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DHAGE ITERATION METHOD FOR EXISTENCE AND

APPROXIMATE SOLUTIONS OF NONLINEAR QUADRATIC

FRACTIONAL DIFFERENTIAL EQUATIONS

BAPURAO C. DHAGE, SHYAM B. DHAGE, SOTIRIS K. NTOUYAS

Abstract. In this paper the authors prove an algorithm for the existence as
well as approximation of the positive mild solutions of the initial value prob-
lems of nonlinear quadratic fractional differential equations using the operator

theoretic technique in a partially ordered metric space. The main results rely
on the Dhage iteration method embodied in a recent hybrid fixed point theo-
rem of Dhage (2014) in a partially ordered normed linear space. The approx-
imation of the mild solutions of the considered nonlinear quadratic fractional

differential equation is obtained under weaker mixed partial Lipschitz and
partial compactness type conditions. Our hypotheses and the result are also
illustrated by a numerical example.

1. Introduction

The Dhage iteration principle or method (in short DIP or DIM) is relatively new
to the literature on nonlinear analysis, particularly in the theory of nonlinear dif-
ferential and integral equations, but it has been becoming more popular among the
mathematicians all over the world because of its utility of applications to nonlinear
equations for different qualitative aspects of the solutions. Very recently, the above
method has been applied in Dhage [3, 5, 6, 7, 8], Dhage and Dhage [12, 13] and
Dhage et.al. [14, 15] to nonlinear ordinary differential and fractional differential
equations for proving the existence and algorithms of the solutions. Similarly, DIM
has also some interesting applications in the theory of nonlinear fractional equa-
tions and in the present paper we prove the existence as well as algorithms for mild
solutions of the initial value problems of quadratic fractional differential equations.

Before stating the main problem of this paper, we recall the following basic
definitions of fractional calculus [17, 18] which are useful in what follows.

Definition 1.1. If J∞ = [t0,∞) be an interval of the real line R for some t0 ∈ R
with t0 ≥ 0, then for any x ∈ C(J∞,R), the Riemann-Liouville fractional integral
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of order q > 0 is defined as

Iqx(t) =
1

Γ(q)

∫ t

t0

x(s)

(t− s)1−q
ds, t ∈ J∞,

provided the right hand side is pointwise defined on (t0,∞).

Definition 1.2. The Riemann-Liouville fractional derivative of order q > 0, n −
1 < q < n, n ∈ N, on the interval J∞ of R is defined as

Dq
t0+f(t) =

1

Γ(n− q)

(
d

dt

)n ∫ t

t0

(t− s)n−q−1f(s) ds,

where the function f(t) has absolutely continuous derivative up to order (n− 1) on
J∞.

Definition 1.3. If x ∈ ACn(J∞,R), then the Caputo derivative cDqx of x of
fractional order q is defined as

cDqx(t) =
1

Γ(n− q)

∫ t

t0

(t− s)n−q−1x(n)(s) ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q, and Γ is the Euler’s gamma
function. Here ACn(J∞,R) denote the space of real valued functions x(t) which
have continuous derivatives up to order n− 1 on J∞ such that xn(t) ∈ AC(J∞,R).
Definition 1.4. The Caputo derivative of order q for a function f : [t0,∞) → R
can be written as

cDqf(t) = Dq

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(t0)

)
, t > 0, n− 1 < q < n.

Remark 1.5. If f(t) ∈ ACn(J∞,R) then

cDqf(t) =
1

Γ(n− q)

∫ t

t0

f (n)(s)

(t− s)q+1−n
ds = In−qf (n)(t), t > 0, n− 1 < q < n.

Lemma 1.6 (Podlubny [18]). For q > 0, the general solution of the fractional
differential equation cDqx(t) = 0 is given by

x(t) = c0 + c1t+ . . .+ cn−1t
n−1,

where ci ∈ R, i = 1, 2, . . . , n− 1 (n = [q] + 1).

As a consequence of Lemma 1.6, we obtain the following result concerning the
Riemann-Liouville integration of Caputo fractional derivative of a function.

Lemma 1.7 (Podlubny [18]). For any q > 0 and x ∈ C(n)(J∞,R),
Iq cDqx(t) = x(t) + c0 + c1t+ . . .+ cn−1t

n−1,

for some ci ∈ R, i = 1, 2, . . . , n − 1 (n = [q] + 1), where ACn(J∞,R) denotes the
space of n-times absolute continuously differentiable real-valued functions on J∞.

Given a closed and bounded interval J = [t0, t0 + a] of the real line R for some
t0, a ∈ R with t0 ≥ 0 and a > 0, consider the initial value problem (in short IVP)
of nonlinear fractional quadratic fractional differential equation (QFDE),

cDq

[
x(t)

f(t, x(t))

]
= g(t, x(t)), t ∈ J,

x(t0) = α0 ∈ R+,

 (1)
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where cDq is the Caputo derivative of fractional order q, 0 < q < 1 and f : J ×
R× R → R \ {0}, g : J × R× R → R are a continuous functions.

The nonlinear QFDE (1) is well-known in the literature and has been discussed
at length for the existence and other characterizations of the solutions under com-
pactness and Lipschitz conditions which are considered to be very strong in the
theory of nonlinear differential and integral equations. In the present paper we
prove the existence and approximation of the mild solutions of QFDE (1) under
weaker partially compactness and partially Lipschitz type conditions via Dhage
iteration method and also indicate some realizations.

The rest of the paper will be organized as follows. In Section 2 we give some
preliminaries and a key fixed point theorem that will be used in subsequent part of
the paper. In Section 3 we discuss the main existence and approximation result for
initial value problems of quadratic fractional differential equations.

2. Auxiliary Results

Unless otherwise mentioned, throughout this paper that follows, let E denote a
partially ordered real normed linear space with an order relation ≼ and the norm
∥ · ∥ in which the addition and the scalar multiplication by positive real numbers
are preserved by ≼ . A few details of such partially ordered linear spaces appear in
Dhage [1] and the references therein.

Two elements x and y in E are said to be comparable if either the relation
x ≼ y or y ≼ x holds. A non-empty subset C of E is called a chain or totally
ordered if all elements of C are comparable. It is known that E is regular if
{xn} is a nondecreasing (resp. nonincreasing) sequence in E such that xn → x∗ as
n → ∞, then xn ≼ x∗ (resp. xn ≽ x∗) for all n ∈ N. The conditions guaranteeing
the regularity of E may be found in Heikkilä and Lakshmikantham [16], Zeidler
[19] and the references therein.

We need the following definitions in the sequel.

Definition 2.1. A mapping B : E → E is called isotone or nondecreasing if it
preserves the order relation ≼, that is, if x ≼ y implies Bx ≼ By for all x, y ∈ E.

Definition 2.2 (Dhage [1]). A mapping B : E → E is called partially continuous
at a point a ∈ E if for ϵ > 0 there exists a δ > 0 such that ∥Bx−Ba∥ < ϵ whenever
x is comparable to a and ∥x− a∥ < δ. B called a partially continuous on E if it is
partially continuous at every point of it. It is clear that if B is a partially continuous
on E, then it is continuous on every chain C contained in E.

Definition 2.3. A non-empty subset S of the partially ordered Banach space E is
called partially bounded if every chain C in S is bounded. A mapping B : E → E
is called partially bounded if T (E) is partially bounded subset of E. B is called
uniformly partially bounded if all chains C in B(E) are bounded by a unique
constant. B is called bounded if T (E) is a bounded subset of E.

Definition 2.4. A non-empty subset S of the partially ordered Banach space E is
called partially compact if every chain C in S is compact. A mapping B : E → E is
called partially compact if B(E) is a partially relatively compact subset of E. B
is called uniformly partially compact if B(E) is a uniformly partially bounded
and partially compact subset of E. B is called partially totally bounded if for
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any bounded subset S of E, B(S) is a partially relatively compact subset of E. If
B is partially continuous and partially totally bounded, then it is called partially
completely continuous on E.

Definition 2.5 (Dhage [1]). The order relation ≼ and the metric d on a non-empty
set E are said to be compatible if {xn}n∈N is a monotone, that is, monotone non-
decreasing or monotone nonincreasing sequence in E and if a subsequence {xnk

}n∈N
of {xn}n∈N converges to x∗ implies that the original sequence {xn}n∈N converges to
x∗. Similarly, given a partially ordered normed linear space (E,≼, ∥ · ∥), the order
relation ≼ and the norm ∥ ·∥ are said to be compatible if ≼ and the metric d defined
through the norm ∥·∥ are compatible. A subset S of E is called Janhavi if the order
relation ≼ and the metric d or the norm ∥ · ∥ are compatible in it. In particular, if
S = E, then E is called a Janhavi metric or Janhavi Banach space.

Clearly, the set R of real numbers with usual order relation ≤ and the norm
defined by the absolute value function | · | has this property. Similarly, the finite
dimensional Euclidean space Rn with usual componentwise order relation and the
standard norm possesses the compatibility property and so is a Janhavi Banach
space.

Definition 2.6 (Dhage [1]). A upper semi-continuous and nondecreasing function
ψ : R+ → R+ is called a D-function provided ψ(0) = 0. Let (E,≼, ∥ · ∥) be a
partially ordered normed linear space. A mapping B : E → E is called partially
nonlinear D-Lipschitz if there exists a D-function ψ : R+ → R+ such that

∥Bx− By∥ ≤ ψ(∥x− y∥) (2)

for all comparable elements x, y ∈ E. If ψ(r) = k r, k > 0, then B is called a
partially Lipschitz with a Lipschitz constant k. T : E → E is a partially nonlinear
D-contraction if 0 < ψ(r) < r for r > 0.

Let (E,≼, ∥ · ∥) be a partially ordered normed linear algebra. Denote

E+ =
{
x ∈ E | x ≽ θ, where θ is the zero element of E

}
and

K = {E+ ⊂ E | uv ∈ E+ for all u, v ∈ E+}. (3)

The elements of the set K are called the positive vectors in E. Then following
lemma is immediate.

Lemma 2.7 (Dhage [1]). If u1, u2, v1, v2 ∈ K are such that u1 ≼ v1 and u2 ≼ v2,
then u1u2 ≼ v1v2.

Definition 2.8. An operator B : E → E is said to be positive if the range R(B) of
B is such that R (B) ⊆ K.

The common assertion developed in the hybrid fixed point theorems of Dhage
[2, 3, 4, 5] is known as Dhage iteration principle (in short DIP) which states
that “the sequence of successive approximations of a nonlinear equation
beginning with a lower or an upper solution as its first or initial approx-
imation converges monotonically to the solution.” This aforesaid principle
forms a basic and powerful tool in the study of numerical and constructive solutions
for nonlinear differential and integral equations and called the Dhage iteration
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method for nonlinear equations. See Dhage and Dhage [11, 12] and the refer-
ences therein. The following applicable hybrid fixed point theorem of Dhage [2, 10]
containing the DIP is used as a key tool for the work of this paper.

Theorem 2.9 (Dhage [2]). Let
(
E,≼, ∥ · ∥

)
be a regular partially ordered complete

normed linear algebra such that the order relation ≼ and the norm ∥ · ∥ in E are
compatible in every compact chain C of E. Let A,B : E → K be two nondecreasing
operators such that

(a) A is partially bounded and partially nonlinear D-Lipschitz with D-function
ψA,

(b) B is partially continuous and uniformly partially compact,
(c) 0 < MψA(r) < r, r > 0, where M = sup{∥B(C)∥ : C is a chain in E},

and
(d) there exists an element x0 ∈ X such that x0 ≼ Ax0 Bx0 or x0 ≽ Ax0 Bx0.

Then the operator equation AxBx = x has a positive solution x∗ in E and the
sequence {xn} of successive iterations defined by xn+1 = Axn Bxn, n = 0, 1, . . .,
converges monotonically to x∗.

Remark 2.10. We remark that hypothesis (a) of Theorem 2.9 implies that the
operator A is partially continuous and consequently both the operators A and B in
the theorem are partially continuous on E. The regularity of E in above Theorem
2.9 may be replaced with a stronger continuity condition of the operators A and B.
See Dhage [1, 2] and the references therein.

Remark 2.11. The compatibility of the order relation ≼ and the norm ∥ · ∥ in
every compact chain of E holds if every partially compact subset of E possesses
the compatibility property with respect to ≼ and ∥ · ∥. This simple fact is used to
prove the desired characterization of the positive solution of the QDE (1) on J .

3. Main Existence Result

The equivalent integral form of the QFDE (1) is considered in the function space
C(J,R) of continuous real-valued functions defined on J . We define a norm ∥ · ∥
and the order relation ≤ in C(J,R) by

∥x∥ = sup
t∈J

|x(t)| (4)

and

x ≤ y ⇐⇒ x(t) ≤ y(t) (5)

for all t ∈ J . Clearly, C(J,R) is a Banach space with respect to above supremum
norm and also partially ordered w.r.t. the above partially order relation ≤. It is
known that the partially ordered Banach space C(J,R) is regular and a lattice so
that every pair of elements of E has a lower and an upper bound in it. It is known
that the partially ordered Banach space C(J,R) has some nice properties w.r.t.
the above order relation in it. The following lemma follows by an application of
Arzellá-Ascoli theorem.

Lemma 3.1. Let
(
C(J,R),≤, ∥ · ∥

)
be a partially ordered Banach space with the

norm ∥ · ∥ and the order relation ≤ defined by (4) and (5) respectively. Then every
partially compact subset S of C(J,R) ∥ · ∥ is Janhavi, i.e., the order relation ≤ and
the norm ∥ · ∥ are compatible in S.
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Proof. The proof of the lemma is given in Dhage and Dhage [12]. Since the proof
is not well-known, we give the details of it. Let S be a partially compact subset
of C(J,R) and let {xn}n∈N be a monotone nondecreasing sequence of points in S.
Then we have

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · , (M)

for each t ∈ J .

Suppose that a subsequence {xnk
}k∈N of {xn}n∈N is convergent and converges

to a point x in S. Then the subsequence {xnk
(t)}k∈N of the monotone real se-

quence {xn(t)}n∈N is convergent. By monotone characterization, the whole se-
quence {xn(t)}n∈N is convergent and converges to a point x(t) in R for each t ∈ J .
This shows that the sequence {xn}n∈N converges x point-wise in S. To show
the convergence is uniform, it is enough to show that the sequence {xn(t)}n∈N
is equicontinuous. Since S is partially compact, every chain or totally ordered set
and consequently {xn}n∈N is an equicontinuous sequence by Arzelá-Ascoli theorem.
Hence {xn}n∈N is convergent and converges uniformly to x. As a result, ∥ · ∥ and ≤
are compatible in S and so S is a Janhavi set in E. This completes the proof. �

We need the following definition in what follows.

Definition 3.2. A function u ∈ C1(J,R) is said to be a lower solution of the
QFDE (1) if it satisfies

cDq

[
u(t)

f(t, u(t))

]
≤ g(t, u(t)), t ∈ J,

u(t0) ≤ α0.

 (∗)

Similarly, an upper solution v ∈ C1(J,R) to the QFDE (1) is defined on J, by the
above inequalities with reverse sign.

We consider the following set of assumptions in what follows:

(A0) The map x 7→ x

f(t, x)
is injection for each t ∈ J .

(A1) f defines a function f : J × R → R+.
(A2) There exists a constant Mf > 0 such that 0 < f(t, x) ≤ Mf for all t ∈ J

and x ∈ R.
(A3) There exists a D-function φ, such that

0 ≤ f(t, x)− f(t, y) ≤ φ(x− y),

for all t ∈ J and x, y ∈ R, x ≥ y. Moreover,(∣∣∣ α0

f(t0, α0)

∣∣∣+ aqMg

Γ(q + 1)

)
φ(r) < r, r > 0.

(B1) g defines a function g : J × R → R+.
(B2) There exists a constant Mg > 0 such that 0 < g(t, x) ≤ Mg for all t ∈ J

and x ∈ R.
(B3) g(t, x) is nondecreasing in x for all t ∈ J .
(B4) The QDE (1) has a lower solution u ∈ C(J,R).

Remark 3.3. Notice that Hypothesis (A0) holds in particular if the function x 7→
x

f(t, x)
is increasing for each t ∈ J .
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The following lemma is useful and follows from the results given in Kilbas et.al.
[17] and Podlubny [18].

Lemma 3.4. Assume that the hypothesis (A0) holds. If a function x ∈ C1(J,R) is
a solution of the QFDE

cDq

[
x(t)

f(t, x(t))

]
= g(t, x(t)), t ∈ J, 0 < q < 1,

x(t0) = α0,

 (6)

then it is a solution of the nonlinear quadratic fractional integral equation (QFIE),

x(t) =
[
f(t, x(t))

]( α0

f(t0, α0)
+

1

Γ(q)

∫ t

t0

(t− s)q−1 g(s, x(s)) ds

)
, t ∈ J. (7)

Proof. Assume first that x ∈ C1(J,R) is a solution to the QFDE (1) defined on J .
By Lemma 1.6, we have

x(t)

f(t, x(t))
=

∫ t

t0

(t− s)α−1

Γ(α)
g(s, x(s))ds+ c0, (8)

where c0 ∈ R. Since x(t0) = α0, f(t0, α0) ̸= 0, it follows c0 =
α0

f(t0, α0)
. Thus (7)

holds. �

Definition 3.5. A function x ∈ C1(J,R) that satisfies the QFIE (8) is called a
mild solution of the QFDE (1) defined on J .

Theorem 3.6. Assume that the hypotheses (A0) through (A3) and (B1) through
(B4) hold. Then the QFDE (1) has a positive mild solution x∗ defined on J and
the sequence {xn}∞n=1 of successive approximations defined by

xn+1(t) =
[
f(t, xn(t))

]( α0

f(t0, α0)
+

1

Γ(q)

∫ t

t0

(t− s)q−1g(s, xn(s)) ds

)
, (9)

for all t ∈ R, where x1 = u, converges monotonically to x∗.

Proof. By Lemma 3.4, every solution x ∈ C1(J,R) of the QFDE (1) satisfies the
nonlinear quadratic fractional integral equation

x(t) =
[
f(t, x(t))

]( α0

f(t0, α0)
+

1

Γ(q)

∫ t

t0

(t− s)q−1g(s, x(s)) ds

)
, t ∈ J. (10)

Set E = C(J,R). Then, from Lemma 3.1 it follows that every compact chain in
E possesses the compatibility property with respect to the norm ∥ · ∥ and the order
relation ≤ in E.

Define the operators A and B on E by

Ax(t) = f(t, x(t)), t ∈ J, (11)

and

Bx(t) = α0

f(t0, α0)
+

1

Γ(q)

∫ t

t0

(t− s)q−1g(s, x(s)) ds, t ∈ J. (12)

From the continuity of the integrals, it follows that A and B define the maps
A,B : E → E. Then, the QFDE (1) is equivalent to the operator equation

Ax(t)Bx(t) = x(t), t ∈ J. (13)



JFCA-2016/7(2) FRACTIONAL DIFFERENTIAL EQUATIONS 139

We shall show that the operators A and B satisfy all the conditions of Theorem
2.9. This is achieved in the series of following steps.

Step I: A and B are nondecreasing on E.

Let x, y ∈ E be such that x ≥ y. Then by hypothesis (A3), we obtain

Ax(t) = f(t, x(t)) ≥ f(t, y(t)) = Ay(t),

for all t ∈ J . This shows that A is nondecreasing operator on E into E. Similarly,
we have

Bx(t) =
α0

f(t0, α0)
+

1

Γ(q)

∫ t

t0

(t− s)q−1g(s, x(s)) ds

≥ α0

f(t0, α0)
+

1

Γ(q)

∫ t

t0

(t− s)q−1g(s, y(s)) ds

= By(t),
for all t ∈ J . This shows that B is nondecreasing operator on E into E.

Step II: A is partially bounded and partially D-Lipschitz on E.

Let x ∈ E be arbitrary. Then by (A2),

|Ax(t)| ≤
∣∣f(t, x(t))∣∣ ≤Mf ,

for all t ∈ J . Taking the supremum over t, we obtain ∥Ax∥ ≤ Mf and so, A is
bounded. This further implies that A is partially bounded on E.

Next, let x, y ∈ E be such that x ≥ y. Then,

|Ax(t)−Ay(t)| =
∣∣f(t, x(t))− f(t, y(t))

∣∣ ≤ φ(|x(t)− y(t)|) ≤ φ(∥x− y∥),

for all t ∈ J . Taking the supremum over t, we obtain ∥Ax−Ay∥ ≤ φ(∥x− y∥), for
all x, y ∈ E. Hence A is a partially D-Lipschitz on E which further implies that A
is a partially continuous on E.

Step III: B is a partially continuous on E.

Let {xn} be a sequence of points of a chain C in E such that xn → x for all
n ∈ N. Then, by dominated convergence theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

[
α0

f(t0, α0)
+

1

Γ(q)

∫ t

t0

(t− s)q−1g(s, xn(s)) ds

]

=
α0

f(t0, α0)
+

1

Γ(q)

∫ t

t0

(t− s)q−1
[
lim
n→∞

g(s, xn(s)) ds
]
ds

=
α0

f(t0, α0)
+

1

Γ(q)

∫ t

t0

(t− s)q−1g(s, x(s)) ds

= Bx(t),

for all t ∈ J . This shows that {Bxn} converges to Bx pointwise on J .

Next, we will show that {Bxn} is an equicontinuous sequence of functions in E.
Let t1, t2 ∈ J be arbitrary with t1 < t2. Then

|Bxn(t2)− Bxn(t1)|

≤
∣∣∣∣ 1

Γ(q)

∫ t2

t0

(t2 − s)q−1g(s, xn(s)) ds



140 B.C. DHAGE, S.B. DHAGE, S.K. NTOUYAS JFCA-2016/7(2)

− 1

Γ(q)

∫ t2

t0

(t1 − s)q−1g(s, xn(s)) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(q)

∫ t2

t0

(t1 − s)q−1g(s, xn(s)) ds

− 1

Γ(q)

∫ t1

t0

(t1 − s)q−1g(s, xn(s)) ds

∣∣∣∣
≤ 1

Γ(q)

∣∣∣∣∫ t2

t0

|(t2 − s)q−1 − (t1 − s)q−1| |g(s, xn(s))| ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t2

t1

(t1 − s)q−1|g(s, xn(s))| ds
∣∣∣∣

≤ Mg

Γ(q)

∣∣∣∣∫ t2

t0

|(t2 − s)q−1 − (t1 − s)q−1| ds
∣∣∣∣

+
Mg

Γ(q)

∣∣∣∣∫ t2

t1

(t1 − s)q−1| ds
∣∣∣∣ .

Consequently,
|Bxn(t2)− Bxn(t1)| → 0 as t2 → t1

uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniformly
and hence B is a partially continuous on E.

Step IV: B is a partially compact on E.

Let C be an arbitrary chain in E. We show that B(C) is a uniformly bounded
and equicontinuous set in E. First we show that B(C) is uniformly bounded. Let
x ∈ C be arbitrary. Then,

|Bx(t)| ≤
∣∣∣ α0

f(t0, α0)

∣∣∣+ 1

Γ(q)

∫ t

t0

(t− s)q−1|g(s, x(s))| ds

≤
∣∣∣ α0

f(t0, α0)

∣∣∣+ 1

Γ(q)

∫ t

t0

(t− s)q−1|g(s, x(s))| ds

≤
∣∣∣∣ α0

f(t0, α0)

∣∣∣∣+ aqMg

Γ(q + 1)
= r,

for all t ∈ J . Taking the supremum over t, we obtain ∥Bx∥ ≤ r for all x ∈ C.
Hence B(C) is a uniformly bounded subset of E. Next, we will show that B(C) is
an equicontinuous set in E. Let t1, t2 ∈ J be arbitrary with t1 < t2. Then

|Bx(t2)− Bx(t1)|

≤
∣∣∣∣ 1

Γ(q)

∫ t2

t0

(t2 − s)q−1g(s, x(s)) ds− 1

Γ(q)

∫ t2

t0

(t1 − s)q−1g(s, x(s)) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(q)

∫ t2

t0

(t1 − s)q−1g(s, x(s)) ds− 1

Γ(q)

∫ t1

t0

(t1 − s)q−1g(s, x(s)) ds

∣∣∣∣
≤ 1

Γ(q)

∣∣∣∣∫ t2

t0

|(t2 − s)q−1 − (t1 − s)q−1| |g(s, x(s))| ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t2

t1

(t1 − s)q−1|g(s, x(s))| ds
∣∣∣∣
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≤ Mg

Γ(q)

∣∣∣∣∫ t2

t0

|(t2 − s)q−1 − (t1 − s)q−1| ds
∣∣∣∣

+
Mf

Γ(q)

∣∣∣∣∫ t2

t1

(t1 − s)q−1| ds
∣∣∣∣ .

Thus, we have that

|Bxn(t2)− Bxn(t1)| → 0 as t2 → t1

uniformly for all x ∈ C. This shows that B(C) is an equicontinuous set in E. Hence
B(C) is compact subset of E and consequently B is a partially compact operator
on E into itself.

Step V: D-function ψA satisfies the growth condition 0 < MψA(r) < r, r > 0.

From the estimate given in Step IV, it follows that

0 < MψA(r) ≤
(∣∣∣ α0

f(t0, α0)

∣∣∣+ aqMg

Γ(q + 1)

)
φ(r) < r

for all r > 0.

Step VI: u satisfies the operator inequality u ≤ AuBu.
Since the hypothesis (B4) holds, u is a lower solution of the QFDE (1) defined

on J. Then,

cDq

[
u(t)

f(t, u(t))

]
≤ g(t, u(t)), (14)

satisfying,

u(t0) ≤ α0, (15)

for all t ∈ J .

Operating Iq on both sides of (14), we obtain

u(t) ≤
[
f(t, u(t))

]( α0

f(t0, α0)
+

1

Γ(q)

∫ t

t0

(t− s)q−1g(s, u(s)) ds

)
, (16)

for all t ∈ J . This show that u is a lower solution of the operator equation x =
AxBx.

Thus the operators A and B satisfy all the conditions of Theorem 2.9 in view of
Remark 2.11 and we apply it to conclude that the operator equation AxBx = x
has a positive mild solution defined on J . Consequently the integral equation and
the QFDE (1) has a positive mild solution x∗ defined on J and the sequence {xn}
of successive approximations defined by (9) converges monotonically to x∗. This
completes the proof. �

Remark 3.7. The conclusion of Theorem 3.6 also remains true if we replace the
hypothesis (B4) with the following one:

(B′
4) The QFDE (1) has an upper solution v ∈ C1(J,R).

Example 3.8. Given a closed and bounded interval J = [0, 1], consider the FDE,

cD1/2

[
x(t)

f(t, x(t))

]
=

1 + tanhx(t)

12
, t ∈ J,

x(0) =
1

3
.

 (17)
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where,

f(t, x) =

 1, if x ≤ 0

1 +
x

1 + x
, if x > 0

Clearly, the functions f is continuous and nonnegative on J × R with bound
Mf = 2. It is easy to prove that the mapping

x 7→ x

f(t, x)
=


x, if x ≤ 0,

x

1 + x
1+x

if x > 0,

is increasing for each t ∈ J and so the hypothesis (A0) is satisfied. Furthermore,
the function f is D-Lipschitz with D-function ψ(r) = r, since we have

0 ≤ f(t, x)− f(t, y) ≤ x− y

for x ≥ y. Similarly, the function g is continuous and nonnegative on J × R with

bound Mg =
1

6
. Moreover, the function g(t, x) =

1 + tanhx

12
is nondecreasing in x

for each t ∈ J.

Finally, the QFDE (17) has a lower solution u defined by

u(t) =
4

15
− 2

Γ(1/2)

∫ t

0

(t− s)−1/2 ds =
4

15
+

2√
π
t1/2

for all t ∈ J . Further we notice that
∣∣∣ α0

f(t0, α0)

∣∣∣ + aqMg

Γ(q + 1)
=

4

15
+

1

3
√
π
< 1.

Thus all the hypotheses of Theorem 3.6 are satisfied. Hence we conclude that the
QFDE (17) has a positive mild solution x∗ defined on J and the sequence {xn} of
successive approximations defined by

xn+1(t) =
[
f(t, xn(t))

]( 4

15
+

1√
π

∫ t

0

(t− s)1/2
[
1 + tanhxn(s)

12

]
ds

)
,

for all t ∈ J , where α0 = u, converges monotonically to x∗.

Remark 3.9. In this paper we have proved an existence result for the mild solu-
tions the QFDE (1) defined on J . However, other aspects of the mild solutions of
the QFDE (1) such as the existence of minimal and maximal mild solutions and
comparison theorems could also be proved using the same Dhage iteration method
with appropriate modifications. See Dhage [7] and the references for the details.
Furthermore, if the QFDE (1) has a lower solution u and an upper solution v such
that u ≤ v, then the corresponding mild solutions x∗ and x∗ of the QFDE (1) sat-
isfy x∗ ≤ x∗ and are the minimal and maximal mild solutions in the vector segment
[u, v] of the Banach space E = C(J,R), because the order relation ≤ defined by (4)
is equivalent to the order relation defined by the order cone

K =
{
x ∈ C(J,R) | x(t) ≥ 0 for all t ∈ J

}
, (18)

which is a closed set in C(J,R).
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4. Conclusion

From the foregoing discussion it is clear that Dhage iteration method forms an
interesting powerful method for discussing the existence results of certain nonlinear
hybrid quadratic fractional differential equations. However, it has some limitations
that unlike Picard’s method, the new method does not give the rate of convergence
of the sequence of successive approximations. Notwithstanding, we have been able
prove the numerical mild solution of the considered nonlinear fractional differential
equation. Finally, while concluding this paper we mention that the quadratic frac-
tional differential equation considered here is of very simple nature for which we
have illustrated the Dhage iteration method to obtain the algorithms for the mild
solutions under weaker partially Lipschitz and compactness conditions. However,
an analogous study could also be made for other complex quadratic fractional dif-
ferential equations using similar method with appropriate modifications. Some of
the results along this line will be reported elsewhere.

Acknowledgment. The authors are thankful to the referee for giving some sug-
gestions for the improvement of this paper.
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