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EXISTENCE OF SOLUTIONS OF NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS OF RIEMANN-LIOUVILLE TYPE

L. C. BECKER, T. A. BURTON, AND I. K. PURNARAS

Abstract. This paper investigates the existence of solutions of the scalar

fractional differential equation of Riemann-Liouville type

Dqx(t) = f(t, x(t)), lim
t→0+

t1−qx(t) = x0 (1)

and of the Volterra integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0
(t− s)q−1f(s, x(s)) ds (2)

where q ∈ (0, 1), f(t, x) is continuous for t > 0 and x ∈ R, and x0 is nonzero.
Sufficient conditions for the existence of continuous solutions of (2) are ob-

tained by imposing a growth restriction on f and then applying Schauder’s
fixed point theorem. It is also shown with an “equivalence theorem” that (1)
has the same continuous solutions as (2).

This existence theorem is atypical of the standard existence theorems in the

literature in that (i) the growth condition obviates the need for f to be bounded
or even to satisfy a Lipschitz condition and (ii) the existence of solutions is
dependent on the value of q.

1. Introduction

This paper continues a series of studies [2, 3, 4] of the scalar fractional differential
equation

Dqx(t) = f(t, x(t)) (t > 0) (1.1a)

when it is subject to the initial condition

lim
t→0+

t1−qx(t) = x0 (1.1b)

where q ∈ (0, 1), f : (0,∞)×R → R is continuous, and x0 is a nonzero real number.
Dq denotes the Riemann-Liouville fractional differential operator of order q, which
for 0 < q < 1 is defined by

Dqx(t) :=
1

Γ(1− q)

d

dt

∫ t

0

(t− s)−qx(s) ds,
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where Γ: (0,∞) → R is Euler’s Gamma function:

Γ(x) =

∫ ∞

0

tx−1e−t dt.

Throughout this paper, regardless of whether or not it is explicitly stated in a
particular result, the standing assumption is that q ∈ (0, 1) and x0 ̸= 0. Also, the
term solution will always refer to a continuous function satisfying whatever equation
is being considered at the time. Finally, the term initial value problem will refer to
the fractional differential equation (1.1a) together with the initial condition (1.1b):

Dqx(t) = f(t, x(t)), lim
t→0+

t1−qx(t) = x0 (t > 0). (1.2)

The most salient result of this work is Theorem 3.1 in Section 3, which when
combined with Theorem 2.2 in the next section, gives sufficient conditions for the
existence of a continuous function satisfying (1.2) on an interval (0, T ]. The genesis
of this theorem came from looking at various existence theorems in the literature
and then asking if the conditions imposed by them on f(t, x) could be relaxed so
that solutions of (1.2) exist for a larger class of functions. There is a brief history of
this given by Kilbas et al. [9, pp. 136–137] in which we find that Pitcher and Sewell
[12] in 1938 offered a proof showing the existence of a solution in case f is bounded
for certain unbounded x and satisfies a Lipschitz condition. This is a most serious
restriction that is disquieting in view of the obvious unboundedness of x in (1.1b).
However, the boundedness assumption persists through other papers and we find
it still being assumed in recent monographs: see Theorem 5.1 and Lemmas 5.2 and
5.3 in Diethelm [8, pp. 77–80], Theorems 2.4.1 and 2.5.1 in Lakshmikantham et al.
[10, pp. 30, 34], and Theorem 3.4 in Podlubny [13, p. 127]. Finally, Kilbas et al. [9,
p. 165] prove that if f satisfies a Lipschitz condition then the boundedness of f for
x unbounded can be dropped and there is still a unique solution. Yet, as late as
2009, the monograph of Lakshmikantham et al. [10, p. 30] requires that same bound
on f for unbounded x in proving a Peano type existence theorem not based on a
Lipschitz condition. In our Theorem 3.1 we do obtain existence without the bound
and without the Lipschitz condition using Schauder’s theorem. At this writing it is
our belief that this is entirely new, thereby extending the scope of existence theory
to include a much larger class of functions f .

It has long been known that under certain conditions the initial value problem
(1.2) is equivalent to the Volterra integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds. (1.3)

However, typical inversion results for transforming (1.2) into (1.3) (e.g., Lemma 5.2
in [8, p. 78]) also require that f be bounded in a certain region. With Theorem 2.2
in the next section we eliminate this requirement.

Recently we obtained an existence and uniqueness theorem [3, Thm. 2.7] for
functions f satisfying a Lipschitz-type condition of the form

|f(t, x)− f(t, y)| ≤ Ktr1 |xr2 − yr2 |, (1.4)

where K > 0, r1 > −1, r2 = m/n ≥ 1 for positive integers m,n with no common
factors and with n odd, and satisfying

µ := 1 + r1 + (q − 1) r2 > 0. (1.5)
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Notice that allowing r1 to have negative values allows f to be unbounded for any
value of x. In the present work, we take this a step further by replacing the
Lipschitz-type condition with a growth condition. This substantially broadens the
class of functions f with which to study (1.2) and (1.3).

Instead of starting with the initial value problem (1.2), we first investigate the
integral equation (1.3), the outcome of which is Theorem 3.1. It is a general result
that ensures the existence of a solution of (1.3) on a short interval (0, T ] for functions
satisfying the growth condition of which we just spoke, namely

|f(t, x)| ≤ K1 +K2t
r1 |x|r2 ,

where r1 > −1 and r2 ≥ 0 with

r1 − r2 + q(r2 + 1) > 0. (1.6)

This broadens the spectrum of equations to study by eliminating the stricture
that f be bounded. Moreover, because of the growth condition and the absolute
integrability of the solution x(t), the function f(t, x(t)) is also absolutely integrable.
It is this property that enables us (cf. Thm. 2.2 in the next section) to show that
a solution of (1.3) is also a solution of (1.2), and vice versa.

What is striking about (1.5) and (1.6) is that they suggest solutions of the
fractional and integral equations in this paper may not exist for some values of q,
despite being sufficient but not necessary conditions. As a matter of fact, whether
or not a solution of the initial value problem

Dqx(t) = xn(t), lim
t→0+

t1−qx(t) = x0 (x0 ̸= 0)

exists on an interval (0, T ] for some T > 0 depends on the value of q. For example,
when n = 1, then it has a unique solution for each q ∈ (0, 1). However, when
n = 2, then it has a unique solution if q ∈ (1/2, 1) but no solution if q ∈ (0, 1/2].
And if n = 3, then the range of values of q for which it has solutions shrinks
to (2/3, 1). (These assertions are consequences of Theorem 3.11 in Section 3.)
Existence theorems such as these which depend on q may seem at first to be at odds
with the previously cited theorems from the literature. This apparent discrepancy
is resolved when we examine Theorem 3.1 and note that if the function f is bounded
or even if it satisfies a Lipschitz condition as stated in our Theorem 2.5 in [3, p. 251]
or in Theorem 3.11 in the monograph by Kilbas et al. [9, p. 165], then solutions
exist for all values of q in the interval (0, 1). Thus, we see that prior to the theorems
in this paper and [3], there was no reason to consider the values of q.

Basic properties of solutions emerging from the existence results in [3] reveal that
solutions are far more than simply functions satisfying (1.2) and (1.3). Uniqueness
of solutions ensured by the theorems in [3] are lost because the Lipschitz-type
condition (1.4) is no longer assumed in this paper; however, most of the other
properties also hold for the solutions which result from Theorem 3.1.

For functions x that are continuous and absolutely integrable on an interval
(0, T ], it is proven in [2, Thm. 6.1]) that the initial condition (1.1b) is equivalent to

lim
t→0+

1

Γ(1− q)

∫ t

0

(t− s)−qx(s) ds = x0Γ(q). (1.7)

The significance of this is that the results obtained for the initial value problem
(1.2) are also valid for the fractional differential equation (1.1a) when it is subject
to the initial condition (1.7).
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A final thought before proceeding: One might ask if there are any practical
applications of the fractional differential equation (1.1a) with the initial condition
(1.7), or alternatively with (1.1b). A partial answer is provided by Abel’s equation
(cf. [11, pp. 4, 71]) ∫ t

0

x(s)

(t− s)q
ds = g(t), (1.8)

where q ∈ (0, 1) and g is a given function. Suppose g is continuously differentiable
for t > 0. Dividing both sides by Γ(1− q) and then differentiating with respect to
t yields the fractional differential equation

Dqx(t) = f(t) (1.9)

where f(t) := g′(t)/Γ(1 − q). Suppose also that limt→0+ g(t) exists. Then Abel’s
equation can be written as the fractional differential equation (1.9) subject to the
initial condition (1.7) with

x0 :=
1

Γ(q)Γ(1− q)
lim
t→0+

g(t).

As a matter of fact, the tautochrone problem of classical physics with q = 1/2 can
be expressed in this way. The point then is that the initial value problem (1.2)
can be viewed as a generalization of Abel’s equation, which possibly may have
real-world applications.

2. Preparatory results

We begin this section with what is meant in this paper by solutions of the initial
value problem (1.2) and of the integral equation (1.3).

Definition 2.1. Let q be some fixed value in the interval (0, 1).

(i) A function ϕ is said to be a solution of the initial value problem (1.2) on
an interval (0, T ] if
(a) ϕ is continuous and satisfies the fractional differential equation (1.1a)

on this interval and
(b) limt→0+ t

1−qϕ(t) = x0.
(ii) A function ϕ is said to be a solution of the integral equation (1.3) on an

interval (0, T ] if ϕ is continuous and satisfies (1.3) on this interval.

Notice from (i) that because t1−qϕ(t) is continuous on (0, T ] and the limit (b)
exists, this function can be extended continuously to the closed interval [0, T ] by
defining it to be x0 at t = 0. Consequently t1−qϕ(t) is uniformly continuous on
(0, T ] (cf. [1, Thm. 5.4.8]). In Section 3, an example there clearly illustrates this:
see the analytical solution (3.16) given in Remark 3.9, which is a solution of both
the integral equation and the fractional initial value problem in Example 3.8.

Fortunately, as it turns out, there is an “equivalence theorem” for solutions of
the initial value problem (1.2) and of the integral equation (1.3): A solution x(t)
on an interval (0, T ] of (1.2) is also a solution of (1.3) on (0, T ], and conversely, if
both x(t) and f(t, x(t)) are absolutely integrable. This is precisely stated in the
next theorem and proven in [2, Thm. 6.2].

Theorem 2.2. Let q ∈ (0, 1) and x0 ̸= 0. Let f(t, x) be a function that is contin-
uous on the set

B = {(t, x) ∈ R2 : 0 < t ≤ T, x ∈ I}
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where I ⊆ R denotes an unbounded interval. Suppose a function x : (0, T ] → I
is continuous and that both x(t) and f(t, x(t)) are absolutely integrable on (0, T ].
Then x(t) satisfies the initial value problem (1.2) on (0, T ] if and only if it satisfies
the Volterra integral equation (1.3) on (0, T ].

It follows that if a function f(t, x) is continuous as stated in the theorem and if the
hypotheses of some potential existence theorem imply that there is a continuous
function x(t) which satisfies the integral equation (1.3) on an interval (0, T ] such
that both x(t) and f(t, x(t)) are absolutely integrable on this interval, then t1−qx(t)
must possess the limit given by (b) in Definition 2.1.

The following proposition, though elementary, sets us on the right course to
search for solutions of (1.2) and (1.3). It reveals that the limit (1.1b) is the key;
for it tells us precisely where to look for potential solutions and that if they exist
they will be absolutely integrable.

Proposition 2.3. Let x : (0, T ] → R be a continuous function with the property

lim
t→0+

t1−qx(t) = x0

where x0 ̸= 0. Then, for each ϵ ∈ (0, |x0|), there is a T ∗ ∈ (0, T ] so that

(|x0| − ϵ)tq−1 < |x(t)| < (|x0|+ ϵ)tq−1 < 2|x0|tq−1 (2.1)

for 0 < t < T ∗. Also, sgn (x(t)) = sgn (x0); i.e., x(t) has the same sign as x0 for
t ∈ (0, T ∗). Furthermore, x is absolutely integrable on (0, T ].

Proof. Let ϵ ∈ (0, |x0|). Then, because of the limit, a T ∗ ∈ (0, T ] exists such that

|t1−qx(t)− x0| < ϵ

or
(x0 − ϵ)tq−1 < x(t) < (x0 + ϵ)tq−1 (2.2)

for 0 < t < T ∗. Thus, if x0 > 0, then ϵ < x0. So

x(t) > (x0 − ϵ)tq−1 > 0

for t ∈ (0, T ∗). If, on the other hand, x0 < 0, then ϵ < −x0, which implies

x(t) < (x0 + ϵ)tq−1 < 0.

The inequalities (2.1) follow from∣∣|t1−qx(t)| − |x0|
∣∣ ≤ |t1−qx(t)− x0| < ϵ

for t ∈ (0, T ∗). And from (2.1) we see that∫ T

0

|x(t)| dt < 2|x0|
∫ T∗

0

tq−1 dt+

∫ T

T∗
|x(t)| dt

=
2|x0|
q

(T ∗)q +

∫ T

T∗
|x(t)| dt <∞.

�

It follows from (2.1) that if a continuous function ϕ satisfies the initial condition
(1.1b), then t1−q|ϕ(t)| < ∞ for all t ∈ (0, T ]. Consequently, we will look for
solutions in the subset of the vector space of all continuous functions ϕ on an
interval (0, T ] for which

sup {t1−q|ϕ(t)| : 0 < t ≤ T} <∞.
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This brings us to the following definition.

Definition 2.4. For a fixed T > 0 and for g(t) := tq−1, let X denote the space of
continuous functions ϕ : (0, T ] → R for which

|ϕ|g := sup
0<t≤T

|ϕ(t)|
g(t)

(2.3)

is finite.

Showing that | · |g is a norm on X is straightforward. Moreover, (X, | · |g) is a
Banach space (cf. [3, Thm. 2.2]). Clearly the function g itself belongs to this space.

Since Proposition 2.3 tells us to look for potential solutions in the space X, that
is exactly the task we take up in the following section.

3. Local Existence of Solutions

We employ the following fixed point theorem of Juliusz Schauder (cf. [14, p. 25],
[5, p. 184], or [6, p. 24]) to prove Theorem 3.1, the primary result of this paper.
Our most recent paper [4, cf. Appendix] depends on theorems of this type because
most of the results therein presuppose the existence of a solution of (1.3) on a short
interval.

Schauder’s second fixed point theorem. Let M be a nonempty convex subset
of a normed space. Let P : M → K be a continuous mapping, where K is a compact
subset of M. Then P has a fixed point in K.

The proof of Theorem 3.1 relies on four lemmas that prepare the way for the
eventual application of Schauder’s theorem. The proofs of the lemmas themselves
(Lemma 3.2, Lemmas 3.4–3.6) are given after the conclusion of the proof of this
theorem so as not to interrupt the flow of the argument. Notice that f is allowed
to be unbounded; compare this with [10, pp. 30, 34], which partially motivated this
work.

Theorem 3.1. Let q ∈ (0, 1) and x0 ∈ R with x0 ̸= 0. Let r1 > −1 and r2 ≥ 0 be
constants that satisfy the inequality

r1 − r2 + q(r2 + 1) > 0. (3.1)

Let f : (0,∞)×R → R be continuous. Suppose there are nonnegative constants K1

and K2 such that

|f(t, x)| ≤ K1 +K2 t
r1 |x|r2 (3.2)

for x ∈ R and 0 < t < T0, where T0 ∈ (0,∞) ∪ {∞}. Then, for some T ∈ (0, T0),
there is a continuous function x : (0, T ] → R that satisfies the integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds (3.3)

on (0, T ]. Furthermore, |x(t)| ≤ 2|x0|tq−1 for t ∈ (0, T ].

Proof. Let g(t) := tq−1. Recall from Section 2 that for each T > 0 the set X
of continuous functions ϕ : (0, T ] → R for which |ϕ|g < ∞ is a Banach space (cf.
Def. 2.4 and [3, Thm. 2.2]).

Corresponding to the nonzero x0 in (3.3), define the set

M := {ϕ ∈ X : |ϕ|g ≤ 2|x0|}. (3.4)
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Notice thatM is a nonempty subset ofX as ktq−1 ∈M for all constants k satisfying
|k| ≤ 2|x0|. Also, for ϕ, ψ ∈M and 0 ≤ β ≤ 1,∣∣βϕ(t) + (1− β)ψ(t)

∣∣ ≤ 2|x0|tq−1

for 0 < t ≤ T . Thus, βϕ + (1 − β)ψ ∈ M . So M is a nonempty convex subset of
the Banach space (X, | · |g).

For a fixed T ∈ (0, T0) and functions ϕ ∈M , define the mapping P by

(Pϕ)(t) := x0tq−1 + (Lϕ)(t) (3.5)

for 0 < t ≤ T , where

(Lϕ)(t) :=
1

Γ(q)

∫ t

0

(t− s)q−1f(s, ϕ(s)) ds. (3.6)

The objective is to prove P has a fixed point inM when T ∈ (0, T0) is sufficiently
small. This is equivalent to proving the existence of a continuous function satisfying
(3.3) on (0, T ].

In Lemma 3.2 (immediately following this proof), we show that

(i) P : M →M for any T ∈ (0, T0) satisfying inequality (3.10).

Now choose a T so that (i) holds. Then in Lemma 3.4 we show that

(ii) P is continuous on M in the metric provided by the norm | · |g.
Also, for this particular T , define the set LM of functions by

LM := {ψ | ∃ϕ ∈M,ψ(t) = (Lϕ)(t) for t ∈ (0, T ], ψ(0) = 0}.
In Lemma 3.5 we show that

(iii) LM is equicontinuous on [0, T ]. That is, for every µ > 0 there is a δ(µ) > 0
such that t1, t2 ∈ [0, T ] and |t1 − t2| < δ imply |ψ(t1) − ψ(t2)| < µ for all
ψ ∈ LM .

So far we have, corresponding to the fixed T , a nonempty convex subset M of
the Banach space (X, | · |g). We have established that P : M → M and that it is
continuous. Consequently, with Schauder’s theorem, we can assert that P has a
fixed point in M provided we can show that PM is contained in a compact subset
of M .

In Lemma 3.6, we prove that LM resides in a compact subset K of the Banach
space (X, | · |g). Define the set

Kh := {h+ ψ | ψ ∈ K},
where h(t) := x0tq−1. For such ψ, we see from Lemma 3.6 that

|h+ ψ|g ≤ |h|g + |ψ|g ≤ |x0|+ |x0| = 2|x0|.
Hence, Kh ⊆M . If Ψ ∈ PM , then Ψ = h+Lϕ for some ϕ ∈M . Since Lϕ ∈ LM ⊆
K, Ψ ∈ Kh. Therefore,

PM ⊆ Kh ⊆M.

Now let {h+ψn} be a sequence in Kh. Then as {ψn} is a sequence in the compact
set K, it has a subsequence {ψnk

} that converges in the norm | · |g to a function
ψ ∈ K. As a result, {h+ψnk

} converges in the norm | · |g to h+ψ ∈ Kh. Therefore,
Kh is a compact set in (X, | · |g).

In conclusion, we have shown that PM is contained in the compact set Kh. It
follows from Schauder’s theorem that P has a fixed point in Kh. Calling it x, we
see from (3.4) that |x(t)| ≤ 2|x0|tq−1 for all t ∈ (0, T ]. �
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Lemma 3.2. For a given T ∈ (0, T0), let M denote the set defined by (3.4). If T
is sufficiently small, then P : M →M .

Proof. For T ∈ (0, T0) to be determined, let M be defined by (3.4). For any given
ϕ ∈M ,

|(Pϕ)(t)| = |x0tq−1 + (Lϕ)(t)| ≤ |x0tq−1
∣∣+ |(Lϕ)(t)|

≤ |x0|tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1|f(s, ϕ(s))| ds.

It then follows from (3.2) and (3.4) that

|(Pϕ)(t)| ≤ |x0|tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1
(
K1 +K2s

r1 |ϕ(s)|r2
)
ds

≤ |x0|tq−1 +
K1

Γ(q)

∫ t

0

(t− s)q−1 ds+
K2

Γ(q)

∫ t

0

(t− s)q−1sr1 |ϕ(s)|r2 ds

≤ |x0|tq−1 +
K1

qΓ(q)
tq +

K2

Γ(q)

∫ t

0

(t− s)q−1sr1
(
2|x0|sq−1

)r2
ds.

Thus,

|(Pϕ)(t)| ≤ |x0|tq−1 +
K1

Γ(q + 1)
tq (3.7)

+
K2

Γ(q)

(
2|x0|

)r2 ∫ t

0

(t− s)q−1sr1+(q−1)r2 ds

for t ∈ (0, T0).
Expressed in terms of p := r1 + (q − 1)r2 + 1, the integral is∫ t

0

(t− s)q−1sp−1 ds.

Notice from (3.1) that p > 0 since

r1 + (q − 1)r2 + 1 = r1 − r2 + q(r2 + 1) + 1− q > 1− q > 0.

Since both p and q are positive, the integral is related to the Beta function B(p, q),
namely

B(p, q) :=

∫ 1

0

vp−1(1− v)q−1 dv,

which can be seen with the change of variable s = tv:∫ t

0

(t− s)q−1sp−1 ds = tp+q−1

∫ 1

0

vp−1(1− v)q−1 dv (3.8)

= tp+q−1B(p, q) = tp+q−1 Γ(p)Γ(q)

Γ(p+ q)
.

Thus, the integral in (3.7) is∫ t

0

(t− s)q−1sr1+(q−1)r2 ds = tp+q−1 Γ(p)

Γ(p+ q)
Γ(q) = tλγΓ(q), (3.9)

where

λ := p+ q − 1 = r1 − r2 + q(r2 + 1) and γ :=
Γ(p)

Γ(p+ q)
.
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By (3.1), λ > 0. Also, γ > 0 as p, q > 0. Consequently,

|(Pϕ)(t)| ≤ |x0|tq−1 +
K1

Γ(q + 1)
tq +

K2

Γ(q)

(
2|x0|

)r2
tλγΓ(q)

= |x0|tq−1 +
K1

Γ(q + 1)
tq +K2

(
2|x0|

)r2
γtλ

=

[
|x0|+ K1

Γ(q + 1)
t+K2

(
2|x0|

)r2
γtλ+1−q

]
tq−1

for t ∈ (0, T0).
Since λ+ 1− q > 0, a T ∈ (0, T0) exists so that

K1

Γ(q + 1)
T +K2

(
2|x0|

)r2
γTλ+1−q ≤ |x0|. (3.10)

It then follows that

|(Pϕ)(t)| ≤ 2|x0|tq−1

for 0 < t ≤ T . This completes the proof since for a fixed T ∈ (0, T0) satisfying
(3.10) we have shown that P : M →M . �

Remark 3.3. From an inspection of the proof, we see that

|(Lϕ)(t)| ≤ 1

Γ(q)

∫ t

0

(t− s)q−1|f(s, ϕ(s))| ds (3.11)

≤ K1

Γ(q + 1)
tq +K2

(
2|x0|

)r2
γtλ

for each ϕ ∈ M and for all t ∈ (0, T ]. This along with (3.10) implies |Lϕ|g ≤ |x0|.
Thus, for T satisfying (3.10), L : M →M .

Lemma 3.4. If T ∈ (0, T0) satisfies (3.10), then P is continuous on M in the
metric provided by the norm | · |g.

Proof. Let ϕ, ψ ∈M . Let µ > 0. We show a δ(µ) > 0 exists such that |Pϕ−Pψ|g <
µ if |ϕ− ψ|g < δ.

It follows from (3.5), (3.6), and (3.11) that

|(Pϕ)(t)− (Pψ)(t)| = |(Lϕ)(t)− (Lψ)(t)| ≤ |(Lϕ)(t)|+ |(Lψ)(t)|

≤ 1

Γ(q)

∫ t

0

(t− s)q−1|f(s, ϕ(s))| ds+ 1

Γ(q)

∫ t

0

(t− s)q−1|f(s, ψ(s))| ds

≤ 2K1

Γ(q + 1)
tq + 2K2

(
2|x0|

)r2
γtλ

for all t ∈ (0, T ]. Let ϵ ∈ (0, T ). Then for 0 < t ≤ ϵ, we have

1

tq−1
|(Pϕ)(t)− (Pψ)(t)| ≤

[
2K1

Γ(q + 1)
ϵq + 2K2

(
2|x0|

)r2
γϵλ

]
T 1−q.

Since the bracketed quantity tends to 0 as ϵ → 0+, we can choose ϵ small enough
so that

1

tq−1
|(Pϕ)(t)− (Pψ)(t)| < µ

2
(3.12)

for all t ∈ (0, ϵ].
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Now suppose t ∈ [ϵ, T ]. Then

1

tq−1
|(Pϕ)(t)− (Pψ)(t)| = 1

tq−1
|(Lϕ)(t)− (Lψ)(t)|

=
1

tq−1Γ(q)

∣∣∣∣∫ t

0

(t− s)q−1
[
f(s, ϕ(s))− f(s, ψ(s))

]
ds

∣∣∣∣
≤ 1

tq−1Γ(q)

∫ ϵ

0

(t− s)q−1
∣∣f(s, ϕ(s))− f(s, ψ(s))

∣∣ ds
+

1

tq−1Γ(q)

∫ t

ϵ

(t− s)q−1
∣∣f(s, ϕ(s))− f(s, ψ(s))

∣∣ ds.
Consider the integral over the interval [0, ϵ]. Since t ≥ ϵ, t−s ≥ ϵ−s; so (t−s)q−1 ≤
(ϵ− s)q−1 as q − 1 < 0. Thus,

1

tq−1Γ(q)

∫ ϵ

0

(t− s)q−1
∣∣f(s, ϕ(s))− f(s, ψ(s))

∣∣ ds
≤ 1

tq−1Γ(q)

∫ ϵ

0

(ϵ− s)q−1
∣∣f(s, ϕ(s))− f(s, ψ(s))

∣∣ ds
≤ 1

tq−1Γ(q)

∫ ϵ

0

(ϵ− s)q−1
∣∣f(s, ϕ(s))∣∣ ds

+
1

tq−1Γ(q)

∫ ϵ

0

(ϵ− s)q−1
∣∣f(s, ψ(s))∣∣ ds

≤ 2t1−q

[
K1

Γ(q + 1)
ϵq +K2

(
2|x0|

)r2
γϵλ

]
,

where the last inequality follows from (3.11). It follows from the inequality before
(3.12) that

1

tq−1Γ(q)

∫ ϵ

0

(t− s)q−1
∣∣f(s, ϕ(s))− f(s, ψ(s))

∣∣ ds
≤

[
2K1

Γ(q + 1)
ϵq + 2K2

(
2|x0|

)r2
γϵλ

]
T 1−q <

µ

2

for ϵ ≤ t ≤ T .
Now let us find a bound for the integral over [ϵ, T ]. Since f(s, x) is uniformly

continuous on the compact set[
ϵ, T

]
×
[
− 2|x0|ϵq−1, 2|x0|ϵq−1

]
, (3.13)

there exists a δ > 0 such that

|f(s, x1)− f(s, x2)| ≤
µΓ(q + 1)

3T

for all (s, x1) and (s, x2) in the set with |x1 − x2| < δϵq−1 . Hence, for ϕ, ψ ∈ M
with |ϕ− ψ|g < δ and s ∈ [ϵ, T ], we have

|ϕ(s)− ψ(s)| = |ϕ(s)− ψ(s)|
sq−1

sq−1 ≤ sq−1 sup
ϵ≤s≤T

|ϕ(s)− ψ(s)|
sq−1

≤ sq−1|ϕ− ψ|g < sq−1δ ≤ δϵq−1.

Consequently,

|f(s, ϕ(s))− f(s, ψ(s))| ≤ µΓ(q + 1)

3T
.
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And so

1

tq−1Γ(q)

∫ t

ϵ

(t− s)q−1
∣∣f(s, ϕ(s))− f(s, ψ(s))

∣∣ ds
≤ 1

tq−1Γ(q)

∫ t

ϵ

(t− s)q−1µΓ(q + 1)

3T
ds

≤ µΓ(q + 1)

tq−1Γ(q) 3T

∫ t

ϵ

(t− s)q−1 ds ≤ µqΓ(q)

tq−1Γ(q) 3T
· t

q

q
≤ µt

3T
≤ µ

3
.

Thus, for t ∈ [ϵ, T ], we have shown that

1

tq−1
|(Pϕ)(t)− (Pψ)(t)| < µ

2
+
µ

3
=

5µ

6
(3.14)

for ϕ, ψ ∈M and |ϕ− ψ|g < δ.
It follows from (3.12) and (3.14) that for each µ > 0 there is a δ > 0 such that

sup
0<t≤T

|(Pϕ)(t)− (Pψ)(t)|
tq−1

< µ

if ϕ, ψ ∈M and |ϕ− ψ|g < δ. �

Lemma 3.5. Let T ∈ (0, T0) satisfy (3.10). The set of functions

LM = {ψ | ∃ϕ ∈M,ψ(t) = (Lϕ)(t) for t ∈ (0, T ], ψ(0) = 0}
is equicontinuous on the interval [0, T ].

Proof. Let µ > 0. We show a δ > 0 exists such that t1, t2 ∈ [0, T ] and |t2 − t1| < δ
imply

|ψ(t2)− ψ(t1)| < µ

for all ψ ∈ LM .
To this end, take any ψ ∈ LM . Then there is a ϕ ∈ M such that ψ(t) = Lϕ(t)

for t ∈ (0, T ]. Moreover, we see from (3.11) that

|ψ(t)| ≤ K1

Γ(q + 1)
tq +K2

(
2|x0|

)r2
γtλ

for 0 < t ≤ T . Since q, λ > 0, the bounding function approaches 0 as t→ 0+; hence

lim
t→0+

ψ(t) = 0.

Thus, as ψ(0) = 0, the function ψ is continuous on [0, T ]. Furthermore, we can
choose ϵ ∈ (0, T ) so that |ψ(t)| < µ/4 for 0 ≤ t ≤ ϵ. Hence, if t1, t2 ∈ [0, ϵ], then

|ψ(t2)− ψ(t1)| <
µ

2
.

Now consider ψ = Lϕ on [ϵ, T ]. Since ϕ ∈M is continuous and

|ϕ(t)| ≤ 2|x0|tq−1 ≤ 2|x0|ϵq−1

for ϵ ≤ t ≤ T and as f(t, x) is continuous on the compact set (3.13), there is a
constant k > 0 such that ∣∣f(t, ϕ(t))| ≤ k

for t ∈ [ϵ, T ]. It then follows from [7, Thm. 5.1] (with minor alterations in its proof)
that a constant H > 0 exists such

|ψ(t2)− ψ(t1)| ≤ H|t2 − t1|q
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for all t1, t2 ∈ [ϵ, T ]. For the given µ, let δ := (µ/2H)1/q. Then t1, t2 ∈ [ϵ, T ] and
|t2 − t1| < δ imply that

|ψ(t2)− ψ(t1)| ≤ H|t2 − t1|q < Hδq =
µ

2
.

Finally, there is the case with a ti ∈ [0, ϵ] while the other is in [ϵ, T ]. For
definiteness, suppose t1 ∈ [0, ϵ] and t2 ∈ [ϵ, T ]. Then, if |t2 − t1| < δ,

|ψ(t2)− ψ(t1)| ≤ |ψ(t2)− ψ(ϵ)|+ |ψ(ϵ)− ψ(t1)| <
µ

2
+
µ

2
< µ.

�
Lemma 3.6. Let C denote the Banach space of continuous functions on [0, T ] with
the supremum norm ∥ · ∥. Let K denote the closure of LM in C. Then K is a
compact subset of the Banach space X with the norm | · |g. Furthermore,

K ⊆ {ϕ ∈ X : |ϕ|g ≤ |x0|} ⊆M ⊆ X.

Proof. First notice that each function φ ∈ C also belongs to the Banach space X
as |φ|g <∞. By Lemma 3.5, LM ⊆ C. Hence, LM ⊆ X.

For a given ψ ∈ LM , a function ϕ ∈ M exists with ψ(t) = (Lϕ)(t). The bound
given by (3.11) and ψ(0) = 0 imply that

|ψ(t)| ≤ K1

Γ(q + 1)
T q +K2

(
2|x0|

)r2
γTλ

for 0 ≤ t ≤ T . Thus the set of functions LM is uniformly bounded on [0, T ]. By
Lemma 3.5, LM is equicontinuous on [0, T ].

The set K, namely the closure of LM , is also equicontinuous on [0, T ]. This
can be seen by choosing a limit point of LM , say a function ψL. And so there
is a sequence {ψn} of functions in LM converging to ψL, i.e., ∥ψn − ψL∥ → 0 as
n → ∞. This implies {ψn} converges uniformly on [0, T ] to ψL. Consequently,
ψL is also continuous on [0, T ]. In point of fact, each limit point of LM satisfies
the same equicontinuity condition as do all the functions constituting LM . This
can be shown with a classical ϵ/3 argument applied to the sequence {ψn}, which
we defer to the reader. In sum, K is equicontinuous on [0, T ]. Clearly the uniform
boundedness of LM implies that the functions constituting K are also uniformly
bounded on [0, T ].

Since the set K of functions is uniformly bounded and equicontinuous on [0, T ]
and of course closed, it follows from the Arzelà-Ascoli theorem that K is a compact
subset of C.

Now consider K as a subset of X. Let {Ψn} be a sequence in K. Since K is
compact in C, it has a subsequence {Ψnk

} that converges in the supremum metric
to a function Ψ ∈ K. In other words, for every ϵ > 0, there is an N such that k > N
implies

|Ψnk
(t)− Ψ(t)| < ϵ

2T 1−q

for t ∈ [0, T ]. Consequently,

|Ψnk
− Ψ |g = sup

0<t≤T

|Ψnk
(t)− Ψ(t)|
tq−1

≤ ϵ

2
< ϵ.

So each sequence {Ψn} in K has a subsequence that converges in the metric provided
by the norm |·|g to a function in K. As a result, we conclude that K is also a compact
subset of the Banach space X.
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In fact, K lies in the closed ball

{ϕ ∈ X : |ϕ|g ≤ |x0|}.
To see this, let Ψ ∈ K. If Ψ ∈ LM , then |Ψ |g ≤ |x0| (cf. Remark 3.3). If Ψ /∈ LM ,
then for each δ > 0 a function Ψ∗ ∈ LM exists such that |Ψ − Ψ∗|g < δ. And so

|Ψ |g ≤ |Ψ − Ψ∗|g + |Ψ∗|g < δ + |x0|.
Since this holds for all δ > 0, |Ψ |g ≤ |x0|. Therefore, |Ψ |g ≤ |x0| for all Ψ ∈ K. �

In Theorems 2.2 and 3.1, q denotes a fixed value in (0, 1) while x0 denotes any
fixed nonzero real number. As mentioned earlier, these are the standing assump-
tions in this paper and will not always be stated. Let us now show that the solution
ensured by Theorem 3.1 is also a solution of the initial value problem (1.2).

Corollary 3.7. If a function f(t, x) satisfies the conditions of Theorem 3.1, then
for some T > 0 there is a continuous function that is a solution of both the integral
equation (3.3) and the initial value problem

Dqx(t) = f(t, x(t)), lim
t→0+

t1−qx(t) = x0 (3.15)

for 0 < t ≤ T .

Proof. We have already established the existence of an interval (0, T ] and a function
x that satisfies (3.3) on (0, T ]. Now let us show that x is also a solution of (3.15)
on (0, T ].

First, from Theorem 3.1 note that |x(t)| ≤ 2|x0|tq−1 for 0 < t ≤ T ; thus x(t) is
absolutely integrable on (0, T ]. Second, f(t, x(t)) is also absolutely integrable on
(0, T ] because r1 + r2(q − 1) > −1 implies∫ T

0

|f(t, x(t))| dt ≤
∫ T

0

(K1 +K2 t
r1 |x(t)|r2) dt

≤ K1T +K2

∫ T

0

tr1
(
2|x0|tq−1

)r2
dt

≤ K1T +K2

(
2|x0|

)r2 ∫ T

0

tr1+r2(q−1) dt <∞.

Thus both x(t) and f(t, x(t)) are absolutely integrable on (0, T ]. It then follows
from Theorem 2.2 that x is also a solution of (3.15) on (0, T ]. �

Example 3.8. For t ≥ 0, define the function

f(t, x) :=


0, x < 0

−
√
π

2
(
√
tx)3/2, x ≥ 0.

There is a continuous function that is a solution of both

x(t) =
1√
t
+

1√
π

∫ t

0

f(s, x(s))√
t− s

ds

and

D1/2x(t) = f(t, x(t)), lim
t→0+

√
tx(t) = 1

on the interval (0,
√
2/4).
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Proof. From (3.3) and (3.15), we see that q = 1/2 and x0 = 1. Since

|f(t, x)| ≤
√
π

2
t3/4|x|3/2

for x ∈ R and 0 ≤ t < ∞, condition (3.2) is satisfied with K1 = 0, K2 =
√
π/2,

r1 = 3/4, and r2 = 3/2. Condition (3.1) is also satisfied because

r1 − r2 + q(r2 + 1) = 3
4 − 3

2 + 1
2

(
3
2 + 1

)
= 1

2 .

Since all of the conditions of Theorem 3.1 are met, the existence of a continuous
function x(t) satisfying both the integral equation and the initial value problem on
a common interval (0, T ] follows from Corollary 3.7.

Perusing the proof of Theorem 3.1 and supporting lemmas, we see that a value
for T can be obtained from (3.10), where the values of the constants p, λ, and γ
are:

p = r1 + (q − 1)r2 + 1 = 1, λ = p+ q − 1 =
1

2

γ =
Γ(p)

Γ(p+ q)
=

Γ(1)

Γ(1 + 1
2 )

=
1

1
2Γ(

1
2 )

=
2√
π
.

So T satisfies (3.10), namely

K1

Γ(q + 1)
T +K2

(
2|x0|

)r2
γTλ+1−q ≤ |x0|,

if √
π

2
· 23/2 · 2√

π
T ≤ 1.

We conclude a common solution exists on (0,
√
2/4). �

Remark 3.9. It is shown with Examples 4.12, 5.2, and 6.4 in [2] that the function

x(t) =
1√

t(1 + t)
(3.16)

is a solution of both

D1/2x(t) = −
√
π

2
(
√
tx(t))3/2, lim

t→0+

√
tx(t) = 1

and

x(t) =
1√
t
− 1

2

∫ t

0

(
√
sx(s))3/2√
t− s

ds

on the interval (0,∞). Since (3.16) is positive for all t > 0, we conclude that it is a
solution of the initial value problem and the integral equation in Example 3.8, not
only on (0,

√
2/4) but on the entire interval (0,∞).

If in Theorem 3.1 r2 ≤ r1, then q may assume any value in the interval (0, 1)
and the existence of a solution of (3.3) is guaranteed. However, this is not the case
if r2 > r1 or if r1 ∈ (−1, 0); for then condition (3.1) restricts q to

q >
r2 − r1
r2 + 1

> 0.

The function f(t, x) := xn serves as an example of r2 > r1 since r2 = n and r1 = 0.
As a consequence, we have the following sufficient condition for the existence of a
solution of the integral equation (3.17).
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Example 3.10. A solution of the integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1xn(s) ds (t > 0) (3.17)

exists if

q >
n

n+ 1
.

However, by appealing to Theorem 2.7 in [3, p. 255], we can do much better than
this: the next theorem and its corollary give necessary and sufficient conditions for
the existence of a unique solution of (3.17) and the complementary initial value
problem (3.18).

Theorem 3.11. Let n ∈ N, q ∈ (0, 1), and x0 ̸= 0. The initial value problem

Dqx(t) = xn(t), lim
t→0+

t1−qx(t) = x0 (t > 0) (3.18)

has a solution if and only if

q >
n− 1

n
. (3.19)

Moreover, the solution is unique.

Proof. Let us begin with the “only if” part of the proof. Accordingly, suppose
there is a function x that satisfies the fractional differential equation on an interval
(0, T ] and the initial condition in (3.18). Then we see from (2.2) in the proof of
Proposition 2.3 that there exists a T ∗ ∈ (0, T ] corresponding to ϵ = 1

2 |x
0| such that

(x0 − 1
2 |x

0|)tq−1 < x(t) < (x0 + 1
2 |x

0|)tq−1 (3.20)

for t ∈ (0, T ∗). Moreover, for this particular ϵ, it follows from (2.1) that

1
2 |x

0|tq−1 < |x(t)| < 3
2 |x

0|tq−1 (3.21)

for t ∈ (0, T ∗). The convergence of the improper integral on the right-hand side

implies the convergence of
∫ T∗

0
|x(t)| dt. It follows that x(t) is absolutely integrable

on (0, T ].
Likewise, xn(t) is also absolutely integrable on (0, T ]. We will see in the follow-

ing argument that this is a consequence of x satisfying the fractional differential
equation

1

Γ(1− q)

d

dt

∫ t

0

(t− s)−qx(s) ds = xn(t)

on (0, T ]. Since the integration

1

Γ(1− q)

∫ t

ξ

d

du

∫ u

0

(u− s)−qx(s) ds du =

∫ t

ξ

xn(u) du

yields

1

Γ(1− q)

[∫ t

0

(t− s)−qx(s) ds−
∫ ξ

0

(ξ − s)−qx(s) ds

]
=

∫ t

ξ

xn(u) du,

it follows from (1.7), which is equivalent to the initial condition (3.18), that the left-
hand side converges as ξ → 0+. Thus the integral on the right-hand side converges
to ∫ t

0

xn(u) du =
1

Γ(1− q)

∫ t

0

(t− s)−qx(s) ds− x0Γ(q) (3.22)
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for 0 < t ≤ T . Consequently, xn(t) is absolutely integrable on (0, T ] when n is
even.

Now suppose n is odd. Choose any t in (0, T ∗). If x0 > 0, then from (3.20) we
see that x(u) > 1

2x
0uq−1 > 0 for 0 < u ≤ t. And so on this interval |xn(u)| = xn(u).

But if x0 < 0, then x(u) < 1
2x

0uq−1 < 0; so |xn(u)| = −xn(u) for 0 < u ≤ t. In
both of these cases, it follows from (3.22) that xn(u) is absolutely integrable on
(0, t]. As a result, we can conclude that xn(t) is also absolutely integrable on (0, T ]
when n is odd.

Let f(t, x) := xn. It follows from Theorem 2.2 that the continuity and absolute
integrability that has been established for x(t) and f(t, x(t)) on (0, T ] imply that
x(t) is also a solution of the complementary integral equation (3.17) on (0, T ].

We see from (3.20) and (3.21) that

xn(s) > ( 12 |x
0|)ns(q−1)n (0 < s < T ∗) (3.23)

when n is even and also when n is odd and x0 > 0. (The case x0 < 0 will be
considered later.) Thus, for a fixed t ∈ (0, T ∗],

(t− s)q−1xn(s) > ( 12 |x
0|)n(t− s)q−1s(q−1)n

for 0 < s < t. Since (3.17) implies that
∫ t

0
(t − s)q−1xn(s) ds converges, it follows

that
∫ t

0
(t− s)q−1s(q−1)n ds also converges. With the change of variable s = tv, we

can express this latter integral in terms of the Beta function, namely

B(p, q) :=

∫ 1

0

vp−1(1− v)q−1 dv,

as follows: ∫ t

0

(t− s)q−1s(q−1)n ds =

∫ 1

0

(t− tv)q−1(tv)(q−1)nt dv

= tq+(q−1)n

∫ 1

0

v(q−1)n(1− v)q−1 dv.

Thus,∫ t

0

(t− s)q−1s(q−1)n ds = tq+p−1

∫ 1

0

vp−1(1− v)q−1 dv = tq+p−1B(p, q)

where p := (q− 1)n+1. Since the integral on the left-hand side converges, so must
B(p, q). However, it is well-known that the Beta function converges if and only if
both of its arguments are positive. Therefore p > 0, which is (3.19).

Now let us dispose of the remaining case: n odd and x0 < 0. Since x(t) is a
solution of (3.18), the function −x(t) is a solution of

Dqy(t) = yn(t), lim
t→0+

t1−qy(t) = y0 (t > 0) (3.24)

if y0 = −x0. But this is the previous case: n odd and y0 > 0. So (3.19) obtains in
this case too.

Conversely, if (3.19) holds, then (1.4) and (1.5) along with the other conditions
of Theorem 2.7 in [3, p. 255] are fulfilled. Consequently, for some T > 0, a unique
solution x of the integral equation (3.17) exists on (0, T ]. Furthermore, this theorem
also states that both x(t) and xn(t) are absolutely integrable on (0, T ]. Finally, it
follows from the equivalence theorem (Thm. 2.2) that x is also the unique solution
of the complementary initial value problem (3.18). �
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Corollary 3.12. The integral equation (3.17) has a unique solution if and only if
q satisfies the inequality (3.19).

Proof. In the course of proving Theorem 3.11, we showed that the solution x(t) of
the initial value problem (3.18) is unique and absolutely integrable on some interval
(0, T ]. We also established that xn(t) is absolutely integrable on this same interval.
Therefore, by Theorem 2.2, x(t) must also be the unique continuous solution of
(3.17). �

4. A generalization

We can easily generalize Theorem 3.1 by replacing the second term in the upper
bound for f in (3.2) with the sum in (4.2) below.

Theorem 4.1. Let r1,i > −1 and r2,i ≥ 0 be constants that satisfy the inequalities

λi := r1,i − r2,i + q (r2,i + 1) > 0 (4.1)

for i = 1, . . . , n. Let f : (0,∞)×R → R be continuous. Suppose there are constants
K1 ≥ 0 and K2,i ≥ 0 (i = 1, . . . , n) such that

|f(t, x)| ≤ K1 +
n∑

i=1

K2,i t
r1,i |x|r2,i (4.2)

for x ∈ R and 0 < t < T0, where T0 ∈ (0,∞) ∪ {∞}. Then there is a T ∈ (0, T0)
and a continuous function x : (0, T ] → R that satisfies the integral equation (3.3)
on (0, T ]. Furthermore, |x(t)| ≤ 2|x0|tq−1 for t ∈ (0, T ].

Proof. Consider the mappings P and L defined by (3.5) and (3.6), respectively.
Following the proof of Lemma 3.2 and making appropriate modifications, we see
that the effect of (4.2) is to change (3.7) to

|(Pϕ)(t)| ≤ |x0|tq−1 +
K1

Γ(q + 1)
tq

+
n∑

i=1

K2,i

Γ(q)

(
2|x0|

)r2,i ∫ t

0

(t− s)q−1sr1,i+(q−1)r2,i ds (4.3)

for each ϕ ∈M and t ∈ (0, T0).
Let pi := r1,i + (q − 1)r2,i + 1 for i = 1, . . . , n. Referring to (3.9), we see that as

each pi > 0 each integral in (4.3) is∫ t

0

(t− s)q−1sr1,i+(q−1)r2,i ds =

∫ t

0

(t− s)q−1spi−1 ds = tλiγiΓ(q),

where

λi := pi + q − 1 > 0 and γi :=
Γ(pi)

Γ(pi + q)
. (4.4)
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Consequently,

|(Pϕ)(t)| ≤ |x0|tq−1 +
K1

Γ(q + 1)
tq +

n∑
i=1

K2,i

Γ(q)

(
2|x0|

)r2,i
tλiγiΓ(q)

= |x0|tq−1 +
K1

Γ(q + 1)
tq +

n∑
i=1

K2,i

(
2|x0|

)r2,i
γit

λi

=

[
|x0|+ K1

Γ(q + 1)
t+

n∑
i=1

K2,i

(
2|x0|

)r2,i
γit

λi+1−q

]
tq−1

for t ∈ (0, T0). Since each λi + 1− q > 0, a T ∈ (0, T0) exists such that

K1

Γ(q + 1)
T +

n∑
i=1

K2,i

(
2|x0|

)r2,i
γiT

λi+1−q ≤ |x0|. (4.5)

Therefore, for such a fixed T and each ϕ ∈M , we have

|(Pϕ)(t)| ≤ 2|x0|tq−1, (4.6)

which proves that P : M →M .
It can be readily seen from the previous work that the counterpart of (3.11) is

|(Lϕ)(t)| ≤ K1

Γ(q + 1)
tq +

n∑
i=1

K2,i

(
2|x0|

)r2,i
γit

λi (4.7)

for 0 < t ≤ T . Observe from the proofs of Lemmas 3.4–3.6 that they are still valid
in the present situation; the only alterations needed in their proofs is to replace
every use of (3.11) with (4.7).

In conclusion, the lemmas that were used to prove Theorem 3.1 are still true here.
As a result, the proof of Theorem 3.1 also serves as a proof of Theorem 4.1. �

Theorem 4.1 gives sufficient conditions for the existence of a solution x(t) of the
integral equation (1.3) on an interval (0, T ]. Now we argue that x(t) must also
be a solution of the initial value problem (1.2) on this interval, similar to the way
we showed Corollary 3.7 followed from Theorem 3.1. First we note that x(t) is
absolutely integrable on (0, T ] because |x(t)| ≤ 2|x0|tq−1. Then it follows from
(4.2) that

|f(t, x(t))| ≤ K1 +
n∑

i=1

K2,i t
r1,i |x(t)|r2,i ≤ K1 +

n∑
i=1

K2,i t
r1,i |2x0tq−1|r2,i

≤ K1 +

n∑
i=1

K2,i|2x0|r2,itr1,i+(q−1)r2,i

for 0 < t ≤ T . Therefore, as r1,i+(q − 1) r2,i > −q > −1, the integral
∫ T

0
|f(t, x(t))| dt

converges. So we have proven the following:

Proposition 4.2. Let f : (0,∞) × R → R be continuous. Suppose for constants
satisfying the inequalities (4.1) that f is bounded as in (4.2) for x ∈ R and 0 <
t ≤ T . If x : (0, T ] → R is a continuous function such that |x(t)| ≤ 2|x0|tq−1, then
f(t, x(t)) is absolutely integrable on (0, T ].
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In sum, we have proved that if the conditions of Theorem 4.1 hold, then there
exists a function x(t) that satisfies the integral equation (3.3) (or (1.3)) and both
it and f(t, x(t)) are absolutely integrable. As a result, because of Theorem 2.2, we
have the following result.

Corollary 4.3. Assume that f : (0,∞)×R → R is continuous and satisfies condi-
tions (4.1)–(4.2) in Theorem 4.1. Then there is a T > 0 and a continuous function
x : (0, T ] → R that is a solution of both the initial value problem (1.2) and the
integral equation (1.3) on the interval (0, T ].

The final example in this paper applies Corollary 4.3 and illustrates the variety
of functions that can satisfy condition (4.2).

Example 4.4. Let g be a continuous, bounded function on (0,∞) and h a polyno-
mial of degree n. Then a continuous function exists that is a solution of both the
initial value problem

Dqx(t) = x sin t+ g(t) + h(tx), lim
t→0+

t1−qx(t) = x0

and the integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1
[
x(s) sin s+ g(s) + h(sx(s))

]
ds

on some interval (0, T ].

Proof. Let
f(t, x) := x sin t+ g(t) + h(tx)

for t > 0 and x ∈ R. Since h is a polynomial of degree n,

h(tx) = a0 +
n∑

i=1

ai(tx)
i,

for ai ∈ R and an ̸= 0. It suffices to show that f satisfies conditions (4.1)–(4.2).
Let k be a bound for g. Then, as |x sin t| ≤ t|x| for t ≥ 0,

|f(t, x)| ≤ t|x|+ k + |a0|+
n∑

i=1

|ai|ti|x|i

= (k + |a0|) + (1 + |a1|)t|x|+
n∑

i=2

|ai|ti|x|i = K1 +
n∑

i=1

K2,i t
r1,i |x|r2,i

where r1,i = r2,i = i for i = 1, . . . , n, K1 = k+ |a0|, K2,1 = 1+ |a1|, and K2,i = |ai|
for i = 2, . . . , n. Thus, (4.2) is satisfied. Also, (4.1) is satisfied since

r1,i − r2,i + q (r2,i + 1) = q(i+ 1) > 0

for i = 1, . . . , n. The result follows from Corollary 4.3. �

5. Epilogue

The results in this paper are for establishing the existence of solutions of (1.2)
and (1.3). Generally speaking, the intervals on which they guarantee solutions are
short. Take Example 3.8 for instance. There a solution was shown to exist on the
interval (0,

√
2/4), which is about 0.35 units in length. However, as we pointed out

earlier in Remark 3.9, the solution actually exists on the entire interval (0,∞). This
evokes the question: Can solutions be continued beyond such short intervals? This
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matter is in fact addressed in the recent papers [3] and [4]; see especially Sections 3
and 4 of [3].
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