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FEKETE- SZEGO INEQUALITY FOR CERTAIN SUBCLASS OF
ANALYTIC FUNCTIONS

H.E.DARWISH, A. Y. LASHIN AND A .N .ALNAYYEF

ABSTRACT. In the present investigation, we obtain Fekete-Szego inequality for
certain normalized analytic function (z) defined in the open unit disc for which

(1 =Xz (D" (2)) + Az (D™ (2))’

(1 =)D (2) + AD™t™ (2)
lines in a region starlike with respect to 1 and is symmetric with respect to the
real axis. Also certain applications of the main result for a class of functions

(A=0)

defined by convolution are given. As a special case of this result, Fekete-
Szego inequality for a class of functions defined through fractional derivatives
is obtained. The motivation of this paper is to give a generalization of the
Fekete-Szego inequalities obtained by Salagean differential operator.

1. INTRODUCTION

Let A be class of functions (z) of the form:
(z2)=z+ Zakzk (1)
k=2

which are analytic in the open disc U = {z:z € Cand|z | < 1}. Further, let S
denote the class of functions which are univalent in U. For a function (z) in A, we
define

D°(2) = (2),D' (2) = 2/ (2),

D"(z) =D (D" " (z)) (neN={1,2,3,..}).
Note that

D" () =2+ K'apz*, (n € Ng = NU{0}). (2)
k=2
The differential operator D™ was introduced by Salagean [5].
Let ¢ (2) be an analytic function with positive real part on U with ¢ (0) = 1,
¢’ (0) > 0 which maps the unit disk U onto a region starlike with respect to 1 which
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is symmetric with respect to the real axis. Let S* (¢) be the class of functions in
(z) € S for which

2 ()
o <G, (e,

and C (¢) be the class of function in (z) € S for which

2 (2)
"(2)

where < denotes the subordination between analytic functions. These classes
were investigated and studied by Ma and Minda [3]. They have obtained the
Fekete-Szegd inequality for the functions in the class C (¢). Since € C (¢) if and
only if 2’ (2) € §* (¢), we get the Fekete-Szegd inequality for functions in the class
S* (@) . For a brief history of the Fekete-Szego problem for class of starlike, convex,
and close-to convex functions, see the recent paper by Srivastava et al. [8].

1+

<¢(2), (z€U),

In the present paper, we obtain the Fekete-Szegt inequality for functions in a
more general class G ,.m (¢) of functions which we define below. Also we give
applications of our results to certain functions defined through convolution (or the
Hadamard product) and in particular we consider a class G}, ,. (¢) of functions
deifned by fractional derivatives. The motivation of this papef is to give a general-
ization of the Fekete-Szegd inequalities of Srivastava and Mishra [7].

Let ¢(z) be a univalent starlike function with respect to Iwhich maps the unit
disc U onto a region in the right half plane which is symmetric with respect to the
real axis, ¢(0) = 1 and ¢'(0) > 0. A function € A is in the class G ., m (@) if and

only if

{ (1=X)z (D" (2))' + Az (D"t (2))

(1 - )\)D" (Z) + ADntm (Z) } = ¢(Z) (>\ > O)7

where D"t™ (2) was studied by Sekine [6] and D" (z) denote Salagean operator of
(2) [5]. For fixed g € A, we define the class GY , ,, (¢) to be class of function € A
for which (xg) € Ganm (6). In order to derive our main results, we have to recall
here the following Lemma [3].

If py =1+ c1z + 22 + ...,is an analytic function with positive real part in U,
then

—4v 42 if v <0
|02—vc%‘ < 2 if 0<v<;
49 — 2 if v>1

when v < 0 or v > 1, the equality holds if and only if py (2) is (1 + 2) /(1 — 2)
or one of its rotations. If 0 < v < 1, then the quality holds if and only if py (2) is
(1+2%) /(1 — 2%) or one of its rotations. If v = 0, the quality holds if and only if

1 1 \1+z (1 1 \1-z2
_(1.,1 22 0<~v<1
pi(2) (2+201—z+<2 201+z (Osy=1)

or one of its rotations. If v = 1, the quality holds if and only if p; (2) is the reciprocal
of one of the functions such that the equality holds in the case of v = 0. Also the
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above upper bound is sharp, and it can be improved as follows when 0 < v < 1.
2 2 1
|cz—vcl|—|—v|cl| <2 0<v§§

and

1
’02—vcf|+(1—v)|cl|2§2 (2<v§1).

2. FEKETE- SZEGO PROBLEM

Our main result is the following:
Let ¢(z) =1+ Byz + Bgz? + ... If

oo
z)=z+ E apz",
k=2

belongs to G n,m (¢), then

B 2 1 2 .
3n[2+w23m i) 22n[1+,\72m,1)}2 Bf + m31 if p>o1;
ag — paj| < m if o< p<oy
2 1 2 .
3n[2+2x(3m o] T 22n[1+AI(L2m_1)]ZBl ~ sprmeE o] P if = o,
3)

where

227 [1 4+ A (2™ — 1) {( 32—31 +B1}
3n[2+2X (3" —1)] B

g1 =

22 [1+ A (2™ — 1)]* {(Bz2 + B1) + B}}
37242\ (3™ —1)] B?

g9 =
The result is sharp.

Proof. For (z) € Gy nm (¢), let

(1=X2)z (D" (2)) + Az (D™ (2))
(1 — ND" (2) + AD"m (2)

p(z) =

From (4), we obtain

2" [14+ A (2™ — 1] ag = by and 3" [2 42X (3™ — 1)] ag = by+22" [L + A (27" — 1)]* 2.
(5)

Sine ¢ (z) is univalent and p < ¢, the function

1+¢7 " (p(2))

1—¢71(p(2))

is analytic and has a positive real part in U. Also we have

po =0 (2 (©)

:1—|—clz—|—6222 + ...

p1(z) =
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and from this equation (4),

2
L4biz+boz? +... = ¢< 12 + 22" + ... ):

24 c1z 422 + ...
1 1 1
= ¢ {2012 + 3 (02 — 20%) 22+ }
1 1 1 1
= 1+ 315012 + Blg (02 — 20?) 2244 BQZC%ZQ + ...

we obtian

1 1 1 1
b1 = 53161 and bg = 531 (Cg — 26%) + ZBQC%

Therefore we have
B,

237 [2+2XA (3™ — 1)]

X {Cg—c%é (1_ By + 3" [24—2/\(3’”—1)]”_2% [1+/\(2m_1)]231>}

2
az — pay =

By 22n [1 4 A (2m — 1)]
By
2.37[2 + 2X (3m —

2 _
as — pay; =

) {CQ - vcl} (7)

where

1 <1 By | 3"[24 223"~ DIp -2 L4 A(2" - 1)]231> |
By 21+ A(2m — 1))
If 4 < 01, then by applying Lemma 1, we get
By
237 242X (3™ —1)]

21, By 32423 —DJp-2"[14+ 22" — 1)
02_01{2<1 B P+ — F B)H

s — ] =

X

By _ 7 B2 1
242037 —1)] 214+ A@2m 1) 1 3" [2+22(3" —1)]
which is the first part of assertion (3).

Naxt, if 4t > o2, by applying Lemma 1, we get

2
B17

|CL3*M&%‘S3H[

By
2.3 242X (3™ — 1)]

2{1 (1_32*3n[2+m3m_1”“‘22”““@’”—1)]231>}‘

o = o =

X

co—ciR =
> 2 By 220 [1 4\ (2m — 1)]2
B By L u B 1
324203 —1)] 2214 A(2m— 12 3" [2+2A(3™ —1)]
If p = o1, then equality holds if and only if

1+v\1+=2 1—vy\1-2
= < <1'
pi(2) < 2 >1—z+( 2 )1+z O<y<Lzel)

|ag — paj| < Bi.

or one of its rotations.
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If p = o9, then
1 By 3"[242XA(3™ —1)]pu—22"[14+A(2™ — 1))
LI 1 R Y VISt (R YCLRs ) B
2 By 220 [1 4+ )\ (2™ — 1)]
Therefore,
1 1+9\1+z2 1—vy\1-=2
1 (2) ( 2 >l—z+( 2 )1+z Osyslzel)
Finaly, we see that
By

— 2:
ja — 237 2+ 2) (3™ — 1)]
n m __ __92n m o __ 2
C2_C?{1<1_BQ+3 2420 (3™ — 1) — 227 [1 4+ A (2™ — 1)] Bl)}‘

and
B 3"[2+22 (3™ -1 —92n1] L\ (2m —1 2
max |+ [1- B2 372427 ( )] [+2( )]Bl -
(o1 <p< o).
Therefore using Lemma 1. , we get
B B
|03*ILL(1§|: - ! (01</U'<02)

23 R+ 2N3" 1) S 3 Rr@E 1)) TrSHS
If 01 < p < 09, then we have

14 22
1— 22’

p(z) = (0<y<1).

Our result now follows by an application of Lemma 1. To show that the bounds
are sharp, we define the functions K2° (§ = 2,3,..) by

(1= Nz [D"KS0) (2) + Az [DrHm K20
(1-A) [Dan’ﬂ (2) + A {D"JFWK?;"S} (2)

= (271,

K2 (0) = 0= [K2°](0) ~ 1
and function FY and W) (0 <~ <1)by

(1=X2z[D"F)] (2) + Az [D"*F]] (2) — 6 {Z (= + 7)}
(1 =X [D"WJ] (2) + A [D*tmWJ] (2) 147z
FY(0)=0=(F)"(0)—1)

and

(1= Nz[D"W] (2) + Az [P W) () [ (= + w]
(1 =) [D"Wa] (2) + A D" Wa] (2) 1+7z
WP (0)=0= (W) (0)-1).
Clearly the functions K& , FY W7 € G m (¢) . Also we write K¢ = K$2. If
i < o1 or j1i > 09, then the equality holds if and only if is K¢ or one of its rotations.
When pu < 01 < 09, the equality holds if and only if is K¢3or one of its rotations.
If ;1 = o1 then the equality holds if and only if is FJ or one of its rotations. If
1 = oz then the equality holds if and only if is W) or one of its rotations. a
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If 01 < p < 09 then, in view of Lemma 1 ,2 can be improved. Let o3 be given
by
227 1+ A (2™ — V)]* {B} + By}
3" 242X (3 ( — 1) B?

g3 =
If 0y < p < o3, then

227 [1+ A (27 — 1))
3n[2+2X (3™ — 1)] B

‘as —Ma§| +

32+ 20 (3™ — 1) — 227 1 + A (2™ — 1)]?
7] R Nt Vel | VE D) ey P
227 14+ A (2™ —1)]
By
_3”[2+2>\(3m— 1))
If 05 < pu < 09, then
220 [14 A (2™ — 1))
9
los = naal + 5 ox g 1) B2
32422 (3™ —1)] =227 [1+ A (2™ — 1)]?
Bt pp g THREAGT D L@ 1P ]
220 [14+ A (2™ —1)]
B
< .
324203 — 1)
Proof. For the values of o1 < p < o3, we have
las — pad| + (n— 01) |az|* =
B; B? 9
co —vey| + - c =
3n9 [2+2)\(3m 1)] | 2 1’ ‘Ll, )4'2271 [1+)\(2m,1)]2| 1|
By |02—vcf|—|—
372[2 + 2X (3™ — 1)]
M_22n[1+A(2m—1)12{(32—31)+35} B} el =
3n[2+2A(3m - 1)] B} 4.22n [14 A (2m — 1))

By 1 ch —vei| +v |cl|2} < B .
3n[242X(3m —1)] | 2 T 3n 2420 (3™ —1)]
Similary, for the values of o3 < p < g9, we write

las — pa| + (o2 — ) |az|* =

= B lco —ved| + (02 — ) Bi [
3122+ 2A(3m — 1) 172 1 2T e A - )
= Bl ‘CQ *"UC%|
3n2[2 + 21 (3™
2271 [1+)\(2m_ )} {(BQ+Bl)+Bl} B BIQ |C |2
32+ 2\ (3" —1)| B 2.2 1+ A(2m — 1)

By 1 2 2 By
_ 2 ley — 1— } < :
302+ 2) (3™ — 1)] {2 UCQ ”01’” Dlal]s < s en 1)
Thus, the proof of Remark 2 is evidently completed. ([l
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3. Applications to Functions Defined by Fractional Derivatives

In order to introduce the class G}\ nom (¢), we need the following:
Let (z) be analytic in a simply connected region of the z—plane containing the

origin. The fractional derivative of order = is defined by
1 d [ Q)
DY (z) :== —/ d¢ 0<y<l),
Ot ah o :

where the multiplicity of (z — () is removed by requiring that log(z — ¢)7 is real
for z — ¢ > 0. Using the above Definition 3. and its known extensions involving
fractional derivatives and fractional integrals, Owa and Srivastava [1] introduced
the operator U7 : A — A defined by

() (2) =T(2—7)2"D]) (2)  (y#2.34,...).

The class G7

A,n,m

(¢) consists of functions € A for which 7 € Gy ;. (¢) . Note

that G¢ .., (¢) = S*(¢) and Gz n.m (#) is the special case of the class GA o (@)
when
—~L(k+1)C2-7) 4
z:: Tht 1 = ) z". (8)
Let
D=zt Y e (a>0)
Since

D™ (2) —Z—FZk"akz € G (9)
k=2
If and only if

D"(xg)(2) = 2+ > _k"grz* € Grnm (),
k=2

we obtain the coefficient estimate for functions in the class G, ,, (¢), from the
corresponding estimate for functions in the class G m (¢) . Applying Theorem 2
for the function (f * g)(2) = z + 2"geaz2? + 3"gzazz® + ..., we get the following
Theorem 3 after an obvious change of the parameter u:

Let the function ¢(z) be given by ¢(2) = 1+ By z+ Baz?+....and let € Gi nom (D)5
then ueC

1 B _ ng: 2 1 2] .
9 {Snmzxfsmm AR PR D1 T 3"[2+2A<3m71>]31] it p< o
|ag — paz| < + | s if o1 < p<oy

gs | 3"[2+2A(3™—1)]
L Bﬂ if u> o9,

N By + Kg3 __B2_ 1
93 3PRF2AB™—1)] T 22 [14A(@m—1)?g2 L T 3 [22A(E™ 1))

where
g [ (B B+ B
! 93 3n 2+ 21 (3™ — 1)] B2
A VP [ (Byt B+ B
2T g3 3n[2+21(3m — 1) BZ|

The result is sharp.
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Since -
Z k —; 1 : 2 )knerZk
k=2 +1-19)
we have rEIrR ) )
— -7 _
PTTTE o) 24 ©)
and I'(4)I'(2 6

I'(4—19) 2-70B-7)
For g, and g3 given by (9) and (10), Theorem 3 reduces to the following:
Let the function ¢(z) be given by ¢(z) = 1+ Bjz+ B22z?+....and let € G, o (©)
then p € C

(2= (B—7) B 4 2 1
76 s 3n[2+2x(23m71)] - 22n[1+)f(2m,1)]231 + 3 [212A(3™ —1)] ] if p>o1;
2—4)(3—
las — pa3| < ( ’Y)a( = [3%[2+2§(13M—1)] if o1 p<oy
C=1B=y) B: 2 1 2|
N {_ 3"[2+2A(z3’"—1)] * 22"[1+,\1(L2m—1)]231 - 3n[2+2x(3m—1)]31] if p= o,
where

g 282 1+ A (2" - 1) [ (B2 — Bi) + B} }
! 32— 1) 3n[242X(3m — 1)] B2 |’

2(3—7)22" [1+ A (2™ — D)? [ (B2 + B1) + B} }
3(2—7) 3n[2+2A(3m — )] B2’

09 =

The result is sharp.

When A\ = 0,n,m = 0, By = 8/7% and By = 16/37 the above Theorem 3 reduces
to a recent result of Srivastava and Mishra [1, Theorem 8, p. 64] for a class of
functions for which (¥7) (2)is a parabolic starlike functions [2, 4].
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