable if and only if any zero solution of the polynomial

∆(λ) = det(diag(λMα1 , λMα2 , . . . , λMαn)− J) (13)

satisfies | arg(λ)| > γπ
2 .

• stable if and only if either it is asymptotically stable or those critical zero
solutions λ of the polynomial (13) satisfy | arg(λ)| = γπ

2 have geometric
multiplicity one.

Proof. Refer to [14].
Here, we state the main theorem of this section about incommensurate nonlinear

fractional order systems.
Theorem 11 Assume the hypotheses of Theorem 10. Moreover, assume x̄ be the
equilibrium point of the nonlinear incommensurate system (9). The type of phase
portrait of system (9) depends on the eigenvalues of Jacobian matrix J , λ1 and λ2,
as summarized below:

I. If the eigenvalues are distinct, real, and they have the same signe, then the
equilibrium point is a node.

II. If one eigenvalue is positive and the other negative, then the equilibrium
point is a saddle point or col.

III. If the eigenvalues are equal and real, then the equilibrium point is a node.
– If there are two linearly independent eigenvectors, J is diagonal (i.e.

(6(b))), then the equilibrium point is a star node.
– If there is one linearly independent eigenvector, J is not diagonal (i.e.

(6(c))), then the equilibrium point is a improper node.
(Note that here J is Jordan canonical form of the Jacobian matrix J .)

IV. If the eigenvalues are complex; λ = a± ib, and a ̸= 0, then the equilibrium
point is a focus.

V. If the eigenvalues are complex; λ = a± ib, and a = 0, then
– the equilibrium point is either a center or a focus for α = 1;
– the equilibrium point is a focus for 0 < α < 1.

Proof. This theorem can be proved by using Theorems 10 and 6, so it is omitted
here.
Remark 6 Since the type of phase portrait of commensurate and incommensurate
fractional order systems is determined by the eigenvalues of Jacobian matrix J , the
nature of the equilibrium point in commensurate and incommensurate fractional
order systems is same.

Now, we state a generalization of the Hartman-Grobman theorem to show that
the dynamics of nonlinear fractional order systems are topologically equivalent to
those of linear fractional systems locally.
Theorem 12 Suppose that x̄ is a simple equilibrium point of nonlinear fractional
order system (9) or (11). Then there is a neighborhood of this equilibrium point on
which the phase portrait for the nonlinear system resembles that of the linearized
system (10) or (12).
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Proof. Since the type of phase portrait of nonlinear commensurate or incommen-
surate fractional order system is determined by the eigenvalues of Jacobian matrix
J , the nature of the equilibrium point of nonlinear fractional order system is the
same as that for the linearized system. Therefore, the behavior of a nonlinear frac-
tional dynamical system in a domain near a simple equilibrium point is qualitatively
the same as the behavior of its linearization near this equilibrium point.

The above theorem tells us that, at least in a neighborhood of the simple equi-
librium point, we can get a qualitative idea of the behaviour of solutions in the
nonlinear system. Such qualitative characteristics we can glean include whether
solution trajectories approach or move away from the equilibrium point over time,
and whether the solutions spiral or if the equilibrium point acts as a node.

5. Numerical symulation

In this section we will apply the results established in the previous sections for
the following fractional dynamical systems. In all of them, in the commensurate
case we take α = α1 = α2 = 0.98, and we do α = α1 = α2 = 0.6 too. In the
incommensurate case we set (α1, α2) = (0.98, 0.88). Thus, we have M = 100 and
γ = 0.01. We use the Adams-type predictor-corrector method for the numerical
solution of fractional differential equation [17].
Example 1 Consider the fractional order system

CDα1x1(t) = 2x1 + 2,

CDα2x2(t) = x2
1 + x2 + 2x1.

(14)

This system has one equilibrium point at (−1, 1). We obtain

J |(−1,1) =

(
2 0
0 1

)
.

We have λ1 = 2 and λ2 = 1. Thus (−1, 1) is a node for commensurate and
incommensurate fractional order systems (14). The linearization at (−1, 1) is

CDα1x1(t) = 2x1,

CDα2x2(t) = x2.
(15)

This system has one equilibrium point at the origin. Hence, (0, 0) is a node for
commensurate and incommensurate fractional order systems (15). In the commen-
surate case, since both eigenvalues of Jacobian matrix J are real and positive, the
absolute value of the arguments of the eigenvalues are zero which are less than
απ
2 , thus (−1, 1) and (0, 0) are unstable node as shown in Figures 1(a)-1(d). All
of them are drawn with the same initial conditions. In the incommensurate case,
the characteristic equation of the nonlinear system (14) and linearized system (15)
evaluated at the equilibrium point (−1, 1) is

∆(λ) = det(diag(λ98, λ88)− J |(−1,1)) = (λ98 − 2)(λ88 − 1) = 0.

Because mini(| arg(λi) |) = 0 < γπ
2 = 0.01571, thus incommensurate fractional

order systems (14) and (15) exhibit an unstable node as shown in Figures 1(e) and
1(f), respectively.
Example 2 Consider the fractional order system
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Figure 1. Phase portraits for: (a) nonlinear system (14) in com-
mensurate case when α = 0.98; (b) linearized system (15) in com-
mensurate case when α = 0.98; (c) system (14) in commensu-
rate case when α = 0.6; (d) system (15) in commensurate case
when α = 0.6; (e) system (14) in incommensurate case when
(α1, α2) = (0.98, 0.88) and (f) system (15) in incommensurate case
when (α1, α2) = (0.98, 0.88).
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CDα1x1(t) = ex1+x2 − 1,

CDα2x2(t) = x2.
(16)

The origin is the only equilibrium point. Linearize by finding the Jacobian matrix
at this point; hence we have

CDα1x1(t) = x1 + x2,

CDα2x2(t) = x2,
(17)

and

J |(0,0) =
(

1 1
0 1

)
.

The eigenvalues are λ1 = λ2 = 1. Thus the origin is an improper node. In the
commensurate case, since both eigenvalues of Jacobian matrix J are real and pos-
itive, the absolute value of the arguments of the eigenvalues are zero which are
less than απ

2 , the origin is unstable. Figures 2(a)-2(d) show the unstable improper
node for commensurate fractional order systems (16) and (17) with the same initial
conditions.

In the incommensurate case, the characteristic equation of the nonlinear system
(16) and linearized system (17) evaluated at the equilibrium point (0, 0) is

∆(λ) = det(diag(λ98, λ88)− J |(0,0)) = (λ98 − 1)(λ88 − 1) = 0.

Because mini(| arg(λi) |) = 0 < γπ
2 = 0.01571, thus incommensurate fractional

order systems (16) and (17) exhibit an unstable improper node which is shown in
Figures 2(e) and 2(f), respectively.
Example 3 Consider the fractional order system

CDα1x1(t) = x1 + x1x
2
2,

CDα2x2(t) = x2 + x5
2.

(18)

The origin is the only equilibrium point. The Jacobian matrix evaluated at this
point is

J |(0,0) =
(

1 0
0 1

)
.

Thus the linearized system at origin is
CDα1x1(t) = x1,

CDα2x2(t) = x2.
(19)

The eigenvalues are λ1 = λ2 = 1. Thus the origin is a star node. In the commen-
surate case, since both eigenvalues of Jacobian matrix J are real and positive, the
absolute value of the arguments of the eigenvalues are zero which are less than απ

2 ,
the origin is unstable. Figures 3(a)-3(d) show the unstable star node for commen-
surate fractional order systems (18) and (19) with the same initial conditions.

In the incommensurate case, the characteristic equation of the nonlinear system
(18) and linearized system (19) evaluated at the equilibrium point (0, 0) is

∆(λ) = det(diag(λ98, λ88)− J |(0,0)) = (λ98 − 1)(λ88 − 1) = 0.
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Figure 2. Phase portraits for: (a) nonlinear system (16) in com-
mensurate case when α = 0.98; (b) linearized system (17) in com-
mensurate case when α = 0.98; (c) system (16) in commensu-
rate case when α = 0.6; (d) system (17) in commensurate case
when α = 0.6; (e) system (16) in incommensurate case when
(α1, α2) = (0.98, 0.88) and (f) system (17) in incommensurate case
when (α1, α2) = (0.98, 0.88).
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Because mini(| arg(λi) |) = 0 < γπ
2 = 0.01571, thus incommensurate fractional

order systems (18) and (19) exhibit an unstable star node which is shown in Figures
3(e) and 3(f), respectively.
Example 4 Consider the fractional order system

CDα1x1(t) = x1 + 4x2 + ex1 − 1,

CDα2x2(t) = −x2 − x2e
x1 .

(20)

The origin is the only equilibrium point. The Jacobian matrix evaluated at this
point is

J |(0,0) =
(

2 4
0 −2

)
.

The linearized system is then of the form
CDα1x1(t) = 2x1 + 4x2,

CDα2x2(t) = −2x2.
(21)

The Jacobian matrix has eigenvalues λ1 = 2 and λ2 = −2. Since one eigenvalues
is real and positive and the other is real and negative, the equilibrium point at the
origin is a saddle point. Phase portraits for commensurate fractional order systems
(20) and (21) are plotted in Figures 4(a)-4(d) when α = 0.98 and α = 0.6.

In the incommensurate case, the characteristic equation of the systems (20) and
(21) evaluated at the equilibrium point (0, 0) is

∆(λ) = det(diag(λ98, λ88)− J |(0,0)) = (λ98 − 2)(λ88 + 2) = 0.

Because mini(| arg(λi) |) = 0 < γπ
2 = 0.01571, thus incommensurate fractional

order systems (20) and (21) exhibit an unstable saddle as shown in Figures 4(e)
and 4(f), respectively.
Example 5 Consider the fractional order system

CDα1x1(t) = x2,

CDα2x2(t) = −(1 + x2
1 + x4

1)x2 − x1.
(22)

The origin is a unique equilibrium point. The Jacobian matrix is given by

J |(0,0) =
(

0 1
−1 −1

)
.

Therefore the linearized system at (0, 0) is
CDα1x1(t) = x2,

CDα2x2(t) = −x1 − x2.
(23)

The eigenvalues are λ1,2 =
−1± i

√
3

2
and real part of both of them is negative.

Thus, equilibrium point at the origin is a asymptotically stable focus in the com-
mensurate and incommensurate cases. Note that the absolute value of the argument
λ1 and λ2 is equal to 2π

3 which is more than απ
2 with α = 0.98 and α = 0.6. Figures

5(a)-5(d) show the asymptotically stable focus for commensurate nonlinear sys-
tem (22) and commensurate linearized system (23) with the same initial conditions
(x1(0), x2(0)) = (1, 0).
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Figure 3. Phase portraits for: (a) nonlinear system (18) in com-
mensurate case when α = 0.98; (b) linearized system (19) in com-
mensurate case when α = 0.98; (c) system (18) in commensu-
rate case when α = 0.6; (d) system (19) in commensurate case
when α = 0.6; (e) system (18) in incommensurate case when
(α1, α2) = (0.98, 0.88) and (f) system (19) in incommensurate case
when (α1, α2) = (0.98, 0.88).
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Figure 4. Phase portraits for: (a) nonlinear system (20) in com-
mensurate case when α = 0.98; (b) linearized system (21) in com-
mensurate case when α = 0.98; (c) system (20) in commensu-
rate case when α = 0.6; (d) system (21) in commensurate case
when α = 0.6; (e) system (20) in incommensurate case when
(α1, α2) = (0.98, 0.88) and (f) system (21) in incommensurate case
when (α1, α2) = (0.98, 0.88).
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In the incommensurate case, the characteristic equation of the systems (22) and
(23) evaluated at the equilibrium point (0, 0) is

∆(λ) = det(diag(λ98, λ88)− J |(0,0)) = λ186 + λ98 + 1 = 0.

Because mini(| arg(λi) |) = 0.02245 > γπ
2 = 0.01571, thus incommensurate frac-

tional order nonlinear system (22) and incommensurate fractional order linearized
system (23) exhibit a asymptotically stable focus as shown in Figures 5(e) and 5(f),
respectively, in which the initial states are (x1(0), x2(0)) = (1, 0).
Example 6 Consider two systems

CDα1x1(t) = −x2 + x1(x
2
1 + x2

2),
CDα2x2(t) = x1 + x2(x

2
1 + x2

2), (24)

and

CDα1x1(t) = −x2 − x1(x
2
1 + x2

2),
CDα2x2(t) = x1 − x2(x

2
1 + x2

2). (25)

Both systems have the origin as only equilibrium point and they have the lineariza-
tion

CDα1x1(t) = −x2,
CDα2x2(t) = x1. (26)

Therefore, we have

J |(0,0) =
(

0 −1
1 0

)
,

and λ1,2 = ±i. The real parts of eigenvalues are zero. Thus, equilibrium point at the
origin of systems (24), (25) and linearized system (26) is a focus in commensurate
and incommensurate cases. Note that the absolute value of the argument λ1 and
λ2 is equal to π

2 which is more than απ
2 with α = 0.98 and α = 0.6. Therefore,

the origin of systems (24), (25) and linearized system (26) is asymptotically stable
in commensurate case. Figures 6 and 7 show the asymptotically stable focus for
systems (24), (25) and linearized system (26) in commensurate case with the initial
states (x1(0), x2(0)) = (0.001, 0) when α = 0.98 and α = 0.6, respectively.

In the incommensurate case, the characteristic equation of the systems (24),
(25) and linearized system (26) evaluated at the equilibrium point (0, 0) is ∆(λ) =
λ186 + 1 = 0. Because

min
i
(| arg(λi) |) = 0.01689 >

γπ

2
= 0.01571,

thus incommensurate fractional order systems (24), (25) and linearized system (26)
exhibit a asymptotically stable focus as shown in Figure 8, in which the initial
conditions are (x1(0), x2(0)) = (0.001, 0).

Now we consider systems (24) and (25) with α = 1. Thus, we have

ẋ1 = −x2 + x1(x
2
1 + x2

2), ẋ2 = x1 + x2(x
2
1 + x2

2), (27)

ẋ1 = −x2 − x1(x
2
1 + x2

2), ẋ2 = x1 − x2(x
2
1 + x2

2). (28)

Both systems (27) and (28) have the linearization

ẋ1 = −x2, ẋ2 = x1, (29)

which has a center at origin as shown in Figure 9(a). In polar coordinates system
(27) becomes

ṙ = r3, θ̇ = 1, (30)
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Figure 5. Phase portraits for: (a) nonlinear system (22) in com-
mensurate case when α = 0.98; (b) linearized system (23) in com-
mensurate case when α = 0.98; (c) system (22) in commensu-
rate case when α = 0.6; (d) system (23) in commensurate case
when α = 0.6; (e) system (22) in incommensurate case when
(α1, α2) = (0.98, 0.88) and (f) system (23) in incommensurate case
when (α1, α2) = (0.98, 0.88).
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Figure 6. Phase portraits for systems (a) (24); (b) (25) and (c)
(26) in commensurate case when α = 0.98.

while system (28) gives

ṙ = −r3, θ̇ = 1. (31)

Equation (30) shows that ṙ > 0 for all r > 0 and so the trajectories of system (27)
spiral outwards as t increases. On the other hands, equation (31) shows that ṙ < 0
for all r > 0 and so the trajectories of system (28) spiral inwards as shown in Figures
9(b) and 9(c) with the initial states (x1(0), x2(0)) = (0.12, 0) and (x1(0), x2(0)) =
(0.4, 0), respectively. Thus system (27) shows an unstable focus while system (28)
is an asymptotically stable focus.

Hence, If we consider systems (24), (25) and linearized system (26) with α = 1,
then the equilibrium point at the origin of these systems is an unstable focus, an
asymptotically stable focus and a centre, respectively.

This example shows the difference in qualitative behaviour of fractional order
and ordinary differential equations. In the case of fractional order, it is possible to
change the nature and stability of equilibrium point.
Example7 Consider the system

CDα1x1(t) = x2
2,

CDα2x2(t) = x1.
(32)
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Figure 7. Phase portraits for systems (a) (24); (b) (25) and (c)
(26) in commensurate case when α = 0.6.

The origin is the only equilibrium point. Linearize at the origin to obtain

J |(0,0) =
(

0 0
1 0

)
.

Thus, the origin is a nonhyberbolic equilibrium point and the system (32) is non-
simple. Consider the linearized system

CDα1x1(t) = 0,

CDα2x2(t) = x1.
(33)

Every point on the x2-axis is an equilibrium point of linearized system (33). Figures
10 and 11 show the phase potraits for the nonlinear commensurate fractional order
system (32) and its linearization, i.e. system (33), at origin when α = 0.98 and
α = 0.6, respectively. A phase portrait for incommensurate fractional order systems
(32) and system (33) is plotted in Figure 12. As can be seen from Figures 10, 11
and 12, systems (32) and (33) are unstable.
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Figure 8. Phase portraits for systems (a) (24); (b) (25) and (c)
(26) in incommensurate case when (α1, α2) = (0.98, 0.88).

6. Conclusions

In this paper, we have investigated the equilibrium points classification of linear
and nonlinear fractional order differential equations in both cases, commensurate
and incommensurate. We have discussed about the qualitative type of phase por-
trait of equilibrium points. We have showed that equilibrium points classification
of fractional order differential equations recovers a standard result from the theory
of ordinary differential equations of integer order except in the case the eigenvalues
are imaginary, depending on the nature of the eigenvalues of the Jacobian matrix
and the value of the fractional order α. Also, we have generalized the Hartman-
Grobman theorem to fractional order dynamical systems to show that the dynamics
of nonlinear fractional order systems in a neighborhood of the simple equilibrium
point are topologically equivalent to those of linear systems locally. All the theoret-
ical results are verified by numerical simulations to demonstrate the effectiveness
of the proposed claims.
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Figure 9. Phase portraits for systems (a) linearized system (26);
(b) (24) and (c) (25) when α = 1.
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Figure 10. Phase portraits for systems (a) (32); (b) (33) in com-
mensurate case when α = 0.98.
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Figure 11. Phase portraits for systems (a) (32); (b) (33) in com-
mensurate case when α = 0.6.
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Figure 12. Phase portraits for systems (a) (32); (b) (33) in in-
commensurate case when (α1, α2) = (0.98, 0.88).
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