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N- FRACTIONAL CALCULUS OF GENERALIZED DOUBLE
ZETA FUNCTION

FADHLE B.F. MOHSEN

ABSTRACT. Many authors investigated fractional derivative operators on some
special functions such as using the extended Riemann - Liouville fractional de-
rivative operator on extended Beta function ( cf. [1] ), and the theory of
fractional integration operators ( of Marichev- Saigo- Maeda type ) on the
Mittag - Leffler function with four parameters ( cf. [2]) and the so- called
pathway fractional integration operator due to Nair with a finite product of
Bessel functions of the first kind ( cf. [4] ). In this paper ,some new theorems
have been established by applying N- fractional Differintegration on the gen-
eralized double Zeta function and on its real and imaginary parts. Also some
particular cases have been deduced

1. INTRODUCTIONS AND DEFINITIONS

Bin- Saad in [3] defined the generalized double Zeta function by

Gy ma) = 3 (W 2,0+ Am) (1)
m=0 :

For

lz] <1, |yl<1l, pe Cu#0,-1,-2,..., a€C,a#—(n+im), AeC/\#
0, z€eC, n,meN.

where ®(y, z,a) is Hurwitz - Lerch Zeta function(cf. [5],p.27, eq.1.11(1)) , defined
by

(oo}

yn
o = — 1 C 0,-1,-2,.... 2
(y?z’a) ’”/g()(a+n)z7 |y‘ < ) ae 3 a% 3 ) 7 ( )
A further generalization of the Hurwitz - Lerch Zeta function ( cf. [6], p. 100,
eq.(1.5) ), which is called the generalized Hurwitz - Lerch Zeta function @7, (z, 2, a)

is defined by

00
(ﬂ)nxn
o = E D e — 1 —-1,-2,....
M(a:,z,a) o (a+n)zn|a |$‘ <1 2 /.LE(C, a#ov ) ) (3)
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where (u),, is the Pochhammers symbol defined by

()n = T = (4 1) (4 2)-(p+m — 1)
Also in [3], the following relationships are deduced :

¢4 (0,152, a) = (1,052,a) = ¢ (2,a), (4)
¢\ (0,y52,a) = @ (y,2,a), (5)
(1 (2,05 2,a) = @}, (v, 2,a), (6)

Where € (z,a) is the generalized Zeta function.

In [8] Nishomoto defined the fractional Differintegration of arbitrary orderv( deriva-
tives of order v for v > 0 , and integrals of order—v for v < 0 , for the function f
with respect to z , by the following :Let

D={D_,D;},C={C_,C}}

C_ be a curve along the cut joining two points z and —oo + iIm(z)
C. be a curve along the cut joining two points z and oo + iIm(z).

where D contains the point over the curve C. Moreover , let f = f(z) be a
regular function in D (z € D)

oy TN [T
(o= c(p, = =522 [ o) ™
(f)=m :Vgrfm(f)ua(mez-i_)) (8)
where
—7m <arg(¢ —z) <m, for C_
0<arg(¢—=z) < 2m, for Cy

(#2z,2€eC,veR, T() is gamma function.

The fractional calculus operator (Nishiomoto’s operator) is defined as

o T+ [ A
= TR [ e ), )

with
N™™= lim N”, (m¢€Z"), (10)

v——m

Here some useful results (cf. [7] and [8] ),which are used in our investigations :
for a#0, (z,veQ),

(eCLZ)V — a/l/eaz7 (11)
(cosaz), = a” cos (az + %V) ) (12)
(sinaz), = a” sin (az + gl/) ) (13)
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2. MAIN RESULTS

Theorem 1:

S mx y" ey 1
[C)\ (I y,Z a Z Z Z log(a+/\m+n)] m,

(14)
a €R, a>a; (apis the one such that ajloga; = 1)
Proof:

Using (1.2)in (1.1) , we get

(W) ma™y"
m!

NE
NE

K (x,y;2,0) = (a+Am+n)~*
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(’u)mxmyn zlog(a—i—km-‘rn)*l
W™y . (@)
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Now applying Nishomoto’s operator N defined by (9) to both sides of (a),and
using (11) ,we get

(ﬂ)mzmyn |:ezlog(a+)\m+n) -1 :|

M
NE

[Cf\L (%ZJ? Zaa‘)]a(z)

oo m! a(z)
S Y [ ) 1] ot
m!
m=0n=0
o o (W)ma™y" o 1
- Mm= T A S
mz::()nz::o " [—log(a + Am + n)] @t om )
1
'L‘ITCK l A
= OnZO [fog(a + Am +n)]" (a + Am 4+ n)?

Which ends the proof.
Theorem 2:

{I&X (@,932,0)] 5y boc) = {ICX (@952, 0)] 5y Yace) = {1 (2,952, @) at8)(2)

(15)
a f €R, a>a; (ay is the one such that ajloga; = 1)
Proof: This theorem easily can be proved by using theorem (2)
Theorem 3:
[Cf\t (xa Y u + 1w, a)]a(u)
N (Wma ™y 1ja 1
= —— 1l A —_— 16
mz::m;) o [log(a+ Am +n)~1] @ m i)y’ (16)
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[C;f ($7 Y u + 10, a)]ﬁ(v)

— i ZZ log(a+/\m+n) }ﬁ%v (17)

=0n=0

a B €R, a>a; (ap is the one such that ajloga; =1)
Proof:
Equation(16)can be proved as follows:

KA (z,y; 2, a)]a(z) K)\ (2, y;u + v, a)]a(u)

= Z Z mx v [a+>\m+n)*(u+iv)]a(u)

m=0n=0

o Z Z mx y log(a+)\m+n)_i” |:elog(a+)\m+n)_“:|
a(u)

m=0n=0

Now using (11) , we get:

oo oo

[CKL (ﬂc,y;z7a)]a(u) = Z

(M)mxmyn eivlog(a-{-)\m—i-n)fl [log(a +Am+ n)—l}a eulog(a+)\m—i-n)71

(]

m!
m=0n=0
(o) (o)
-y Y (W)mz™y" [log(a + Am + n) 1] lestartamem =0+
m!
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o
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I
o

(N/)nl# [log(a+>\m+n)*1]a (a+>\m+n)*(u+iv)

M
NE

3
]
o
S
]
o

put u + iv = z , then we get the required result.
The proof of (17) can be done in the same wayas in (16).

Theorem 4:
Let Re{¢{ (z,v;2,a)} = w(u,v) = w and Im{C} (z,y; 2z,a)} = t(u,v) =t
we have

1

We(u) = mZ:O nz;) log(a + Am + n)]* (a+ m+n)v
x cos [vlog(a + Am +n) '], (18)
Y o= m! (a+Am +n)¢
X €08 [vlog(a +Am+n)" + B} (19)
b = €™ i iw[log(a_k)\m_,_n”a;
o == ml (a+ Am + n)v

x sin [vlog(a + Am +n) '], (20)
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1
_ pimpB
=e E E log(a+/\m+n)] @ am )"

38 (21)

m=0n=0

X sin [vlog(a +Am+n)"t +

a B €R, a>a; (apis the one such that ajloga; = 1)

Proof:
first we have to prove (18)
- (Wmr™y" -
K (@yiza) =) Y = (a+ Am+n)
m=0n=0
(W)mz™y"

(a+ Am + n)~(wt)

M
NE

m/!

3
I
=]
3
I
o

m,mn )
(/L)milf Yy elog(a+)\m+n)_“’ 6log(a+)\m+n)_”“
m!

M
NE

3
]
o
S
]
o

(M)mx' Y eulog(a+)\m+n)71{cos [vlog(a—l—)\m—f—n)*l]
m:

o
M8

(=)

m=0

+isin [vlog(a + Am +n) "'},

3

(22)
From (22) it is clear that

RG{C)\ T,y 2, a }_ Z Z mx y ulog(a+>\m,+n)71 cos [vlog(a—l—)\m—&—n)_l}

m=0n=0

=w, (23)

and

Im{()\ 2,y; 2, ) Z Z mx y" ulog(a-Q—)wn-‘rn)71 sin [vlog(a—i—)\m—&-n)_l}

m=0n=0

=t, (24)
Using (11), from (23), we have

Wau) = Z Z mai y" [ ulog(a-‘r)\m-i-n)*l} cos [vlog(a L am n)_l] 7

m=0n=0 a(u)

(25)

Now using (11) on (25), we get the result.
To prove (19),from (23), we have

mZL’ y uo a m+4n) ! —
Wa(y) = Z Z log(at+Am+n) {cos [vlog(a—i—)\m—i—n) 1]}/3(1,), (26)

m=0 n=0
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Now using (12) on (26), we get the result.
The proof of (20) and (21) can be deduced from (24) by using (25) and (13), in the
same manner as in the proof of (18)and (19) .

Theorem 5:

[Céf (x7y; Zva)}a(u) - (_Z)a [C;\L (x,y; Zva)]a(v) = 07 (27)

where z =u+iv, Re(z) >1, @ ,u, veER, a>a; (ajis the one such that
arloga; = 1)

Proof:
we have for z = u + iv, Re(z) > 1, and by using theorem 3,

“ [Cf{ (x, Y; z, a)]a(u) - [Cf\L (-75’ Y5z, a)]a(v)

1

QZZ log(a—i—)\m—i—n) ]a—z
m=0n=0 (a + /\m + 7’L)
« 1
QZZ Zog(a—i—)\m—i—n) '] v
m=0n=0 (a + )\m + n)
=0, (b)
. multiplying both sides of (b) by (—)* we get the theorem.
Corollary:
"¢} (z,y52,0)] 0" [¢8 (z,y; 2,a)]
8un ( Z) 81}” Oa ( 8)
Proof:

In theorem 5, put « = n € Z*, , we get the result.

3. SPECIAL CASES

In theorem 1, put =0, y =1, p=A=1, and using (4) , we get

(oo}
T e 1
Co(z,a)=¢ nz:% [log(a + n)] CEDER (29)
Which is the result given by Nishimoto in [9)].
Also in theorem 1, put =0, , and using (5) , we get the result
o o 1
(@ (y;2,0)] ) = €™ ;y" [log(a + n)] (atn)y’ (30)
where @ (y; z,a) is the function defined by (2).
In theorem 1, put y =0, A =1, and using (6) , we get
[<I># (z;2,a)] = ¢im> Z log (a+m)]” [ (31)

n=0
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In theorem 3 put x = 0 ,using (5) and y = 0, A = 1 ,using (6), respectively ,we
get the results

e n
_ e Y
o sy
[ (U2, @)y = @5 ) [leglat+m) ™" 2o (33)
n=0
— a  (W)maz™
_— 4
(@7, (z;2,0)] mZ:Ologa-i-m '] (s ) (34)
- 5 (Wmz™
P iBT -1 m
(@ (5 2,a)] oy = €7 2_20 log(a+m)™"] ml(a+m)* (35)
In theorem 3 put t =0,y =1, p=A=1, ,using (4) and then writing u = x ,
v =y , respectively ,we get
- 1
— -1«
Ca(r) (Z,CL) - 7;) [lOg(CL + n) ] ((Z + TL) (36)
Ca(y) (2,0) i [log(a+n)~ ]B ! (37)
! = (a+n)
Which is the result given by Nishimoto in [9].
In theorem 4,if we put = 0 ,using (5) we get
Qu(u) = €™ TLZ::O [log(a +n)]* (ajj_in)u cos [vlog(a+n)"'], (38)
Qpw) = e i [log(a + n)]ﬁ v cos {vlog(a +n)" !+ EB} (39)
Y = (a4 n)v 271
Sau) = €™ nz:% llog(a + n)]® (aiin)“ sin [vlog(a+n)~"], (40)
Spw) = e'™h ,; [log(a +n))” (a—?—in)“ sin [Ulog(a +n)"t 4 g,@} , (41)

where @ = Q(u,v) = Re{q)(ya 2, CL)}, S = S(ua 'U) = Im{Cb(yv Zva)}
Also In theorem 4 | if we put © = 0,y =1, p = X =1, using (5), we get the
results given by Nishimoto in [9].
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