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EXISTENCE, UNIQUENESS AND WELL-POSED CONDITIONS
ON A CLASS OF FRACTIONAL DIFFERENTIAL EQUATIONS
WITH BOUNDARY CONDITION

M.H. AKRAMI, G.H. ERJAEE

ABSTRACT. In this paper, we propose the conditions on which a class of bound-
ary value problems, presented by fractional differential equations, is well-posed.
First, under the suitable conditions, we will prove the existence and unique-
ness of solution. Then, the stability of solution will be discussed under the
perturbations of boundary condition, function exists in the problem and the
fractional order derivative.

1. INTRODUCTION

In many applications Fractional differential equations (FDEs) present more ac-
curate models of phenomena than the ordinary differential equations. Therefore
they have obtained importance, due to their applications in the sciences and en-
gineering such as, physics, chemistry, mechanics, fluid dynamic, etc [1, 2]. In last
decade many papers have written in this field. Existence of solutions to FDEs have
received considerable interest in recent years. There are several papers dealing
with the existence and uniqueness of solution to initial and boundary value prob-
lem of fractional order in Caputo or Riemann-Liouville senses. For example, see
[3, 4, 5] and references therein. Some authors have also investigated the existence
and uniqueness solutions for a coupled system of multi-term FDEs [6, 7]. However,
in general, the study of well posed conditions for FDEs is less considered in the
literature.

In [8], Houas and Benbachir investigated the existence and uniqueness of solutions
for

{ Dox(t) + f(z(t), Dlx(t) =0, 2<a<3,0<B<1,te0,1],
x(0) = zp, 2'(0) =0, 2'(1) = A\J%x(n),

where, D¢ is the Caputo’s fractional derivative, 0 < 1 < 1, f is continuous function
on R? and ) is a real constant. In [9], Authors studied existence and uniqueness of
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solution for fractional differential equation

{ Diu(t) = f(t,u(t), Du(t)), 2<q¢<3,0<p<l,
u(0) =0, D¥u(1) = Y75 G:DEu(n,), u”(1) =0,

where, 0 < (;,m; < 1 and DY is the Caputo’s fractional derivative. In this article,
we will prove the conditions on which the following class of FDEs is well-posed.

Doy(t) = f(y(t), DPy(t)), 2<a <3, 0<p<1, (1)

where t € [0,1], and D¢ is the standard Caputo derivative, subject to the boundary
value condition

y(0) =4'(0) =0, y(1) = Ay(&), (2)
where € € (0,1) and 0 < A < &.
We recall that a problem is said to be well-posed if it has a uniqueness solution
and this solution depends on a parameter in a continuous way. This parameter, in
the classical order differential equations is dependent on the initial conditions and
the function exists in the problem. Whereas, in the FDEs this dependency and the
stability solution with respect to the perturbation of fractional order derivative, «,
should be taken into the account too [10].
In this article, we have first proved the existence solution of (1) by means of
Schauder fixed point theorem on the interval [0,1]. Then, we have proved the
uniqueness by using Banach contraction map theorem under a suitable condition.
We have also investigated the stability of solutions under the perturbations on
boundary condition, the function exists in the problem and the fractional order
derivative a. Finally, we have brought some examples to illustrate our results.
Let us start with some basic preliminaries that we will use them shortly.

2. PRELIMINARIES

There are various definitions for fractional integration and derivatives [1, 2].
Here, we have used the Caputo’s definition which is more reliable in applications.

Definition 2.1. A real function f(x),x > 0, is said to be in the space C,, pn € R, if
there exists a real number p(> u) such that f(x) = P f1(x) where fi(x) € C[0, 00).

Definition 2.2. [1, 2] The Riemann-Liouville fractional integral operator of order

a >0, of function f € L*(RY) is defined as

I8, £(1) = ﬁ /0 (t — )™ f(s)ds,

where T'(.) is the Euler gamma function.

Definition 2.3. Let f € C, and p > 1, then Caputo’s definition of the fractional-
order derivative is defined as [2]

opipy L AR
D3f@) = oy | g Q

where o > 0 is the order of the derivative and n = [a] .

Lemma 2.4. For the Caputo derivative we have

Dic=0 (cis a constant), (4)
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and

Dfazﬁ{ 0 for B € Ny and 8 < [a],

5
%xﬂ * for BE€ Ny and B> [a] or B & Ny and 8 > [«], (5)

where Ng = {0, 1, 2, ---}. Note that for o € N the Caputo differential operator
coincides with the usual differential operator of an integer order.

Lemma 2.5. [1] Let @ > 0. Then the following equality holds for uw € C(0,1) N
LY(0,1) with a derivative of order n that belongs to C(0,1) N L1(0,1).

o DYu(t) = u(t) + co + crt + cot® + -+ cpgt"
for somec; e Ryi=1,--- ;n—1, wheren—1<a<mn.
Now, we consider the following important Lemma in our article.

Lemma 2.6. Let h € AC[0,1] and 2 < a < 3. Then the fractional differential
equation

Dgy(t) = h(t), 2<a<3, (6)
y(0) ='(0) =0,
W)=, €01, 0SA< g, (7)
has a solution
/Gts S)ds + 1_A§2/G€7 (s)ds, (8)

where

(o)

o)l 0<t<s<l.

(t—s)* 1 —t2(1—s)>! 0<s<t<l1
G(t,s) ’ - ’
I'(«a) ) - -

Proof. By Lemma 2.5 the solution of (6) can be written as

1

y(t) = (o) /0 (t — 8)* " h(s)ds — co — 1t — cot?.

Since y(0) = 3/(0) = 0, a simple calculation gives ¢y = ¢; = 0, and from boundary
condition we obtain

1 3
L ] /0 (1—5)"th(s)ds — cy = T‘>\)/0 (€ — 5)* " h(s)ds — ca\E2,

INa (o
therefore,

ey = WM(/{) (1—8)*"'h(s)ds — )\/O

3

(& — s)"“%(s)ds).
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Hence, the solution of boundary value problem (6) is

y(t) = ﬁ/o(t—s)“_lh(s)ds

-4 _7;52)“(1)(/( — ) h(s ds—/\/ )~ h(s)ds)

_ L ' —s5)*— 1 5 — tf _ 5\ 1
 T(a) /0 (t = 5)"""h(s)d F(a)/o (1 —=5)" "h(s)ds
A2 ! o1 o et
_W/O (1 —s)*""h(s)ds + (1—>\£2)F(a)/0 (€ —5)* " h(s)d

— L ! 75017172 750471 s S*L 12 75a71 s)ds
= g | =0 =20 = s — s [ 20— ke

Ia)
)\t2 13 1
*a—xe><>(/(“$

—€2(1 - 5)°7Y) ds—/ €2(1 — 5)> (s )ds)

/Gts ds+1_)\£2/G£, h(s)ds

where
Loat ol g <s<t<l,
G(t,s) = —t2(1—5)*"1
W’ 0 S t<s S 1,
which completes the proof. O

In order to check the existence of solutions, we prove some properties of the
functions G(t, s).

Lemma 2.7. For any t € [0,1], the functions G(t,.) and %G(t, .) are integrable
and have following properties

fo |G(t, s)|ds < F(oHrl)'
(ii) fo | 2G(t,s) \ds<r( 3-

Proof. Let t € [0,1]. Then for (i) we have

1 1 t a—1 i ! —Sa71 s
/O|G(t,s)|ds < m/O(zf—s) ds+r(a)/0(1 yoLd

e N 12 < 2
Ia+1) T(a+1) " T(a+1)

1 2t(1 _ S)a—l t (t _ s)a—Q
A=) o / E=9" 7,
A Tl@) ')y Ta-1 "
o2t ol 3

/ | =G(t,s)|ds
< .
S Tla+D (@) = T(
Hence, G(t,.) and %G(t, .) are integrable. O

A

For (ii),

IN
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Let I =[0,1] and C'(I) be the class of all continuous function with continuous
first order derivative on, I. Since DZy(t) = I'=Py/(t) for B € (0,1), the operator
D? is continuous for any y € C1(I). Now, for y € C*(I) define the maximum norm
by

= B
lyll = max [y(¢)] + max | D, y(?)],
and the space X = {y(t)|y(t) € C1(I)} endowed with the above norm.
Lemma 2.8. (X, ||.||) is a Banach space.

Proof. Let {y,}52; be a Cauchy sequence in the space (X, ||.||). Obviously, {y,}52,
and {nyn}ff:l are Cauchy sequence in the space C(I). Since C(I) is compact,
{yn}22; and {Df Yn 1524 uniformly converge to some y, u in I. Furthermore y,u €
C(I). In the following, we need to show that u = DYy.

Now, by definition of fractional integral

L 818
m/o (t = )" |Dyyn — ulds

1
< DBy, — ul.
S TEa) kP —ul

(1P D2y (t) — I7u(t)|

IN

Therefore using the convergence of { D Yn 22, implies that lim,, o, I? Dly.(t) =
IP4(t) uniformly on I. On the other hand, we know I8 D%y, (t) =y, for t € 1,0 <
B < 1. Hence I®u = y and this means u = ny. This completes the proof. O

Remark 2.9. Lemma 2.5 implies that the solution of the problem (1) coincides
with the fized point of the the operator T defined as

1 2 1
Ty(t) = / G(t,s>f<y<s>,ny<s>>ds+(1f%€2) / G(&, )1 (y(s), D2y(s))ds. (10)

3. EXISTENCE AND UNIQUENESS

According to Schauder fixed point theorem, the existence result have been stated.
For convenience throughout this paper take
A 2

M= T 5a ) Fa )

Theorem 3.1. suppose f : R2 — R be a continuous function and one of the
following conditions is satisfied
(H1) There exist nonnegative function a(t) € [0,1] such that

|f (2, y)| < a(t) + colz|™ + erfy[™,

where cg,c1 >0, 0 <y, 11 < 1.
(H2) The function f satisfy

[f(z,9)] < colz® + eyl ™,

where cg,c1 > 0, v9,7v1 > 1.
Then there exist a solution y(t) for boundary value problem (1).
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Proof. First, suppose that condition (H1) holds. define
A= {y®)] ly®)| <R, t €1},
where
R > max{((sMco)ﬁ, (6Mey) T, 6Mki,

( 12M ¢ )ﬁ ( 12M ¢y )ﬁ 16k, 8ko }
r2-p5) T T(2-5) "T2-8)1-22) T(2-P)

and

1 = max{ /|Gts 5)\ds},

tel

o = max{ /| a(s)lds}.

tel

Clearly, A is a closed, bounded and convex subset of Banach space X. Here, we
prove that T': A — A. For any y € A, we obtain

2 1
Ty(0) DEy(s))lds + % / IG(€, 5)F(u(s), DPy(s))ds.

INA IA
\ \H
S 9
Z o

s)lds 4+ (coR 4 ¢1 R™™) / |G(t,s)|ds

A§2 /|G ¢, 8)a(s)|ds + (coR™ + 1 R™) / G(€, )|ds)

(1 +1 R + 1 R™))

= A£2)(kl * m(
M(kl + CoR’YO + ClR’Yl) < E

IA

For 0 < 8 < 1, we have

1 ¢ B ,
R / (t— ) (Ty) (s)ds]

; —S ﬁ - ST 7' B T
i [0 ([ 12a y(r), D2y()ld

2)s
tes [ 16 )56, Dyt ar i

IN



JFCA-2015/6(2) EXISTENCE, UNIQUENESS AND WELL-POSED CONDITIONS 177

Jr(coRW’JrcﬂW)/ |—G’(s,7)|d7

17>\£2 /|Gs7‘ T)|dr

+(COR7°+01R71)/0 |G(§,T)|d7')}ds

< ﬁ /Ot(t —8) (ko + 1“(304) (coR™ + c1R))ds

+(1 — A§22)Ar(1 5 /Ots(t —8) (k1 + ﬁ(%m + e R7))ds
< r(11— B (k2 + F(?’a) (coR™ + c1R™)) fl__;

ST B D R ) T
< (21 B (k2 + (3 )(comD + ¢ RM))

ST T R )
< TEog @R eR) T T

R
< bR

It is obvious that Ty(t) and D? (Ty)(t) are continuous in I. Therefore T : A — A.
Now, suppose that condition (H2) holds. Choose

—170 1 —l’Yl 71—‘(2 _ B) —170 (7F(2 _ ﬂ) 1 17

0 < R < min {( e
0

1
4MCQ

By similar process, we obtain ||Ty|| < R and therefore in this case, T : A — A.
Here, we need to show that 7" is completely continuous operator. First, equiconti-
nuity of T" will be shown as follow.
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Let t1,ty € I such that t; <ty and N = max |f(t,y(t), D?y(t))] + 1. Then

Ty(t2) —
<
<
<
<
<

and,

|DE(Ty)(t2)

tel,yc A

Ty tl
| / Glta, ) - Glt1,)) fy(s), Diy(s))ds
(2 — 2)
AR / G(&,9)F(w(s), D2y(s))ds|
20N, 9
N/O | G(tg,s)—G(tl,s)]ds+l_7)\£2(t2—t1)
AN @)
17>\§2 2 1
L e e i R
+N</0 T(a) ds
Pt —s) T 4 (t — ) (13 —t1)(1 —s)*~
v (@) d”/tz I(a)
AN, 2 oy [TO=s)
et N (G- [ S
S R L B
Al M )
B-8 -8 BB
(F(a +1) T(a+1) (1-X32)T(a+ 1))
g — 19
- D! (Ty)(t1
e G / & 6, m) (), D2y(r))
1?;2/ G(&,7)f(y(r), Dy(r))dr ) ds
0
[ / 8—G<s ) f(y(r), Dy(r)dr
13)\;\22/ G(, 1) (T))dT)dS‘

IN

’/ ﬁds/tl(tls)ﬁds

)

AN tzs —s)Pds — tls —s) Pds
+r<1—5>r<a><1—w>‘/o (=) Pds = [ stts =9
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il [ =97 =it [ 9

t1

AN tls —s) P —s —5))ds tzs — ) Bds
AT, (=9 st = ek [ Cetta =970

3N 1-8  ,1-8 1-8
< g (B - T 20 - 1))
< T pr@ (@ T e

6AN (Qtl(tg —t))"P 2t 2ty — tl)Hﬁ)
()1 -Ag)\  T(2-5) I'3-p) r@3-p)
Since the functions 2 — 2,15 — t§, (ta — t1)?> Pand t,(ta — t1)* =7 are continuous,
we conclude that, Ty is an equicontinuous set. Obviously, T'y is uniformly bounded
because T/A C A. By means of Arzela-Ascoli theorem, T' is a compact operator.
Therefore, from Schauder fixed point theorem, the operator 7" has a fixed point i.e.,
the fractional boundary value problem (1) has a solution. O

IA

+

In what follows, we prove the uniqueness of solution for (1) based on application
of Banach fixed point theorem.

Theorem 3.2. Let f : R2 — R be continuous function and it fulfill a Lipschitz
condition with respect to the first and second variables with Lipschitz constant 0 <
r(2

L< M(3+F77(2ﬁz5))" ice. |f(z1,y1)— f(@2,92)| < L(|lz1 —z2|+[y1—y2|). Then problem

(1) has a unique solution.

Proof. In Theorem 3.1 we have shown that 7" is continuous operator and 7' : A —
A.Therefore, using Banach fixed point theorem, it is sufficient to show that 7" is a
contraction mapping. For any y;,y2 € X

Tyi(t) — Tya(t)]

< | [ 6.9 (7). DEn(9)  1n(s). Divalo)) )|
2 1
2] | 66 (Fn(e). DEn(9) = Fluas). Dln(s)) )
1 2 1
< L -wl( [ 16+ 25 [ 165
< LMllyr — y2l|,
IDZ(Ty1)(t) — DE(Ty2)(t)]
1 ' - ’ ’
= ‘m/ (t—5) " ((Ty1)'(s) — (Ty2) (8))d5‘
=< 1 _ ‘/ - / %G(S,T) (f(yl(T)vayl(T)) - f(y2(7—);ny2(7_)))dT
- ?;2 [ GEn (51, D201()) = 1) Dt
3L t B 2\ t B
< Fara— - y2||(/0 =0 Pas+ 2 [ ste—9vas)
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Therefore |Ty; — Tys|| < (ML + F?(’QLMB))Hyl — y2||. Hence by the Banach fixed

point theorem, T has a unique fixed point which is a solution of problem (1). O

4. STABILITY OF SOLUTION

In this section, we study the stability analysis of problem (1) under various
perturbations. Dependence solution on boundary value condition is discussed in
Theorem 4.1. Stability of solution with respect to the perturbation of f is analyzed
in Theorem 4.2. Finally, the perturbation effect of fractional order derivative on
solution is studied in Lemma 4.3 and Theorem 4.4.

Theorem 4.1. Suppose function f fulfill the conditions of Theorem 3.2 and let
g(t) be the solution of the following perturbed problem on boundary value conditions

ny(t) = f(y(t),ny(t)), 2<a<3,0<p8<], (11)
y(O) = €1, y/(O) = €2,
W= M) +es €€(0.1) <A<z (12)

Then ||y — g|| = O(e), where e = max{ey,ea,€3}.

Proof. Similar to Lemma 2.5 the solution of problem (11) is

. ' _ _ A _ _
y(t) = /0 G(t,s)f(5(s), DL§(s))ds + m/o G(&,5)f(5(s), DLG(s))ds + p(t), (13)

where
p(t) = 7 _tigg (51X = 1) + e2(A — 1)) + et + &1
Thus
y-3l < |/ G(t,5)(f(y(s), D2y(s)) — F((s), D5(s)))ds|
*W’ / G(& ) (Fy(s). Dy(s)) — F(3(s), DIG(s))) ds| + [p()]
N ! A2 1
< Lyl [ G+ 5 | G+ o)
< LMy — gl +Ip(),
Dy - Dﬁ( 1)
< 55| / /%G(sm)(f(y(T),ny(T))—f(ﬂ(f),Dfﬂ(T)))dT
+m / G(&,7)(J(y(r), DEy(r)) = F((r), DZG(r)))dr ) ds| + | DIp()|
= ip@rgé_ gl =il ( /O<t—8>"3ds+i1 _2152 / s(t = 5)~"ds) + [Dp(1)|
< M )+ D)

I'2-p)
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Therefore,
by -3l < L (e G - D 2~ 1) et 4 51
17(LM+m) 1—X¢
2t~ €2 1.p
Hrsara =g 0 - U+t )+ 250 ))
€ 1 2 1
= 1= (LM L) <|1—A£2(1+ TE_g) AT T2 w‘)'
This is complete the proof. ([l

Theorem 4.2. Suppose that the conditions of Theorem 8.2 hold and Let §(t) be
the solution of the following perturbed problem on function f

Dey(t) = fly(t),DPy(t)) +e, 2<a<3, 0<p<1, (14)
y(0) ='(0) =0,
(1) = M),  £€(0,1), 0<A< 612 (15)

Then [}y — 31| = O(e).
Proof. The solution of problem (14) is

i) = / G(t, 5) (F(5(s), D2(s)) + £)ds
2 1

M ) )
st [ Ges e Dl a9

Then, similar to the proof of the previous theorem

1 At2 1
—g < LMl|y—7 t,8)ds + ——— t, s)d
=il < Mgl +e( [ Gt = [ Gtea)
< LMy —gll +eM,
and
IDZy(t) — DIg(t)|
3LM t 2 t
IR -8
S Tra B)Hy yH-i—E(/(t s) d8+17>\£2/08(t s) ds)
_ 3L ly— il + 3eM
= Te-p"Y T TE )
Therefore,
€ 3M
ly =9l < M+
1— (LM + 5i3%5) ( (2 - ﬁ))

O

For perturbation analysis on the fractional order of the derivative, we first state
and prove the following lemma and then the main theorem will be discussed.

Lemma 4.3. Lett,z €I and a > o —¢c > 2, then

t xafl 1,047571
/0 I~ fa gl = 0 (17)
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Proof. We estimate the integral as follows

t ra—1 po—e—1 t ro—1 po—e—1 t pa—e—1 pa—e—1
— dr < —_— = ——dx —|—/ — dx
/0 ’F(a) I(a - 6)‘ /0 ’F(a) I(a) | 0 | I(a)  Tla- 6){
1 1 1 1 1 1
< - (= _ _
- F(a)(a a—e)+a—5(F(a) F(a—e))
1 T (n)]
<
< Qoo T e orere—9)
where o — e < 7 < o and I'(n) is derivative of the gamma function. (]

Theorem 4.4. Suppose that the conditions of Theorem 8.2 hold and Let §(t) be
the solution of the following perturbed problem on fractional order derivative «

Deey(t) = f(y(t), DPy(t)), 2<a<3, 0<pB<1, (18)
y(0) =y'(0) =0,
y(1) = My(6),  €€(0,1), 0<A< fi (19)

where 2 < a—e < a < 3. Then ||y — gl = O(e).

Proof. According to the above discussion, the solution of problem (18) is given by

Iy 2 1
3(t) = / G(t, 5) £ (i(s), DY§(s))ds + ﬂf’;g) / G&, )£ (i(s). DZj(s))ds, (20)

where

~ (=) U= g <sct<]
G(t’g) — _t2(1_s)a11(g—716) ’ = >~ 1, (21)
Then,
1 1
=il < | [ G D2)ds — [ Glpriits). D2as)as
0 0

)\t2 1 1 R R
5] | G ) Dl - [ Glenrits). Dla(s)as

IA

|| G (s). Dyte) = 166, D)) s
+| [ (©tt5) = e 160660, D236 s
2 1
e (| G (). Die) - £is). D)) s

+ / (G(&,5) = G(&,9)) f(3(s), DY (s))ds )

IN

1 1 _
Llly - gl / G (t,5)[ds + || - / G(t,5) — G(t, 5)|ds

A 1 1 _
=g (Ll =31 [ 16 las+ 10 [ [6l6.5) - Gie.)las)

IN

1 _ A 1 ~
LMy =3+ 11 [ 1G(t5) = Gltolas + =5 | [Gl65) = Gie.o)las)
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where [ f[|e = |5 |(f@G(t), DZg)),

<e<a—

IDIy(t) D5~( t)|

< gl [0 97 ([ 2o, D)

o - 22
,/ =G5, 7)1 (i(r), DI(r)) d’]‘)dS“F TS

[ / ([ setem56e, 026 - [ 567 ), D2gr))ar)as|

0

L
< F'('f_yl /‘7 (i)
0 ~
+||f||€ ra —ﬁ)/o(t_ / |7 ST)—afGtT |d7‘)ds
A
Tra o 5)2( )\52) LHy y\l/ (t—s)~ /|G§7 |dT ds
il [ s [ 616 - Glemiras)
LM
< oo+ Wl [ o097 ( [ 1266
2\ B
+F(1—6)(1—>\§2)|f”5/0 (t =) /0 |G(§,T)—G(§,T)|d7ds).
Therefore,

1 ! ~ A !
=31 < sy (] 1609 - Geslas+ =5 [laes
2

+r(11— / (t— )" /| STf—GtT|dT)ds

+F(1ﬂ§(/\1)\§2 /S /|G§, (5,7’)’d7’ds).

According to structure of G(t, s), we know that every term of |G(t, s) — G(t, s)| and
|2.G(t,s) — £G(t,s)| is in the form of (17). Hence, Lemma 4.3 obtains

/0 |G(t,s) — G(t, s)|ds = O(e), /0 %G(t, s) — %é(t, s)|ds =0(e).  (22)

Therefore, ||y — g|| = O(e) and the proof is complete. O

5. SOME EXAMPLES
In this section, we have discussed some examples to illustrate our results.

Example 5.1. Consider the problem

DY2y(t) = < (y(1)* +

tT |d7) s

s)|ds
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Then,

Fly(t), DEy(@) < ¢+ L[y(n)|* + [ Dy(r)]E

Therefore, the condition (H1) in Theorem 3.1 holds, and hence this problem has a
solution.

Example 5.2. Consider the following problem

D2Ty(t) = 4(y(1)” +2(D0*y(1))”. (25)
YO =y () =0, y(1)=u(5). (26)

Then,

Fly(t), D¥y(1)) < 4|y(1)]” + 2| Dy (1)].

Therefore, the condition (H2) in Theorem 8.1 holds, and hence this problem has a
solution.

Example 5.3. Consider the problem

DY 2y(t) %(y(t)) + 2% sin (DXy(1)) =0, (27)
y(0) =5/ ) =0, y(1) = 39(—) (29)

1 1
(ly — gl + [D2y(t) — D2g(t)]).

Since 0 < L = % < 0.263, Theorem 8.2 implies that this problem has a unique
solution.

6. CONCLUSION

In this paper we have discussed the well-posed conditions for a class of fractional
order boundary value problems. We have proved the existence and uniqueness of
solution by means of Schauder fixed point and Banach contraction map theorems
on the interval [0, 1]. We have also studied the perturbation on boundary condition,
on the function exists in the right hand side of the problem and on the fractional
order c. In other words, we have shown that the solution of problem is stable under
the small perturbation.
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