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FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR A
CLASS OF BI-UNIVALENT FUNCTIONS BASED ON THE
SYMMETRIC Q-DERIVATIVE OPERATOR

S. ALTINKAYA, S. YALCIN

ABSTRACT. We introduce a new class of bi-univalent functions defined by using
symmetric g-derivative operator. Moreover, using the Faber polynomials, we
obtain general coefficient estimates for functions in this class.

1. INTRODUCTION, DEFINITIONS AND NOTATIONS

Let A denote the class of functions f which are analytic in the open unit disk
U={z:ze€Cand |z| <1}

of the form:
o0
flz)=2z+ Zanz". (1)
n=2

Let S be the subclass of A consisting of functions f which are also univalent in
U and let P be the class of functions

p(z) =1+ Z(pnzn
n=1

that are analytic in U and satisfy the condition R (¢(z)) > 0 in U. By the
Caratheodory’s lemma (e.g., see [9]) we have |p,| < 2.
It is well known that every function f € S has an inverse f~!, satisfying

U (@) =2 (zeU)and f (f7 (w)) =w, (lw] <ro(f) . ro(f) > 3), where
gw) =" (w) =w —asw®+ (243 — az) w® — (5aj — bagcas + as) w' + -+ . (2)

A function f € A is said to be bi-univalent in U if both f and f~! are univalent
in U. Let ¥ denote the class of bi-univalent functions in U given by (2). For a
brief history and interesting examples in the class X, see the pioneering work on
this subject by Srivastava et al. [23], which has apparently revived the study of
bi-univalent functions in recent years.
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If the functions f and F analytic in U, then f is said to be subordinate to F,
written as

f(z)<F(2), zeU

if there exists a Schwarz function

u(z) = icnz"
n=1
with |u(z)| < 1 in U, such that
f(z) = F(u(2)).

For the Schwarz function u (z) we note that |c,| < 1. (e.g. see Duren [9]).

First formulae in what we now call ¢-calculus were obtained by Euler in the
eighteenth century. In the second half of the twentieth century there was a sig-
nificant increase of activity in the area of the g-calculus. The fractional calculus
operators has gained importance and popularity, mainly due to its vast potential
of demonstrated applications in various fields of applied sciences, engineering. The
application of g-calculus was initiated by Jackson [14].

In the field of Geometric Function Theory, various subclasses of analytic func-
tions have been studied from different viewpoints. The fractional g-calculus is the
important tools that are used to investigate subclasses of analytic functions. His-
torically speaking, a firm footing of the usage of the the g-calculus in the context
of Geometric Function Theory was actually provided and the basic (or ¢-) hyperge-
ometric functions were first used in Geometric Function Theory in a book chapter
by Srivastava (see, for details, [22]). In fact, the extension of the theory of univa-
lent functions can be described by using the theory of g-calculus. Moreover, the
g-calculus operators, such as fractional g-integral and fractional g-derivative oper-
ators, are used to construct several subclasses of analytic functions (see,e.g., [6],
[17], [18], [24]). In a recent paper Purohit and Raina [19], investigated applications
of fractional g-calculus operators to defined certain new classes of functions which
are analytic in the open disk. Later, Mohammed and Darus [16] studied approxi-
mation and geometric properties of these g-operators in some subclasses of analytic
functions in compact disk.

For the convenience, we provide some basic definitions and concept details of
g-calculus which are used in this paper. We suppose throughout the paper that
0 < g < 1. We shall follow the notation and terminology in [11]. We recall the
definitions of fractional g-calculus operators of complex valued function f(z).

Definition 1. Let g € (0,1) and define

forneN={1,2,3,...}.

Definition 2. Let g € (0,1) and define the g-fractional [n] ! by
IT [¥],, neN

k=1

[n],! =

1, n=20
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Definition 3. For « € C, the ¢-shifted factorial is defined as a product of n € Ny =
{0,1,...} factors by

(@ao=1, (@qn=]]0-ad) (e300 =]](1-aq).
=0 i=0

Definition 4. (see [14]) The g-derivative of a function f is defined on a subset of
C is given by

) = THZEE iy sz, 3)
and (Dy f)(0) = f'(0) provided f'(0) exists.

Note that

q—1- e=1- (1—¢q)z dz
if f is differentiable. From (3), we deduce that

lim (D,/)() = lim LG =02 _ d(z)

(Def)(2) =14 [n],anz""". (4)

Definition 5. (see [7]) The symmetric g-derivative qu of a function f given by
(1) is defined as follows:

flaz) — flat2)
(¢—q7)z
and (Dyf)(0) = f'(0) provided f'(0) eists.

From (5), we deduce that

(Dyf)(2) = , if z#0, (5)

(Def)(2) =1+ Y [n],an2""",

where the symbol [n], denotes the number

_ qn _ q—n
Il = q—q!
frequently occurring in the study of g-deformed quantum mechanical simple har-
monic oscillator (see [8]).
From (2) and (5), we also deduce that
~ 9(qw) — g(q~'w)

(Dug) = S (6)

=1 —[/2v]qa2w+[3]q (2a§—a3)w2_f4v]q (5a3 — Basas + aqg) w? + -+ - .

The Faber polynomials introduced by Faber [10] play an important role in various
areas of mathematical sciences, especially in geometric function theory. Grunsky
[12] succeeded in establishing a set of conditions for a given function which are nec-
essary and in their totality sufficient for the univalency of this function, and in these
conditions the coefficients of the Faber polynomials play an important role. Schiffer
[20] gave a differential equations for univalent functions solving certain extremum
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problems with respect to coefficients of such functions; in this differential equa-
tion appears again a polynomial which is just the derivative of a Faber polynomial
(Schaeffer-Spencer [21]).

Not much is known about the bounds on the general coefficient |a,| for n > 4. In
the literature, there are only a few works determining the general coefficient bounds
|an| for the analytic bi-univalent functions ([5], [15], [13]). The coeflicient estimate
problem for each of |a,| n € N\ {1,2} is still an open problem.

The object of this paper is to introduce a new class of bi-univalent functions de-
fined by using symmetric g-derivative operator. Moreover, we use the Faber poly-
nomial expansions to obtain bounds for the general coefficients |a,,| of bi-univalent
functions in SR (¢) as well as we provide estimates for the initial coefficients of
these functions.

2. MAIN RESULTS

Definition 6. A function f € X is said to be in the class SE (p), for p € N, if
the following subordination holes

(D) (2)] <0 (2)
and

(Deg) )] < 0 (w)
where g (w) = [ (w).

Using the Faber polynomial expansion of functions f € A of the form (1), the
coefficients of its inverse map g = f ~! may be expressed as, [3],

_ =1, .
g(w):f l(w):w—i_Zﬁanl (ag,ag,...)w ,
n=2

where
-n (—n)! n—1 (—n)! o
K, = (=2n+ 1) (n— 1)102 + [2 (—n—|—1)]!(n_3),a2 as
(—n)! o
" (=2n+3)!(n — 4)!a2 4a4
—n)!
T2(n Jf 2)])! i los + (n+2)af] -

TCan i;;)(!n —gn®  lao+ (=20 +5) asad]

+Y a3V,

J>T

such that V; with 7 < j < n is a homogeneous polynomial in the variables
laz|, ag|, ..., |an| [4]. In particular, the first three terms of K" are
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iK;2 = —a2, (8)
L5 _ 2

ng = 2aj; — as,

1

1K54 = - (5a§ — bagas + a4) .

In general, for any p € N and n > 2, an expansion of K?_ is as, [3],

(p—1) p!
2 (p—3)
where EF | = E? | (a2, as,...) and by [1],

p! -
!3!E;°;_1+...+ E"1,(9)

Eni+ B—nt Dl (n_1)

K? —pan—i—p

n—1 "

) U, —
- m! (a2)"" ... ()"
En—l (a'27 ~-~7an) = Z Ml'/lnfl‘

n=2
while a; = 1, and the sum is taken over all nonnegative integers p1, ..., i, satisfying

, form<n

M1+ p2+ s Flp—1 =M,
pr+2pe+ o +(n—1)pp1 = n—1L

Evidently, E""{ (ag,...,a,) = ay~ ', [2];
or equivalently,

oo
m! (a)* ... ()"
E (a1,a9,...,a,) = E ( )' (' n) , form<n
=1 JaREy

while a; = 1, and the sum is taken over all nonnegative integers p1, ..., iy, satisfying

g+ o = om,
w1+ 22+ ... +nu, = n.
It is clear that EI (a1, a9, ...,a,) = a} . The first and the last polynomials are:
E}l =a, E} =a?.
Theorem 7. For peN, let feSkI(p). If an =0;2<m <n-—1, then
2
lan| < —=——; n>4 (10)
[n],p
Proof. Let f be given by (1). We have

(Do) ()] =14+ 3 K2(202, Blyas, - [0+ Uyanin)e, (1)

n=2

and for (l~)qg (w))p7 from (6), we have

[(Dag) ()] = 1+ 3 K2 (br, b ) " (12)

n=2
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On the other hand, for f € S%7?(¢) and ¢ € P there are two Schwarz functions

o0
u(z) = chz”
n=1

and
v(w) = Zdnw"

such that

(Daf ()" = lu(2)) (13)
and

(Dag ()" = plv(w)) (14)
where

ou(z)) =1+ ZZ@;CE’; (c1,¢2, .0, 0n) 27, (15)
n=1lk=1

and

(W) =1+ Y > @Bl (dy,dy, ..., d) w". (16)
n=1k=1

Comparing the corresponding coefficients of (11) and (15) yields

n—1
[n] pa, = ngkEﬁ_l (c1,¢2, s Cne1), M > 2
k=1
or
Ky (2402, Bl,as, - - [n]an) = @161 (17)
and similarly, from (12) and (16) we obtain
N n—1
[n],pbn = > _@rES_y (di,da,..idny), n>2.
k=1
or
Kg—l (b17b27"'7bn) = @ldn—l (18)
Note that for a,, =0; 2 <m <n — 1 we have b, = —a,, and so
[n]qpan = $P1ln-1 (19)
—[nlpan = prdn

Now taking the absolute values of either of the above two equations in (19) and
using the facts that |p1] < 2, |¢,—1] < land |d,,—1| < 1, we obtain

pronal _ lerdnal 2

[n],p [n],p [nl,p

lan| =
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Theorem 8. Let f € S%7(p). Then

. . 2q 2q — 2q
(2) 02| < min { (+a%)p’ \/(1+q+q2)(1q+q2)p} - (e

4q2 2q2
(1+4¢2)%p? + tarad)(i—qrdp P 22

(ii) las| < )
4q —
(+qra)(I—g+aDp p=1
2 4q°
(i4) ’azs a2‘ < (1+q+¢*)(1—q+¢%)p"

Proof. Replacing n by 2 and 3 in (17) and (18), respectively, we find that

(2] pas = pic1, (20)
E]qpa?, = p1c2 + Pacf, (21)
- [Aﬂqpaz = p1d, (22)
31,p(203 — as) = 1> + i} (23)
From (20) or (22) we obtain
_ “ﬂcl\ _ |<Qd1| 2 2q

|az] <= = . (24)

2,p  [2p  Rp TP
Adding (21) to (23) implies

2[3]qpa§ = (CQ + dz) + @2 (C% + d%)

or, equivalently,
2q

lag| < = —. (25)
VA +a+a®) (1 —q+ep
From (21),
+ 2 4 2
las| = “Pwi 90261’ < _ q —. (26)
[3],p (I+q+¢*)(1—q+¢)p

Next, in order to find the bound on the coefficient |as|, we substract (23) from (21).
We thus get

2[3],p (a3 — a3) = 1 (c2 — da) + @2 (c] — d7) (27)

or
—d 2
las] < Jaof? + (P12l g2y 2 (28)
2[3],p Blyp
Upon substituting the value of a2 from (24) and (25) into (28), it follows that
4q? 2¢>

as| < —+

R e A (R [ RN
and

6q2
1+q+¢)(1—-q+¢)p

|as| <
(
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Finally, solving the equation (27) for (a3 — a3), we obtain

(1

2]
(3]

(12]
13]
[14]

(15]

(16]

(17)

18]
(19]
[20]
21]

22]

lag — a3| = [o1(c2 = da) + o (f —di)| _ 4°
? 2[3] p T (I4+g+¢)(1—qg+g?)p
q
[l
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