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EXISTENCE AND LOCAL ATTRACTIVITY RESULTS FOR A

PERTURBED FRACTIONAL INTEGRAL EQUATION

FENG ZHANG

Abstract. In this paper two existence results concerning local attractivity
and local asymptotic attractivity for a perturbed fractional integral equation
are proved. In our considerations we apply the technique of measures of non-
compactness and the Schauder fixed point principle. The mentioned equation

is considered in the Banach space of real functions defined, continuous and
bounded on R+.

1. Introduction

Let α ∈ (0, 1) be fixed number, R= (−∞,∞), R+ = [0,∞) and Γ(·) denote the
Gamma function. This paper is to investigate the following perturbed fractional
integral equation

x(t) = g(t, x(t)) +
(Ax)(t)

Γ(α)

∫ t

0

u(t, s, x(s))

(t− s)1−α
ds, t ∈ R+, (1)

where g :R+×R→R, u :R2
+×R →R are given functions and A : BC(R+) → BC(R+)

is an operator. The equation (1) is more general than equations studied in [1]-[3].
The nonlinear integral equations of fractional order play an important part in

solving problems of physics, mechanics, engineering and other fields [4]-[6]. Numer-
ous research papers devoted to nonlinear integral equations of fractional order have
appeared[1] -[3],[7]-[12]. These papers contain various qualitative properties such
as existence, stability, attractivity and positivity behavior for nonlinear integral
equations of fractional order.

The goal of this paper is to prove two existence results concerning local attrac-
tivity and local asymptotic attractivity of equation (1) in the space BC(R+) of
real functions defined, continuous and bounded on R+. The technique of mea-
sures of noncompactness and the Schauder fixed point principle are used in our
considerations.

It is worthwhile mentioning that the novelty of our approach mainly in obtaining
the local attractivity and asymptotic attractivity of solutions for equation (1).
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2. Preliminaries

First we accept a few facts concerning fractional calculus [13]. For x ∈ L1(a, b)
and a fixed number α > 0, the Riemann-Liouville fractional integral of order α of
the function x(t) is defined by

Iαx(t) =
1

Γ(α)

∫ t

a

x(s)

(t− s)1−α
ds, t ∈ (a, b).

Next, suppose (E, ∥ · ∥) is a real Banach space with zero element θ. Denote
by B(x, r) the closed ball centered at x with the radius r. Br stands for the ball
B(θ, r). If X ⊂ E, then X̄ and co(X) stand for the closure and convex closure of
X, respectively. Let ME denote the family of all nonempty and bounded subsets
of E and NE denote the family of all relatively compact sets.
Definition 2.1[14] A mapping µ : ME → R+ is said to be a measure of noncom-
pactness in E if it satisfies the following conditions:
(1) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .
(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).
(3) µ(X̄) = µ(X) = µ(co(X)).
(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].
(5) If {Xn} is a sequence of closed sets fromME such thatXn+1 ⊂ Xn(n = 1, 2, · · · )
and if lim

n→∞
µ(Xn) = 0, then the intersection X∞ = ∩∞

n=1Xn is nonempty.

In what follows, We will work in the space BC(R+) mentioned in Introduction.
This space is equipped with the standard norm ∥x∥=sup{|x(t)| : t ∈R+}. For any
nonempty and bounded subset X⊂BC(R+), x∈X, t ∈ R+, T >0 and ε≥0 define
ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε},
ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},
ωT
0 (X) = lim

ε→0
ωT (X, ε), ω0(X) = lim

T→∞
ωT
0 (X),

X(t) = {x(t) : x ∈ X}, diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X} and

µ(X) = ω0(X) + lim sup
t→∞

diamX(t). (2)

The function µ is a measure of noncompactness in the space BC(R+) [14]. The
kernel kerµ of this measure consists of nonempty and bounded sets X such that
functions from X are locally equicontinuous on R+ and the thickness of the bundle
formed by functions from X tends to zero at infinity.

Now, let Ω be a nonempty subset of BC(R+) and Q : Ω → BC(R+) be an
operator. Consider the following operator equation

x(t) = (Qx)(t), t ∈ R+. (3)

Definition 2.2[15] Solutions of equation (3) are locally attractive if there exists
an x0 ∈ BC(R+) and an r > 0 such that for arbitrary solutions x(t) and y(t) of
equation (3) belonging to B(x0, r) ∩ Ω satisfy

lim
t→∞

(x(t)− y(t)) = 0. (4)

If for each ε > 0 there exists a T > 0 such that

|x(t)− y(t)| ≤ ε (5)

for all x(t), y(t)∈B(x0, r) ∩ Ω being solutions of equation (3) and for t ≥ T , then
solutions of equation (3) are uniformly locally attractive on R+.
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Definition 2.3[15] A line y(t) = at + b(a, b ∈R), is called an attractor for the
solution x(t) ∈ BC(R+) of equation (3) if lim

t→∞
[x(t)− (at+ b)] = 0.

Definition 2.4[15] Solutions of equation (3) are locally asymptotically attractive if
there exists an x0 ∈ BC(R+) and an r > 0 such that for arbitrary solutions x(t) and
y(t) of equation (3) belonging to B(x0, r)∩Ω the condition (4) is satisfied and there
is line which is a common attractor to them on R+. If for each ε > 0 there exists
a T > 0 such that the inequality (5) is satisfied for t ≥ T and for all x(t), y(t) ∈
B(x0, r)∩Ω being the solutions of equation (3) having a line as a common attractor,
then solutions of equation (3) are uniformly locally asymptotically attractive on R+.

3. Main results

In this section, the equation (1) will be considered under the following assump-
tions.
(C1) The function g :R+×R→R is continuous and there exists a constant p∈R+

such that

|g(t, x)− g(t, y)| ≤ p|x− y|, ∀t ∈ R+, x, y ∈ R.

(C2) The operator A :BC(R+)→BC(R+) is continuous and there exist constants
a, b∈R+ such that

|(Ax)(t)| ≤ a+ b|x(t)|, ∀t ∈ R+, x ∈ BC(R+).

(C3) The function u :R2
+×R →R is continuous. Moreover, there exist a continuous

function c :R+×R+ →R+ and a continuous nondecreasing function φ :R+ →R+

such that

|u(t, s, x)| ≤ c(t, s)φ(|x|), ∀t, s ∈ R+, x ∈ BC(R+).

Moreover,

lim
t→∞

∫ t

0

c(t, s)

(t− s)1−α
ds = 0.

Remark 3.1. The function
∫ t

0
c(t,s)

(t−s)1−α ds is continuous on R+ (see [8]). Denote

the function d : R+ → R+ by

d(t) =
1

Γ(α)

∫ t

0

c(t, s)

(t− s)1−α
ds.

Then d(t) is continuous on R+ and lim
t→∞

d(t) = 0. Thus d̄ = sup{d(t) : t ∈R+} is

finite.
Now, we denote g0 by

g0 = sup{|g(t, 0)| : t ∈R+}. (6)

Then g0<∞ in view of the assumption (C1).
Next, we present the last assumption:

(C4) The inequality

pr + g0 + (a+ br)φ(r)d̄ ≤ r

has a positive solution r0 such that (p+ bd̄φ(r0)) < 1.
Theorem 3.1 Under the assumptions (C1)-(C4), equation (1) has at least one so-
lution x(t) in the space BC(R+). Moreover, solutions of equation (1) are uniformly
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locally attractive on R+.
Proof. Consider the operator V defined on the space BC(R+) by the formula

(V x)(t) = g(t, x(t)) +
(Ax)(t)

Γ(α)

∫ t

0

u(t, s, x(s))

(t− s)1−α
ds, t ∈ R+.

In order to simplify our considerations, we represent the operator V in the form

(V x)(t) = g(t, x(t)) + (Ax)(t)(Ux)(t), (7)

where

(Ux)(t) =
1

Γ(α)

∫ t

0

u(t, s, x(s))

(t− s)1−α
ds.

Notice our assumptions, for any function x∈BC(R+) the function g(t, x(t)) and
the operator Ax are continuous on R+. We show that the same assertion holds
also for Ux. To do this fix T > 0, ε > 0, t1, t2 ∈ [0, T ] such that |t1 − t2| ≤ ε.
Without loss of generality, we can assume that t1 < t2. For fixed t > 0, the function
s → c(t, s) is continuous on the interval [0, t]. Hence ct = sup{c(t, s) : s ∈ [0, t]} is
finite. Then in view of assumption (C3), we have

|(Ux)(t2)− (Ux)(t1)|

=
1

Γ(α)

∣∣∣∣∫ t1

0

u(t2, s, x(s))

(t2 − s)1−α
ds+

∫ t2

t1

u(t2, s, x(s))

(t2 − s)1−α
ds−

∫ t1

0

u(t1, s, x(s))

(t1 − s)1−α
ds

∣∣∣∣
≤ 1

Γ(α)

∫ t1

0

∣∣∣∣u(t2, s, x(s))− u(t1, s, x(s))

(t2 − s)1−α

∣∣∣∣ds+ 1

Γ(α)

∫ t1

0

∣∣∣∣u(t1, s, x(s))(t2 − s)1−α
− u(t1, s, x(s))

(t1 − s)1−α

∣∣∣∣ds
+

1

Γ(α)

∫ t2

t1

∣∣∣∣u(t2, s, x(s))(t2 − s)1−α

∣∣∣∣ ds
≤ 1

Γ(α)

∫ t1

0

ωT (u, ε, ∥x∥)
(t2 − s)1−α

ds+
ct1
Γ(α)

∫ t1

0

φ(|x(s)|)
[

1

(t1 − s)1−α
− 1

(t2 − s)1−α

]
ds

+
ct2
Γ(α)

∫ t2

t1

φ(|x(s)|)
(t2 − s)1−α

ds

≤ωT (u, ε, ∥x∥)
Γ(α)

tα2 − (t2 − t1)
α

α
+
cTφ(∥x∥)
Γ(α+ 1)

[tα1 −tα2 +(t2−t1)
α]+

cTφ(∥x∥)
Γ(α+ 1)

(t2 − t1)
α

≤ 1

Γ(α+ 1)
[TαωT (u, ε, ∥x∥) + 2εαcTφ(∥x∥)],

(8)
where ωT (u, ε, ∥x∥)=sup{|u(t2, s, y)−u(t1, s, y)| : t1, t2, s∈ [0, T ], s ≤ t1, s ≤ t2, |t1−
t2| ≤ ε, |y|≤∥x∥}. Using the uniform continuity of the function u(t, s, y) on [0, T ]2×
[−∥x∥, ∥x∥], we have that ωT (u, ε, ∥x∥) → 0 as ε → 0.

By estimate (8), we obtain

ωT (Ux, ε) ≤ 1

Γ(α+ 1)
[TαωT (u, ε, ∥x∥) + 2εαcTφ(∥x∥)]. (9)

From estimate (9), we infer that the function Ux is continuous on [0, T ] for any
T > 0. This yields the continuity of Ux on R+.

Therefore, we conclude that the function V x is continuous on R+.
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Now, taking an arbitrary function x∈BC(R+), using assumptions (C1)-(C3) and
Remark 3.1, for a fixed t∈R+ we get

|(V x)(t)| ≤|g(t, x(t))− g(t, 0)|+ |g(t, 0)|+ a+ b∥x∥
Γ(α)

∫ t

0

c(t, s)φ(|x(s)|)
(t− s)1−α

ds

≤p∥x∥+ g0 + (a+ b∥x∥)φ(∥x∥)d̄.
(10)

This shows that V x is bounded on R+. Linking this assertion with the earlier
proved continuity of the function V x on R+, we conclude that V x is a member of
the space BC(R+). This shows that the operator V transforms the space BC(R+)
into itself.

Moreover, estimate (10) yields

∥V x∥ ≤ p∥x∥+ g0 + (a+ b∥x∥)φ(∥x∥)d̄.

Combining this estimate with assumption (C4), we deduce that there exists a num-
ber r0 > 0 such that the operator V : BC(R+) → Br0 , especially V : Br0 → Br0 .

Now, let us take a nonempty subset X ⊂ Br0 . Then, for x, y ∈ X and for an
arbitrarily fixed t ∈ R+, using assumptions (C1)-(C3) and Remark 3.1 we have

|(V x)(t)− (V y)(t)|

≤|g(t, x(t))−g(t, y(t))|+ 1

Γ(α)

[∣∣∣∣(Ax)(t)

∫ t

0

u(t, s, x(s))

(t− s)1−α
ds−(Ay)(t)

∫ t

0

u(t, s, y(s))

(t− s)1−α
ds

∣∣∣∣]
≤p|x(t)−y(t)|+ 1

Γ(α)

[∣∣∣∣(Ax)(t)∫ t

0

c(t, s)φ(|x(s)|)ds
(t− s)1−α

∣∣∣∣+∣∣∣∣(Ay)(t)

∫ t

0

c(t, s)φ(|y(s)|)ds
(t− s)1−α

∣∣∣∣]
≤pdiamX(t) + 2(a+ br0)φ(r0)d(t).

(11)
From estimate (11), we derive the following inequality

diam(V X)(t) ≤ pdiamX(t) + 2(a+ br0)φ(r0)d(t).

Then

lim sup
t→∞

diam(V X)(t) ≤ p lim sup
t→∞

diamX(t). (12)

Further, For fixed T > 0, ε > 0 and x ∈ X, take t1, t2 ∈ [0, T ] such that
|t1 − t2| ≤ ε. Without loss of generality, we can assume that t1 < t2. Then by
representation (7), estimate (8) and taking into account our assumptions, we obtain

|(V x)(t2)− (V x)(t1)|
≤|g(t2, x(t2))− g(t2, x(t1))|+ |g(t2, x(t1))− g(t1, x(t1))|

+ |(Ax)(t2)(Ux)(t2)−(Ax)(t2)(Ux)(t1)|+|(Ax)(t2)(Ux)(t1)−(Ax)(t1)(Ux)(t1)|

≤p|x(t2)− x(t1)|+ ωT (g, ε) +
a+ br0
Γ(α+ 1)

[TαωT (u, ε, r0) + 2εαcTφ(r0)]

+ bd̄φ(r0)|x(t2)− x(t1)|,
(13)

where ωT (g, ε)= sup{|g(t2, x) − g(t1, x)| : t1, t2 ∈ [0, T ], |t1 − t2| ≤ ε, x ∈ [−r0, r0]}.
Since the uniform continuity of the functions of g(t, x) on [0, T ] × [−r0, r0] and
u(t, s, x) on [0, T ]2 × [−r0, r0], we infer that ωT (g, ε) → 0 and ωT (u, ε, r0) → 0 as
ε → 0. Hence by estimate (13) we have

ωT
0 (V X) ≤ (p+ bd̄φ(r0))ω

T
0 (X).
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This yields

ω0(V X) ≤ (p+ bd̄φ(r0))ω0(X). (14)

Now, linking (12) with (14), keeping in mind formula (2) we obtain

µ(V X) ≤ (p+ bd̄φ(r0))µ(X). (15)

In the following, put B1
r0 = coV (Br0), B2

r0 = coV (B1
r0) and so on, then the

sequence is decreasing i.e. Bn+1
r0 ⊂ Bn

r0 ⊂ Br0 for n = 1, 2, · · · . Moreover, all sets
of this sequence are nonempty, bounded, convex and closed. Apart from this, in
view of (15) we get µ(Bn

r0) ≤ (p + bd̄φ(r0))
nµ(Br0) for n=1, 2, · · · . Then by the

second inequality of assumption (C4), we deduce that lim
n→∞

µ(Bn
r0) = 0. Hence by

Definition 2.1, we infer that the set Y = ∩∞
n=1B

n
r0 is nonempty, bounded, convex

and closed. Moreover, the set Y belongs to kerµ. In particular, we have

lim sup
t→∞

diamY (t) = lim
t→∞

diamY (t) = 0. (16)

Let us also observe that the operator V maps the set Y into itself.
Next, we show that V is continuous on the set Y .
Let us fix ε > 0 and take arbitrary functions x, y ∈ Y such that ∥x − y∥ ≤ ε.

Taking into account the fact that V Y ⊂ Y and using (16), we deduce that there
exists a T > 0 for an arbitrary t ≥ T such that

|(V x)(t)− (V y)(t)| ≤ ε. (17)

Further, take t∈ [0, T ], keeping in mind our assumptions and evaluating similarly
as above, we obtain

|x(t)− y(t)| = |(V x)(t)− (V y)(t)|

≤p|x(t)− y(t)|+ 1

Γ(α)

[∣∣∣∣(Ax)(t)∫ t

0

c(t, s)φ(|x(s)|)ds
(t− s)1−α

−(Ay)(t)

∫ t

0

c(t, s)φ(|x(s)|)ds
(t− s)1−α

∣∣∣∣
+

1

Γ(α)
|(Ay)(t)|

[∣∣∣∣∫ t

0

u(t, s, x(s))ds

(t− s)1−α
−
∫ t

0

u(t, s, y(s))ds

(t− s)1−α

∣∣∣∣]
≤p∥x− y∥+ bd̄φ(r0)∥x− y∥+ a+ br0

Γ(α+ 1)
ωT (u, ε)Tα

≤(p+ bd̄φ(r0))ε+
a+ br0
Γ(α+ 1)

ωT (u, ε)Tα,

(18)
where ωT (u, ε) = sup{|u(t, s, x)− u(t, s, y)| : t, s ∈ [0, T ], x, y ∈ Y , |x− y| ≤ ε}. In
virtue of the uniform continuity of the function u(t, s, x), we have ωT (u, ε) → 0 as
ε → 0.

Now by estimates (17) and (18), it follows that the operator V is continuous on
Y .

Finally, taking into account all the facts concerning the set Y , the operator
V : Y →Y and using the classical Schauder fixed point principle we infer that the
operator V has at least one fixed point x(t) in Y . Obviously, the function x(t) is a
solution of equation (1). Moreover, by the fact that the set Y belongs to kerµ and
the characterization of sets belonging to kerµ (see descriptions made after formula
(2)), we deduce that all solutions of equation (1) are uniformly locally attractive
on R+ (Definition 2.2). The proof is now completed. �



JFCA-2016/7(2) RESULTS FOR A PERTURBED FRACTIONAL INTEGRAL EQUATION 71

Next, We introduce the following another two assumptions.
(H1) The function g :R+×R→R is continuous and there exists a function p :R+→R+

such that

|g(t, x)− g(t, y)| ≤ p(t)|x− y|
for all t ∈ R+ and x, y ∈ R. Moreover, lim

t→∞
p(t) = 0.

(H2) lim
t→∞

g(t, 0) = 0.

Theorem 3.2 Under the assumptions (H1), (C2) − (C4) and (H2), equation (1)
has at least one solution x(t) in the space BC(R+). Moreover, solutions of equation
(1) are uniformly locally asymptotically attractive on R+.
Proof. By assumption (H1), it follows that there exists a constant q ∈R+ such
that |p(t)| ≤ q and

|g(t, x)− g(t, y)| ≤ q|x− y|. (19)

Then linking (19) with assumptions (C2)-(C4), by Theorem 3.1, equation (1) has
at least one solution x(t) in the space BC(R+). Moreover, solutions of equation (1)
are uniformly locally attractive on R+. Let x(t) be any solution of equation (1). In
view of assumptions (H1),(C2)-(C4) and Remark 3.1, we have

|x(t)| ≤|g(t, x(t))| − |g(t, 0)|+ |g(t, 0)|+ a+ b|x(t)|
Γ(α)

∫ t

0

c(t, s)φ(|x(s)|)
(t− s)1−α

ds

≤p(t)∥x∥+ |g(t, 0)|+ (a+ b∥x∥)φ(∥x∥)d(t).

Then we obtain lim
t→∞

x(t)=0. Thus, according to Definition 2.3 and Definition 2.4,

all solutions of equation (1) are uniformly locally asymptotically attractive on R+

with the line y(t) = 0 as a common attractor for them. This completes the proof.
�

4. An example

Consider the following nonlinear integral equation of fractional order

x(t) =
t arctan(t+ tx(t))

2 + 3t2
+

|x(t)|
3(1+|x(t)|)

Γ(23 )

∫ t

0

(1 + t2 + s)−
2
3 arctan(|x(s)|)

(t− s)
1
3

ds, t ∈ R+.

(20)
Observe that equation (20) is a special case of equation (1). If we put

α =
2

3
, g(t, x) =

t arctan(t+ tx)

2 + 3t2
, Ax =

|x|
3(1 + |x|)

, u(t, s, x) =
arctan(|x|)
(1 + t2 + s)

2
3

.

(21)
In what follows, we show that the assumptions of Theorem 3.1, Theorem 3.2

are satisfied. First, by differential Mean value theorem, there exists a ξ ∈ (x, y)
satisfies

|g(t, x)− g(t, y)| = t

2 + 3t2
| arctan(t+ tx)− arctan(t+ ty)|

=
t

2 + 3t2
| arctan(t+ tξ)′||x− y| ≤ t

2 + 3t2
t

2t+ 2t2|ξ|
|x− y|

≤p(t)|x− y|,

where p(t) = t
2(2+3t2) . Then lim

t→∞
p(t) = 0 and p=

√
6

24 . Therefore assumptions (C1)

and (H1) hold.
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Next, |Ax| ≤ 1
3 |x|, then a = 0 and b = 1

3 . Thus the assumption (C2) is satisfied.

Moreover, u(t, s, x)≤ c(t, s)φ(|x|), with φ(|x|)=|x| and c(t, s)= 1

(1+t2+s)
2
3
. Fur-

thermore,
∫ t

0
c(t,s)

(t−s)
1
3
ds ≤(1+t2)−

2
3

∫ t

0
1

(t−s)
1
3
ds≤

3
2 t

2
3

(1+t2)
2
3
, then lim

t→∞

∫ t

0

c(t, s)

(t− s)1−α
ds=

0. Therefore assumption (C3) holds.

What is more, d(t) ≤ 1
Γ( 2

3 )

3
2 t

2
3

(1+t2)
2
3
≤ 1

3√4Γ( 5
3 )
, Hence d̄ = 1

3√4Γ( 5
3 )
.

Next, by using (6) and (21), we have g0 =
√
6

24 π. Then in view of the above

estimates of constants p, g0, a, b and d̄, the first inequality of assumption (C4) has
the form √

6

24
r +

√
6

24
π +

1

3

1
3
√
4Γ( 53 )

r2 ≤ r. (22)

It is easy to check that r0 = 1 is a solution of inequality (22). Obviously,
the second inequality from assumption (C4) is satisfied in our situation. Thus
assumption (C4) holds. Then, in light of Theorem 3.1, equation (20) has at least
one solution x(t) belongs to BC(R+). Moreover, solutions of this equation are
uniformly locally attractive on R+.

Finally, by (21) the assumption (H2) is satisfied. Thus by Theorem 3.2, equation
(20) has at least one solution x(t) belongs to BC(R+). Moreover, solutions of this
equation are uniformly locally asymptotically attractive on R+.
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