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BOUNDEDNESS OF A GENERALIZED FRACTIONAL
INTEGRAL OPERATOR IN THE UNIT DISK

RABHA W. IBRAHIM AND JAY M. JAHANGIRI

ABSTRACT. We define a new fractional integral operator in the unit disk with
rough kernel, which is a generalization of the Srivastava and Owa integral
operator. We study the boundedness of this fractional integral operator on
some spaces defined on the open unit disk. We obtain sufficient and necessary
conditions on the parameters of these spaces.

1. INTRODUCTION

Multilinear analysis is considered as a very efficacious research area in study-
ing harmonic analysis, geometric functions theory and univalent functions theory.
Recently, fractional calculus in complex domains has confirmed delectable enforce-
ments in the geometric function theory. The idiomatic of fractional operators and
their generalizations have been applied in recognizing, for example, distortion in-
equalities, coefficient estimates, the characterization properties and convolution
structures for different subclasses of analytic functions and the doings in the re-
search monographs. All of these operators involve convolution with special func-
tions such as Gauss hypergeometric function [1], the Meijer G- and Fox H-functions
[2].

For the function f analytic in a simply-connected complex domain containing the
origin, Srivastava and Owa [3] defined the following fractional integral operator

1 z
1) = o [ FQGE- 0T G a0
I(a) Jo
where the multiplicity of (z — ¢()*~! is removed by requiring log(z — ¢) to be real
when (z — ¢) > 0. As a generalization to the Srivastava-Owa [3] fractional integral
operator conditions are given by Ibrahim [4] for this fractional integral operator to
be bounded in Bergman space;

I f(z) = i Dt /Z(Z’H1 = ¢ TIgR f(Q)dc,
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where o and g # —1 are real numbers and the function f(z) is analytic in a
simply-connected region of the complex z-plane C containing the origin and the
multiplicity of (z#+! — ¢#T1)*~1 is discarded by requiring log(z#*! — ¢#*1) to be
real when (2#T1 — (#*1) > 0. When p = 0, we obtain the standard Srivastava-Owa
fractional integral operator.

In this note, we further generalize these fractional integral operators in the unit
disk based on rough kernel and multi linear distinct. We study the boundedness of
this fractional integral operator on some spaces defined on the open unit disk such
as Morrey space and its extension. We obtain sufficient and necessary conditions
on the parameters of these spaces.

2. MAIN RESULTS

For fixed complex number ¢ € U := {z € C,|z| < 1}, nonzero real numbers
AL,y Ap and 0 < a < 1, we define the n-linear fractional with rough kernel as
follows:

T (z = A0
a o E)2) = (NS g 1
P £ = [ TLH0 s —c )
where the functions fx, k = 1,...,n are analytic in a simply-connected region of
the complex z-plane (C) containing the origin and the multiplicity of (z — ()~ is
extracted by requiring log(z — ¢) to be real when (z — ¢) > 0.

Note that, when j = n =1 and A = 1, the operator (1) reduces to the Srivastava-
Owa fractional integral operator.

In this section, we shall discuss the boundedness of the operator (1) in Morrey
spaces [5]. The classical Morrey spaces LP?, the modified Morrey space and the
center Morrey space can be viewed as generalized Lebesgue spaces LP. These types
of integral operators are utilized to study the behavior of solutions to the second
order elliptic partial differential equations. For 1 < p < co and p > 0, Morrey space
LP*(R"™) is defined by

LPP(R™) ={f € LP(R") : || fllzormn) < 00},
where

1 1/p
1l = s (= /Q NCEON

z€R™ r>0 re
It is clear that

LPOR™) = LP(R™), LP"(R™) = L>*(R"), and LP*(R™) = {0}, p>n.

In our discussion, we shall use LP?(U), 0 < p < 1 where U : {z € C: |z| < 1}
is the open unit disk and we denote U, the disk of radius 0 < r < 1. We have the
following auxiliary result:

TheoremlLetp>1and0<p<1.If§2ﬁ,O<p1<1and]%2p%then
there exists a positive constant C' such that

IH(P)[Ler < Cllfl[Lore (2)
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where

H(f) = swp — [ 1£(Q)lde

o<r<1 7% Ju,
is the Hardy-Littlewood maximal function.

Proof. Let ¢(z) be the characteristic function of the disk U, = {z € C: |z| <r <
1}. Then we have (see also [6])

/ (Hf(w)Lp,p)pap(w)dw < Cp/ |fIPHp(w)dw. (3)
U U

Taking f € LP*, a calculation implies that

[ ety dw < U ()

where

H.f(w) = (Hf)"(w), 1<e<p.

Therefore, the proof is complete since for % > Z—i, 0 < p; <1land = > = we obtain

1> 1
P — p1

IH (F)lLre < N Hpysp(DllLee < [Hp,jp(H)llLeser < Cllf[[Lores
As an easy extension to Theorem 1 we obtain the following

Corollary 1 Let p>1,0<p<land 1/p=1/p1 +1/ps+ ...+ 1/p,. If

B:pi+..,+p—”and0<pl,---7pn<1

p p1 Dn
then there exists a positive constant C), such that

IH (f1s e Fn)(2)lzee < Coll fullovos | fullLon on, ()

where

H(f1s oo fa)(2) = sup 5 /U TT 1£5(Oldc.

r
0<r<1 r el

Now we determine the sufficient conditions for boundedness of the integral operator

(1)

Theorem 2 Suppose that 0 < a < 1,0 < A; <1,j5=1,..,n, pis the harmonic
mean of p1,....pp, 1 <p < é and 0 < p<1l—ap. If

1 1 n
S=o % B:&—i-...—i—p—, and 0 < p1,...,pn < 1, (6)

¢ p l=p p m Pn
then there exists a positive constant K such that

125 s F)llzae @y < Kl fillzeror @y -1 fnllLonson (o) -

Proof. Let f; € L1 (U), ..., f,, € LPP»(U). For
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1—
m:w, B<p, and 0<p<1l—ap,

we receive

(-p)_,_0-n

p<k<l—af, and

For z € U, |z — ¢| =€ and r < 1 consider that

)\ a—1
| AT yeens n(.fl, ,fn)( |Lqp(U) /< /> |f] ||((Of))|

= 1(2) + Ia(2 )-

The rest of the argument for the proof is given in the following three steps.

147

Step 1. Estimate of I;(z). By taking ¢ along the negative real x and \; < 1, we

have

e - [ HIE(C)IWCZC

IN
3%
Q |
~— =
—
A
o

£ 3

o)

/-\

o

~

where C1 is a positive constant depending on «, e and

Hg(fry oo fo)(2) = H(fE ., fOYP(2), zeU.

Step 2. Estimate of I3(z). By Holder inequality, we have
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I(z) = / ZEH”J‘(O'W“

O (e v R § MG RO

<ol [ ITEh <>”ﬁ

1/pn
<£5p+a /‘f Z—/\1C ‘dc /|fnn Z = ”<)|d<)
1/pn
=l [ 1 =monae) ([ 1= aotac)
< Call fillzoer @yl fulloen (v

where C5 is a positive constant depending on a, 3,7,k and p.

Step 3. For the estimate of I, | (f1,..., fn)(2) we have

25 xS fn) (2) [Lan vy = 11(2) + 12(2)
< CiHg(f1, - fn)(2) + Coll fill Loy @) - | full Loon (o)
< CL(Hp(fryoos ) VP o2yl o
+ Coll fill oo @y - full oo (0
< Cull(Hp(fr oo F) P U Al oy ool ol
+ C2||f1||L” o1 (-l frllLoen ()
< Cull Al ) Nl oy L oty Il o
+ Call fillrer @)l full Looon (0
< Cllfalleer @)+l Looon @),

where C' := maxz{C1, Cs2}. This completes the proof.

Consequently, we obtain the following

Corollary 2 Let the assumptions of Theorem 2 hold. If (6) holds, then for some
J € L(=P)/er(U) there exists a positive constant & such that

N2 5, o (F1s s F) () | oo vy < BRI La=or/ae @y [ f1llLorey @) frllLoneon )
Next we determine the necessary conditions for boundedness of the integral operator

(1)

Theorem 3 Let the operator I, | (fi,., fu)(2),0 < A1 ;A < 1, be
bounded from LP*1(U) x ... x LPP(U) to Lp’q(U). Then
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where p is a harmonic mean of py,...,p,, 1 < p < i, 0<p<l—apandp=
pL Pn
p1 +“.+Pn'

Proof. Set
flt(z) = fl(tz)a 7fnt(z) = fn(tz)

Then for real positive ¢, we impose

I frell oo oy = £ 77| | o o1 (@) woos |t oo () = tom “n | full Lo on (U)
and so for Iy (fits - fut)(2) = If_O‘IZa)\1 (f1, s fn)(t2), we have

--------

|| Z,A 15005\ (f1t7- 7fnt)||Lqp(U) _taiT”Izk], LA (fh"'afn)”Lq*p(U)'

Since I,y (f1;--, fn)(2) is bounded from LPP1(U) x ... x LPP=(U) to LP4(U),
it implies that

ﬁ
185, (Fry oo F) Loy = 5T T2, (fat o fut) | Lan ()
_r HJ
<Ot ||f1t||Lm o1 @)oo | ot Lomeom (01

1+a 1

_E lrta 1, p
<Ct7at T Il fillzeren @ys oo 1 fnllLonon @y

where C' is a positive constant depending on p,q and p. Now if 1 < % — 1"‘—p
then ([ 18y, x (fi, fu)(@)llLar@) = 0 when t — 0 and if 1 7> % — 125 then
(FESSVINY n(fl, ceos fu)(2)||Lap(ry = 0 when ¢ — co. Hence we must have é = %—ﬁ—p
as required.

Now we are equipped to state and prove the following

Corollary 3 Let the assumptions of Theorem 2.4 hold. For 0 < a < %

0<pu<lif

and

)

q p ¢ » p D
then there exists a positive constant £ such that

1 1 n
B _p,

1250, (s oo fu)llLaw @y < Ll fillzover @yl fall Lon om0y
Proof. By Hélder’s inequality, we have
1—
L) € L), 7= LT

Therefore, we have the equality
1 1 «
T p (1-p)
So, as required, in view of Theorem 2.5 we have

125y, (s e fo)llpam @y < 2, (FLs oo fu) lme )
< Ll fillerer @yl full Loneon 0)-
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Finally, we study the boundedness of the integral operator (1) in the central Morrey
space. For some related studies on this space see ([7]-[10]).

Definition 1 Let ¢(r) be a positive measurable function on Ry and 1 < p < oo. We
denote by L ’w(U ) the generalized central Morrey space, the space of all functions
f € LP(U) with finite quasinorm

— -1 —1/p
IIfIILp,w(U)—Oit:glzb (MU, )Pl fllewo,m)

where U, := U(0,r) is a disk centered at 0 with radius » < 1 and |U(0,r)]| is the
Lebesgue measure of the disk U(0,r).

We note that L”?(U) is a Banach space, L*(U) = {0} when p < —1/p and
L VP(U) = L, ().

Theorem 4 Assume 0 < a < 1,1/p = 1/p1 + ... + 1/pn, 1/qg = 1/p — o and
0<Aj<1,j=1,..,n Then for 1 < p < 1/a, we have the inequality

||Iz)\1, S (flw 7fn)||L‘I(U)

/ do /pl n/ p/en
< C’rl/q / ||f1H1£1mpU ) 1/q+1 ”f”HiP"p(U )Ul/q+1>
where R = 2r holds for any disk U,,r <1 and for f; € Lpl( )s s o € L (U).

Proof. Set, in terms of the characteristic functions,

Fi(2) = fi2)e1(2) + fi(2)pa(2) = fi(2) + fi(2)
F2(2) = F2(2)01(2) + fa(2)p2(2) == fal2) + fa(2)

Fa(2) = Ja(2)@1(2) + fa(2)p2(2) = ful(2) + Ja(2).

Thus, we have

12 s P Pl ooy < ISy, (o oos )l za oy + 10y s (Frs Foeees Tl Laquny
+ [ A, An(fl»fz--~»fn)||Lq(UT) + 1S5, o, (Fres )l e, )-

Now we proceed to find the upper bound of the above inequality and this can be
held in two steps.

.....

Step 1. Estimate of I,y (fis .y fu)(2).

.....

Since Iy, . (z) is bounded from LPt x ... x LP» to L%, we conclude that

|| Z,A 1500 A (flv' 7f7l)||L‘7(U ) < || ALy A ,L(fla' -7fn)||Lq(U)
< Ol fillor @)\ fall Lo )
< Cllfaller @y fallLen @y
where C' > 0 is independent of fi, ..., fy.



JFCA-2015/6(2) GENERALIZED FRACTIONAL INTEGRAL OPERATOR 151

Step 2. Estimate of I?,,\l,...,,\n(flaf2-~-afn)(z)~
By letting ¢ along the negative real axis, we obtain

s o (P P ) (2 \F / FUOLAO - FalO)(z = M) (e = M)

o (LIl = xge i)™ ..

A
6\

p/pn
Ifn(C)”"/pH(z M)/l
< i (] 177G = e riac) ™ .
/ FalQP eIl — e eejac) "™

< S (1) o / |f£n“’<<>|d<)p/p"

1/q p1/p do p/pl pn/p )p/p"
<Cr (/R 11l e (o, )o’l/q+1 “f” [T, )01/q+1 ’

where C is a positive constant depending on « and e.

X
/\)1
Hc

X

In the same manner of Step 2 in Theorem 2, we may have

IE 5 (1 foes fu) o)

do \p/m do  \p/pn
< Crl/q</ ||f1|\1£1p/1p 1/q+1> (/ ||fn|1[);u/1p Uo) 1/q+1>
and

|| 2,1, ,)\n(fl?"'?fn)HLq (Ur)
do \p/p1 do  \p/Pn
< crtiaf / AN s ) ( / A e L

Hence, in general, we have the desired assertion.

Corollary 4 Assume 0 < a <1, 1/p=1/p1+...4+1/py, 1/¢=1/p—aand 0 < \; <
Lj=1,..,n ThenI¢, | (f1,.., fn)is bounded from L*"**(U) x...x L' (U)
to LPP(U).
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