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FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR A

CLASS OF BI-UNIVALENT FUNCTIONS BASED ON THE

SYMMETRIC Q-DERIVATIVE OPERATOR

Ş. ALTINKAYA, S. YALÇIN

Abstract. We introduce a new class of bi-univalent functions defined by using
symmetric q-derivative operator. Moreover, using the Faber polynomials, we
obtain general coefficient estimates for functions in this class.

1. Introduction, Definitions and Notations

Let A denote the class of functions f which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}

of the form:

f(z) = z +

∞∑
n=2

anz
n. (1)

Let S be the subclass of A consisting of functions f which are also univalent in
U and let P be the class of functions

φ(z) = 1 +
∞∑

n=1

φnz
n

that are analytic in U and satisfy the condition ℜ (φ(z)) > 0 in U . By the
Caratheodory’s lemma (e.g., see [9]) we have |φn| ≤ 2.

It is well known that every function f ∈ S has an inverse f−1, satisfying
f−1 (f (z)) = z, (z ∈ U) and f

(
f−1 (w)

)
= w,

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
, where

g(w) = f−1 (w) = w − a2w
2 +

(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. Let Σ denote the class of bi-univalent functions in U given by (2). For a
brief history and interesting examples in the class Σ, see the pioneering work on
this subject by Srivastava et al. [23], which has apparently revived the study of
bi-univalent functions in recent years.
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If the functions f and F analytic in U , then f is said to be subordinate to F,
written as

f(z) ≺ F (z), z ∈ U

if there exists a Schwarz function

u(z) =

∞∑
n=1

cnz
n

with |u(z)| < 1 in U , such that

f (z) = F (u (z)) .

For the Schwarz function u (z) we note that |cn| < 1. (e.g. see Duren [9]).
First formulae in what we now call q-calculus were obtained by Euler in the

eighteenth century. In the second half of the twentieth century there was a sig-
nificant increase of activity in the area of the q-calculus. The fractional calculus
operators has gained importance and popularity, mainly due to its vast potential
of demonstrated applications in various fields of applied sciences, engineering. The
application of q-calculus was initiated by Jackson [14].

In the field of Geometric Function Theory, various subclasses of analytic func-
tions have been studied from different viewpoints. The fractional q-calculus is the
important tools that are used to investigate subclasses of analytic functions. His-
torically speaking, a firm footing of the usage of the the q-calculus in the context
of Geometric Function Theory was actually provided and the basic (or q-) hyperge-
ometric functions were first used in Geometric Function Theory in a book chapter
by Srivastava (see, for details, [22]). In fact, the extension of the theory of univa-
lent functions can be described by using the theory of q-calculus. Moreover, the
q-calculus operators, such as fractional q-integral and fractional q-derivative oper-
ators, are used to construct several subclasses of analytic functions (see,e.g., [6],
[17], [18], [24]). In a recent paper Purohit and Raina [19], investigated applications
of fractional q-calculus operators to defined certain new classes of functions which
are analytic in the open disk. Later, Mohammed and Darus [16] studied approxi-
mation and geometric properties of these q-operators in some subclasses of analytic
functions in compact disk.

For the convenience, we provide some basic definitions and concept details of
q-calculus which are used in this paper. We suppose throughout the paper that
0 < q < 1. We shall follow the notation and terminology in [11]. We recall the
definitions of fractional q-calculus operators of complex valued function f(z).

Definition 1. Let q ∈ (0, 1) and define

[n]q =
1− qn

1− q
,

for n ∈ N = {1, 2, 3, . . .}.

Definition 2. Let q ∈ (0, 1) and define the q-fractional [n]q! by

[n]q! =


n∏

k=1

[k]q , n ∈ N

1, n = 0

.
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Definition 3. For α ∈ C, the q-shifted factorial is defined as a product of n ∈ N0 =
{0, 1, . . .} factors by

(α; q)0 = 1, (α; q)n =
n−1∏
i=0

(1− αqi), (α; q)∞ =
∞∏
i=0

(1− αqi).

Definition 4. (see [14]) The q-derivative of a function f is defined on a subset of
C is given by

(Dqf)(z) =
f(z)− f(qz)

(1− q)z
, if z ̸= 0, (3)

and (Dqf)(0) = f ′(0) provided f ′(0) exists.

Note that

lim
q→1−

(Dqf)(z) = lim
q→1−

f(z)− f(qz)

(1− q)z
=

df(z)

dz

if f is differentiable. From (3), we deduce that

(Dqf)(z) = 1 +

∞∑
n=2

[n]q anz
n−1. (4)

Definition 5. (see [7]) The symmetric q-derivative D̃qf of a function f given by
(1) is defined as follows:

(D̃qf)(z) =
f(qz)− f(q−1z)

(q − q−1)z
, if z ̸= 0, (5)

and (D̃qf)(0) = f ′(0) provided f ′(0) exists.

From (5), we deduce that

(D̃qf)(z) = 1 +
∞∑

n=2

[̃n]qanz
n−1,

where the symbol [̃n]q denotes the number

[̃n]q =
qn − q−n

q − q−1

frequently occurring in the study of q-deformed quantum mechanical simple har-
monic oscillator (see [8]).

From (2) and (5), we also deduce that

(D̃qg)(w) =
g(qw)− g(q−1w)

(q − q−1)w
(6)

= 1 − [̃2]qa2w + [̃3]q
(
2a22 − a3

)
w2 − [̃4]q

(
5a32 − 5a2a3 + a4

)
w3 + · · · .

The Faber polynomials introduced by Faber [10] play an important role in various
areas of mathematical sciences, especially in geometric function theory. Grunsky
[12] succeeded in establishing a set of conditions for a given function which are nec-
essary and in their totality sufficient for the univalency of this function, and in these
conditions the coefficients of the Faber polynomials play an important role. Schiffer
[20] gave a differential equations for univalent functions solving certain extremum
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problems with respect to coefficients of such functions; in this differential equa-
tion appears again a polynomial which is just the derivative of a Faber polynomial
(Schaeffer-Spencer [21]).

Not much is known about the bounds on the general coefficient |an| for n ≥ 4. In
the literature, there are only a few works determining the general coefficient bounds
|an| for the analytic bi-univalent functions ([5], [15], [13]). The coefficient estimate
problem for each of |an| n ∈ N\ {1, 2} is still an open problem.

The object of this paper is to introduce a new class of bi-univalent functions de-
fined by using symmetric q-derivative operator. Moreover, we use the Faber poly-
nomial expansions to obtain bounds for the general coefficients |an| of bi-univalent
functions in Sp,qΣ (φ) as well as we provide estimates for the initial coefficients of
these functions.

2. Main results

Definition 6. A function f ∈ Σ is said to be in the class Sp,qΣ (φ) , for p ∈ N, if
the following subordination holes[

(D̃qf) (z)
]p

≺ φ (z)

and [
(D̃qg) (w)

]p
≺ φ (w)

where g (w) = f−1 (w) .

Using the Faber polynomial expansion of functions f ∈ A of the form (1), the
coefficients of its inverse map g = f −1 may be expressed as, [3],

g (w) = f−1 (w) = w +
∞∑

n=2

1

n
K−n

n−1 (a2, a3, ...)w
n,

where

K−n
n−1 =

(−n)!

(−2n+ 1)! (n− 1)!
an−1
2 +

(−n)!

[2 (−n+ 1)]! (n− 3)!
an−3
2 a3

+
(−n)!

(−2n+ 3)! (n− 4)!
an−4
2 a4

+
(−n)!

[2 (−n+ 2)]! (n− 5)!
an−5
2

[
a5 + (−n+ 2) a23

]
(7)

+
(−n)!

(−2n+ 5)! (n− 6)!
an−6
2 [a6 + (−2n+ 5) a3a4]

+
∑
j≥7

an−j
2 Vj ,

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables
|a2| , |a3| , ..., |an| [4]. In particular, the first three terms of K−n

n−1 are
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1

2
K−2

1 = −a2, (8)

1

3
K−3

2 = 2a22 − a3,

1

4
K−4

3 = −
(
5a32 − 5a2a3 + a4

)
.

In general, for any p ∈ N and n ≥ 2, an expansion of Kp
n−1 is as, [3],

Kp
n−1 = pan+

p (p− 1)

2
E2

n−1+
p!

(p− 3)!3!
E3

n−1+...+
p!

(p− n+ 1)! (n− 1)!
En−1

n−1 , (9)

where Ep
n−1 = Ep

n−1 (a2, a3, ...) and by [1],

Em
n−1 (a2, ..., an) =

∞∑
n=2

m! (a2)
µ1 ... (an)

µn−1

µ1!...µn−1!
, for m ≤ n

while a1 = 1, and the sum is taken over all nonnegative integers µ1, ..., µn satisfying

µ1 + µ2 + ... + µn−1 = m,

µ1 + 2µ2 + ... + (n− 1)µn−1 = n− 1.

Evidently, En−1
n−1 (a2, ..., an) = an−1

2 , [2];
or equivalently,

Em
n (a1, a2, ..., an) =

∞∑
n=1

m! (a1)
µ1 ... (an)

µn

µ1!...µn!
, for m ≤ n

while a1 = 1, and the sum is taken over all nonnegative integers µ1, ..., µn satisfying

µ1 + µ2 + ... + µn = m,

µ1 + 2µ2 + ... + nµn = n.

It is clear that En
n (a1, a2, ..., an) = an1 . The first and the last polynomials are:

E1
n = an En

n = an1 .

Theorem 7. For p ∈ N, let f ∈ Sp,qΣ (φ) . If am = 0; 2 ≤ m ≤ n− 1, then

|an| ≤
2

[̃n]qp
; n ≥ 4 (10)

Proof. Let f be given by (1). We have[
(D̃qf) (z)

]p
= 1 +

∞∑
n=2

Kp
n([̃2]qa2, [̃3]qa3, . . . ,

˜[n+ 1]qan+1)z
n, (11)

and for
(
D̃qg (w)

)p

, from (6), we have[
(D̃qg) (w)

]p
= 1 +

∞∑
n=2

Kp
n (b1, b2, ..., bn)w

n. (12)
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On the other hand, for f ∈ Sp,qΣ (φ) and φ ∈ P there are two Schwarz functions

u (z) =
∞∑

n=1

cnz
n

and

v (w) =
∞∑

n=1

dnw
n

such that (
D̃qf (z)

)p

= φ(u(z)) (13)

and (
D̃qg (w)

)p

= φ(v(w)) (14)

where

φ(u(z)) = 1 +
∞∑

n=1

n∑
k=1

φkE
k
n (c1, c2, ..., cn) z

n, (15)

and

φ(v(w)) = 1 +
∞∑

n=1

n∑
k=1

φkE
k
n (d1, d2, ..., dn)w

n. (16)

Comparing the corresponding coefficients of (11) and (15) yields

[̃n]qpan =
n−1∑
k=1

φkE
k
n−1 (c1, c2, ..., cn−1) , n ≥ 2

or

Kp
n−1([̃2]qa2, [̃3]qa3, . . . , [̃n]qan) = φ1cn−1 (17)

and similarly, from (12) and (16) we obtain

[̃n]qpbn =
n−1∑
k=1

φkE
k
n−1 (d1, d2, ..., dn−1) , n ≥ 2.

or

Kp
n−1 (b1, b2, ..., bn) = φ1dn−1 (18)

Note that for am = 0 ; 2 ≤ m ≤ n− 1 we have bn = −an and so

[̃n]qpan = φ1cn−1 (19)

−[̃n]qpan = φ1dn−1

Now taking the absolute values of either of the above two equations in (19) and
using the facts that |φ1| ≤ 2, |cn−1| ≤ 1and |dn−1| ≤ 1, we obtain

|an| =
|φ1cn−1|
[̃n]qp

=
|φ1dn−1|
[̃n]qp

≤ 2

[̃n]qp
.

�
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Theorem 8. Let f ∈ Sp,qΣ (φ) . Then

(i) |a2| ≤ min

{
2q

(1+q2)p ,
2q√

(1+q+q2)(1−q+q2)p

}
= 2q

(1+q2)p

(ii) |a3| ≤


4q2

(1+q2)2p2 + 2q2

(1+q+q2)(1−q+q2)p p ≥ 2

4q2

(1+q+q2)(1−q+q2)p p = 1

(iii)
∣∣a3 − a22

∣∣ ≤ 4q2

(1+q+q2)(1−q+q2)p .

Proof. Replacing n by 2 and 3 in (17) and (18), respectively, we find that

[̃2]qpa2 = φ1c1, (20)

[̃3]qpa3 = φ1c2 + φ2c
2
1, (21)

− [̃2]qpa2 = φ1d1, (22)

[̃3]qp(2a
2
2 − a3) = φ1d2 + φ2d

2
1 (23)

From (20) or (22) we obtain

|a2| =
|φ1c1|
[̃2]qp

=
|φ1d1|
[̃2]qp

≤ 2

[̃2]qp
=

2q

(1 + q2)p
. (24)

Adding (21) to (23) implies

2[̃3]qpa
2
2 = φ1 (c2 + d2) + φ2

(
c21 + d21

)
or, equivalently,

|a2| ≤
2q√

(1 + q + q2)(1− q + q2)p
. (25)

From (21),

|a3| =
∣∣φ1c2 + φ2c

2
1

∣∣
[̃3]qp

≤ 4q2

(1 + q + q2)(1− q + q2)p
. (26)

Next, in order to find the bound on the coefficient |a3|, we substract (23) from (21).
We thus get

2[̃3]qp
(
a3 − a22

)
= φ1 (c2 − d2) + φ2

(
c21 − d21

)
(27)

or

|a3| ≤ |a2|2 +
|φ1 (c2 − d2)|

2[̃3]qp
≤ |a2|2 +

2

[̃3]qp
. (28)

Upon substituting the value of a22 from (24) and (25) into (28), it follows that

|a3| ≤
4q2

(1 + q2)2p2
+

2q2

(1 + q + q2)(1− q + q2)p

and

|a3| ≤
6q2

(1 + q + q2)(1− q + q2)p
.
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Finally, solving the equation (27) for
(
a3 − a22

)
, we obtain∣∣a3 − a22

∣∣ = ∣∣φ1 (c2 − d2) + φ2

(
c21 − d21

)∣∣
2[̃3]qp

≤ 4q2

(1 + q + q2)(1− q + q2)p
.

�
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