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FRACTIONAL DERIVATIVES FOR KOBER OPERATORS AND

STATISTICAL DENSITIES IN THE REAL MATRIX-VARIATE

CASES

A.M. MATHAI

Abstract. Fractional integrals, fractional derivatives and fractional differen-
tial equations in the real scalar variable cases have found many applications
and are very popular in the literature. Fractional integrals in the real and
complex matrix-variate cases have been considered by this author recently.

Some cases of fractional derivatives in matrix-variate case are discussed in the
present article. Some matrix-variate differential operators are defined. These
are only suitable to handle certain types of matrix-variate cases. Fractional
derivatives in the Riemann-Liouville and in the Caputo senses are evaluated

when the arbitrary function is compatible with right and left sided fractional
integrals in the matrix-variate cases. Fractional derivatives involving Kober
operators of the first and second kind in the matrix-variate case are also dis-
cussed here

1. Introduction

Fractional integrals and fractional derivatives in the real scalar variable case
and their applications in stochastic processes and random walk problems may be
seen from many papers, see for example [1],[2]. Solutions of fractional differential
equations in the real variable case may be seen, for example, from [3],[13]. There are
not many papers on fractional integrals in the matrix-variate case. Some discussions
on functions of matrix argument may be seen from [4] - [10]. Fractional integrals
in the matrix-variate case may be seen from [7], [8]. Some aspects of fractional
derivatives in the matrix-variate case are discussed in [4]. In the present article we
introduce fractional differential operators in the matrix-variate case and which are
applicable when the arbitrary function of matrix argument has certain structures.
As an illustration of the matrix differential operators, Kober operators of the first
and second kinds are discussed in the Riemann-Liouville and Caputo senses.

The following standard notations will be used. All matrices appearing here are
p × p symmetric and positive definite when real and Hermitian positive definite
when in the complex domain unless otherwise stated. tr(·) and det(·) denote the

2010 Mathematics Subject Classification. 15B57, 26A33, 60B20, 62E15, 33C60, 40C05.
Key words and phrases. Fractional derivatives, matrix-variate case, fractional integrals, Kober

fractional integrals, Kober fractional derivatives.
Submitted Nov. 11, 2014.

65



66 A.M. MATHAI JFCA-2015/6(2)

trace and determinant of the square matrix (·) respectively. |det(·)| denotes the
absolute value of the determinant of (·). For example, if det(A) = a+ ib, i =

√
−1

and a and b are real scalars then

|det(A)| = [(a+ ib)(a− ib)]
1
2 = [a2 + b2]

1
2 = [det(AA∗)]

1
2 (1.1)

where A∗ is the conjugate transpose of A. If X = (xij) is m× n and real then dX
will denote the wedge product of all differentials

dX =

m∏
i=1

n∏
j=1

∧dxij , dX =

p∏
i≥j=1

∧dxij for X = X ′, p× p and real, (1.2)

where X ′ denotes the transpose of X. If X̃ = X1+ iX2, i =
√
−1 where X1 and X2

are real matrices then dX̃ = dX1 ∧ dX2. In order to distinguish between matrices
in the real and complex cases, matrices in the complex domain will be denoted by a
tilde as X̃. Real matrix variables X and real or complex constant matrices will be
written without a tilde. The real matrix-variate gamma function will be denoted
by Γp(α) where Γp(α) has the following expression and integral representation:

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1

2
)...Γ(α− p− 1

2
),ℜ(α) > p− 1

2
(1.3)

Γp(α) =

∫
X>O

[det(X)]α−
p+1
2 e−tr(X)dX,ℜ(α) > p− 1

2
(1.4)

where X > O means X is positive definite and ℜ(α) denotes the real part of α. The
integration is done over all real positive definite matrices X. The matrix-variate
gamma function in the complex domain will be denoted by a tilde as Γ̃p(α). Then
it has the following expression and integral representation:

Γ̃p(α) = π
p(p−1)

2 Γ(α)Γ(α− 1)...Γ(α− p+ 1), ℜ(α) > p− 1 (1.5)

Γ̃p(α) =

∫
X̃>O

|det(X̃)|α−pe−tr(X̃)dX̃,ℜ(α) > p− 1 (1.6)

and the associated Jacobian will be given here as lemmas without proofs. For the
proofs and for other Jacobians see [4].

Lemma 1.1. Let X and Y be m × n matrices of distinct real elements and let
Y = AXB where A and B are nonsingular m × m and n × n constant matrices.
Then

Y = AXB ⇒ dY = [det(A)]n[det(B)]mdX. (1.7)

Let X̃ and Ỹ be m× n and in the complex domain. Then

Ỹ = AX̃B ⇒ dỸ = |det(A)|2n|det(B)|2mdX̃. (1.8)

Note that |det(A)|2 = [det(AA∗)], |det(B)|2 = [det(BB∗)] where A∗ and B∗ are the
conjugate transposes of A and B respectively.

Lemma 1.2. Let X be a symmetric p×p matrix with distinct real elements except
for symmetry and let A be a nonsingular constant matrix. Let X̃ be Hermitian. Let
Y = AXA′ and Ỹ = AX̃A∗. Then

dY = [det(A)]p+1dX, dỸ = |det(A)|2pdX̃. (1.9)
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Lemma 1.3. Let X and X̃ be p× p nonsingular matrices with distinct elements,
except for symmetry, and let Y = X−1 and Ỹ = X̃−1 be the regular inverses of X
and X̃ respectively. Then

dY =

{
[det(X)]−2pdX for a general X

[det(X)]−(p+1)dX for X = X ′;
(1.10)

dỸ =

{
|det(X̃)|−4pdX̃ for a general X̃

|det(X̃)|−2pdX̃ for X̃ = X̃∗ or X̃ = −X̃∗.
(1.11)

2. Some Fractional Differential Operators

Let U = (uij) be p×p matrix of distinct real variables. Let ∂∗

∂U = (ηij
∂

∂uij
) where

ηij =

{
1, i = j
1
2 , i ̸= j.

Let U = U ′ and X = X ′ be p×p real symmetric matrices. Then

∂∗

∂U
[e−tr(UX)] = −


x11 x12 ... x1p

x21 x22 ... x2p

...
... ...

...
xp1 xp2 ... xpp

 e−tr(UX) = −Xe−tr(UX),

for xij = xji, uij = uji for all i and j. Let us consider the case p = 2. Then
∂∗

∂ujj
e−tr(UX) = −xjje

−tr(UX) and 1
2

∂
∂uij

e−tr(UX) = −xije
−tr(UX) = ∂∗

∂uij
e−tr(UX), i ̸=

j. Then

[
∂∗

∂u22

∂∗

∂u11
−(

∂∗

∂u12
)2]e−tr(UX) = (−1)2[x22x11−x2

12]e
−tr(UX) = (−1)2[det(X)]e−tr(UX).

For the general p, consider the determinant of the operator ∂∗

∂U , that is [det( ∂∗

∂U )]

operating on e−tr(UX) then the result is (−1)p[det(X)]e−tr(UX). Then the opera-

tor [(−1)pdet( ∂∗

∂U )]n = [(−1)pdet( ∂∗

∂U )]...[(−1)pdet( ∂∗

∂U )] operating on e−tr(UX) gives

[det(X)]ne−tr(UX). This determinant operator will be denoted by D2U . Then

Dn
2Ue

−tr(UX) = [det(X)]ne−tr(UX). (2.1)

Similarly, ∂∗

∂U operating on etr(UX) gives Xetr(UX). Consider the operator Dn
1U =

[det( ∂∗

∂U )]n. Then

Dn
1Ue

tr(UX) = [det(X)]netr(UX). (2.2)

With the help of these two operators we will establish a few basic results which will
be stated as lemmas.

Lemma 2.1. Let X be p× p real positive definite. Then

Dn
2U [det(U)]−γ = [det(U)]−(γ+n)Γp(γ + n)

Γp(γ)

for ℜ(γ) > p−1
2 , n = 0, 1, 2, ....

Proof: Consider the following integral, for X = X ′ > O and U = U ′ > O:∫
X>O

[det(X)]γ−
p+1
2 e−tr(UX)dX =

∫
X>O

[det(X)]γ−
p+1
2 e−tr(U

1
2 XU

1
2 )dX
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where U
1
2 is the unique positive definite square root of the positive definite matrix

U . Let V = U
1
2XU

1
2 ⇒ dV = [det(U)]

p+1
2 dX by using Lemma 1.2. Then∫

X>O

[det(X)]γ−
p+1
2 e−tr(U

1
2 XU

1
2 )dX = [det(U)]−γ

∫
V >O

[det(V )]γ−
p+1
2 e−tr(V )dV

= [det(U)]−γΓp(γ), ℜ(γ) > p− 1

2

by using (1.4). Hence we have the following identity:

[det(U)]−γ =
1

Γp(γ)

∫
V >O

[det(V )]γ−
p+1
2 e−tr(UV )dV, ℜ(γ) > p− 1

2
. (2.3)

Now, operate on both sides with Dn
2U . That is,

Dn
2U [det(U)]−γ =

1

Γp(γ)

∫
V >O

[det(V )]γ−
p+1
2 [Dn

2Ue
−tr(UV )]dV

=
1

Γp(γ)

∫
V >O

[det(V )]γ+n− p+1
2 e−tr(UV )dV

=
Γp(γ + n)

Γp(γ)
[det(U)]−(γ+n),ℜ(γ) > p− 1

2
, n = 0, 1, 2, .. (2.4)

This establishes the result.

Now, let us look at a basic result of Dn
1U operating on etr(UX), which will be

stated as a lemma.

Lemma 2.2. Let X and U be p×p real positive definite matrices. Let Dn
1U be the

operator defined in (2.2). Then

Dn
1U

[det(V )]γ−
p+1
2

Γp(γ)
=

[det(U)]γ−n− p+1
2

Γp(γ − n)
,ℜ(γ) > n+

p− 1

2
. (2.5)

Proof: Observe that (2.3) can be taken as the Laplace transform of the function

[det(V )]γ− p+1
2

Γp(γ)
with Laplace parameter matrix U . If U = U ′ = (ηijuij) with ηij ={

1, i = j
1
2 , i ̸= j

then it is the multivariable Laplace transform of all elements in V ,

taking each element once. If U = (uij), U = U ′ then it is the Laplace transform of
all elements in V , taking the diagonal elements once and the off-diagonal elements
twice. Hence as an inverse Laplace transform we can write, for ℜ(γ) > p−1

2 ,

[det(X)]γ−
p+1
2

Γp(γ)
=


1

(2πi)
p(p+1)

2

∫
ℜ(U)>Uo

[det(U)]−γetr(UX)dU,U = (ηijuij)

2
p(p−1)

2

(2πi)
p(p+1)

2

∫
ℜ(U)>Uo

[det(U)]−γetr(UX)dU,U = (uij).

(2.6)
Then, operating on both sides with the operator Dn

1X we have
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Dn
1X

[det(X)]γ−
p+1
2

Γp(γ)
=

2
p(p−1)

2

(2πi)
p(p+1)

2

∫
ℜ(U)>Uo

[det(U)]−γ(Dn
1Xetr(UX)dU

=
2

p(p−1)
2

(2πi)
p(p+1)

2

∫
ℜ(U)>Uo

[det(U)]−γ+netr(UX)dU.

Interpreting the right side as an inverse Laplace transform the right side corresponds

to [det(X)]γ−n− p+1
2

Γp(γ−n) for ℜ(γ − n) > p−1
2 or ℜ(γ) > n+ p−1

2 . Hence the result.

With the help of Lemmas 2.1 and 2.2 we can look at some fractional deriva-
tives when the arbitrary function f(X) is of the form [det(V )]−γ or of the form

[det(V )]γ−
p+1
2 or of the form e±tr(V ). Let D−α

2,Uf and Dα
2,Uf denote the fractional

integral and fractional derivative of order α of the second kind or right-sided sit-
uation respectively. Similarly, let D−α

1,Uf and Dα
1,Uf be the fractional integral and

fractional derivative of the first kind ( left-sided) and of order α respectively. The
following symbolic representations will be used to write fractional derivatives from
fractional integrals:

Dα
2,Uf = Dn

2U [D
−(n−α)
2,U f ] =

the fractional derivative of order α of the second kind, in the Riemann-Liouville
sense for n > ℜ(α) + p−1

2 ;

Dα
2,Uf = D

−(n−α)
2,U (Dn

2Uf) =

the fractional derivative of order α, of the second kind, in the Caputo sense for
n > ℜ(α) + p−1

2 ;

Dα
1,Uf = Dn

1U [D
−(n−α)
1,U f ] =

the fractional derivative of order α, of the first kind, in the Riemann-Liouville sense
for n > ℜ(α) + p−1

2 ;

Dα
1,Uf = D

−(n−α)
1,U [Dn

1Uf ] =

the fractional derivative of order α, of the first kind, in the Caputo sense. The
operator of the second kind is also called right-sided operator and the operator of
the first kind is also called the left-sided operator.

3. Fractional Derivatives in Some Special Cases

We will examine a few cases of the arbitrary function with reference to first and
second kinds of fractional derivatives of order α.

Case 3.1: f(V ) = e−tr(V ), right-sided fractional derivative in the Riemann-Liouville
sense

For n > ℜ(α) + p−1
2 ,
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Dα
2,Uf = Dn

2U [D
−(n−α)
2,U f ]

= Dn
2U

1

Γp(n− α)

∫
V >U

[det(V − U)]n−α− p+1
2 e−tr(V )dV

= Dn
2U

e−tr(U)

Γp(n− α)

∫
W>O

[det(W )]n−α− p+1
2 e−tr(W )dW,W = V − U

= Dn
2Ue

−tr(U) = e−tr(U) (3.1)

where Dn
2Ue

−tr(U) = [(−1)npdet((−I)n)] = 1. In this case, the right-sided fractional

derivative in the Caputo sense is the following for n > ℜ(α) + p−1
2 :

Dα
2,Uf = D

−(n−α)
2,U [Dn

2Uf ] =
1

Γp(n− α)

∫
V >U

[det(V − U)]n−α− p+1
2 e−tr(V )dV.

But Dn
2Ue

−tr(V ) = e−tr(V ) and

1

Γp(n− α)

∫
V >U

[det(V − U)]n−α− p+1
2 e−tr(V )dV = e−tr(U)Γp(n− α)

Γp(n− α)
= e−tr(U).

(3.2)
In this case, both the Riemann-Liouville and the Caputo derivatives are the same.

Note 3.1. In this case it is easy to note that the semigroup property holds for
both the Riemann-Liouville and the Caputo derivatives. That is,

Dα
2,UD

β
2,Ue

−tr(U) = Dβ
2,UD

α
2,Ue

−tr(U) = Dα+β
2,U e−tr(U).

Case 3.2a: f(V ) = [det(V )]−γ ,ℜ(γ) > 0, right-sided fractional derivative of order
α in the Riemann-Liouville sense

This is the following:

Dα
2,Uf = Dn

2U [D
−(n−α)
2,U f ]

= Dn
2U

1

Γp(n− α)

∫
V >U

[det(V − U)]n−α− p+1
2 [det(V )]−γdV

= Dn
2U [

1

Γp(n− α)

∫
W>O

[det(W )]n−α− p+1
2 [det(U +W )]−γdW ]

= Dn
2U [det(U)]−γ+n−αΓp(n− α)Γp(γ − n+ α)

Γp(n− α)Γp(γ)
, T = U− 1

2V U− 1
2

= Dn
2U [det(U)]−(γ−n+α)Γp(γ − n+ α)

Γp(γ)
. (3.3)

But from Lemma 2.1

Dn
2U [det(U)]−(γ−n+α) =

Γp(γ + α)

Γp(γ − n+ α)
[det(U)]−(γ+α) (3.4)

for ℜ(γ) > p−1
2 ,ℜ(γ+α) > p−1

2 . Substituting (3.4) in (3.3) we have for ℜ(γ) > p−1
2 ,

Dα
2,U [det(U)]−γ = [det(U)]−(γ+α)Γp(γ + α)

Γp(γ)
.
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Note 3.2. It is not difficult to see that the semigroup property holds here. Note
that, for n > ℜ(α) + p−1

2 and n > ℜ(β) + p−1
2 ,

Dβ
2,U{D

α
2,U [det(U)]−γ} = Dβ

2,U{
Γp(γ + α)

Γp(γ)
[det(U)]−(γ+α)}

=
Γp(γ + α)

Γp(γ)
Dm

2U{
1

Γp(m− β)

∫
V >U

[det(V − U)]m−β− p+1
2 [det(V )]−(γ+α)dV }

=
Γp(γ + α)

Γp(γ)
Dm

2U{[det(U)]−(γ+α+β−m)Γp(γ + α+ β −m)

Γp(γ + α)
}

=
Γp(γ + α+ β −m)

Γp(γ)
Dm

2U [det(U)]−(γ+α+β−m)

=
Γp(γ + α+ β)

Γp(γ)
[det(U)]−(γ+α+β) = Dα+β

2,U [det(U)]−γ . (3.5)

Thus, semigroup property is proved for the Riemann-Liouville type derivative of
order α and of the second kind.

Case 3.2b: f(V ) = [det(V )]−γ ,ℜ(γ) > 0, right-sided fractional derivative of order
α in the Caputo sense

Here

Dα
2,Uf = D

−(n−α)
2,U [Dn

2Uf ] =
1

Γp(n− α)

∫
V >U

[det(V−U)]n−α− p+1
2 Dn

2V [det(V )]−γdV

for n > ℜ(α) + p−1
2 . But

Dn
2V [det(V )]−γ =

Γp(γ + n)

Γp(γ)
[det(V )]−(γ+n).

Therefore,

Dα
2,Uf =

1

Γp(n− α)

∫
V >U

[det(V − U)]n−α− p+1
2

Γp(γ + n)

Γp(γ)
[det(V )]−(γ+n)dV

=
Γp(γ + α)

Γp(γ)
[det(U)]−(γ+α) (3.6)

for ℜ(γ) > p−1
2 ,ℜ(γ + α) > p−1

2 . This is the same result in the Riemann-Liouville
case also. Hence for both cases here we have the same expression for the fractional
derivative of order α and also the semigroup property holds good in both the cases.

Note 3.3: If f(V ) = [det(U)]γ ,ℜ(γ) > 0 then it is easy to see that the conditions
in the above procedure are violated. In fact the right-sided or second kind fractional
integral diverges for this situation whereas the left-sided integrals will be available
in this case.

4. First Kind Fractional Derivative for Some Special Cases

Here we consider two special cases of the arbitrary function.

Case 4.1a: f(V ) = etr(V ), fractional integral of order α in the Riemann-Liouville
sense
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Dα
1,Uf = Dn

1U [D
−(n−α)
1,U f ]

= Dn
1U

1

Γp(n− α)

∫
V <U

[det(U − V )]n−α− p+1
2 etr(V )dV

= Dn
1U

etr(U)

Γp(n− α)

∫
W>O

[det(W )]n−α− p+1
2 e−tr(W )dW,U − V = W

= Dn
1Ue

tr(U)Γp(n− α)

Γp(n− α)
= etr(U).

It is trivial to see that the semigroup property holds. Since Dn
1Ue

tr(U) = etr(U) the
derivative in the Caputo sense also gives the same result.

Note 4.1. If f(V ) = e−tr(V ) then the above procedure does not hold. But we can

take out U from [det(U − V )]n−α− p+1
2 , make a transformation W = U− 1

2V U− 1
2 .

Then expand e−tr(UW ) for O < W < I and integrate out to obtain a confluent
hypergeometric series of matrix argument, see [4] for details.

Case 4.2a: f(V ) = [det(V )]γ− p+1
2

Γp(γ)
, left-sided fractional derivative in the Riemann-

Liouville sense

In this case, for n > ℜ(α) + p−1
2 ,

Dα
1,Uf = Dn

1U [D
−(n−α)
1,U f ]

= Dn
1U

1

Γp(n− α)

∫
V <U

[det(U − V )]n−α− p+1
2

[det(V )]γ−
p+1
2

Γp(γ)
dV

= Dn
1U

[det(U)]γ+n−α− p+1
2

Γp(γ + n− α)
, T = U− 1

2V U− 1
2

=
[det(U)]γ−α− p+1

2

Γp(γ − α)

by Lemma 2.2, for ℜ(γ −α) > p−1
2 , n > ℜ(α) + p−1

2 . Let us see whether it satisfies
the semigroup property.

Dβ
1,U [D

α
1,Uf ] = Dβ

1,U{
[det(U)]γ−α− p+1

2

Γp(γ − α)
},ℜ(γ − α) >

p− 1

2

= Dm
1U [det(U)]γ−α−β+m− p+1

2
Γp(m− β)Γp(γ − α)

Γp(m− β)Γp(γ − α)Γp(γ − α− β +m)

= Dm
1U

[det(U)]γ−α−β+m− p+1
2

Γp(γ − α− β +m)
=

[det(U)]γ−α−β− p+1
2

Γp(γ − α− β)

= Dα+β
1,U f = Dα

1,U [D
β
1,Uf ]

for ℜ(γ − α− β) > p−1
2 . Hence the semigroup property is satisfied.

Case 4.2b: f(V ) = [det(V )]γ− p+1
2

Γp(γ)
,ℜ(γ) > p−1

2 , left-sided fractional derivative in

the Caputo sense
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In this case we have the following, for n > ℜ(α) + p−1
2 ,:

Dα
1,Uf = D

−(n−α)
1,U [Dn

1Uf ] = D
−(n−α)
1,U { [det(U)]γ−n− p+1

2

Γp(γ − n)
}

=
1

Γp(n− α)

∫
V <U

[det(U − V )]n−α− p+1
2

[det(V )]γ−n− p+1
2

Γp(γ − n)
dV

=
[det(U)]γ−α− p+1

2

Γp(n− α)Γp(γ − n)

Γp(n− α)Γp(γ − n)

Γp(γ − α)
, T = U− 1

2V U− 1
2

=
[det(U)]γ−α− p+1

2

Γp(γ − α)
,ℜ(γ − α) >

p− 1

2
.

It is the same result as in the Riemann-Liouville case also. It is evident that this
Caputo derivative also satisfies the semigroup property.

Note 4.2: If f(V ) = [det(V )]−γ ,ℜ(γ) > 0 then it is easy to see that the above
conditions on the parameters are violated. Hence the left-sided fractional deriva-
tives are not available for this situation.

5. Fractional Derivatives of Kober Operators

The Kober integral operator of the second kind and of order α, in the real
matrix-variate case is given by the following:

K−α
2,Uf =

[det(U)]ρ

Γp(α)

∫
V >U

[det(V )]−ρ−α[det(V − U)]α−
p+1
2 f(V )dV (5.1)

for ℜ(α) > p−1
2 . Then, the Kober fractional derivative of order α and of the second

kind in the Riemann-Liouville sense is given by the following, see [8]:

Kα
2,Uf = Dn

2UK
−(n−α)
2,U f

= Dn
2U

[det(U)]ρ

Γp(n− α)

∫
V >U

[det(V )]−ρ+α−n[det(V − U)]n−α− p+1
2 f(V )dV (5.2)

for n > ℜ(α) + p−1
2 . The Kober fractional derivative of order α and of the second

kind, in the Caputo sense is given by the following:

Kα
2,U = K

−(n−α)
2,U [Dn

2Uf ]

=
[det(U)]ρ

Γp(n− α)

∫
V >U

[det(V )]−ρ−(n−α)[det(V − U)]n−α− p+1
2 [Dn

2V f(V )]dV (5.3)

for n > ℜ(α) + p−1
2 . Now, we will evaluate (5.2) and (5.3) for various cases for

f(V ).

Case 5.1a: f(V ) = [det(V )]−γ ,ℜ(γ) > 0, evaluation of (5.2)
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Kα
2,Uf = Dn

2UK
−(n−α)
2,U f

= Dn
2U{

[det(U)]ρ

Γp(n− α)

∫
V >U

[det(V )]−ρ+α−n−γ [det(V − U)]n−α− p+1
2 dV }

= Dn
2U{

[det(U)]−γ

Γp(n− α)

∫
W>O

[det(W )]n−α− p+1
2 [det(I +W )]−ρ+α−n−γdW}

= Dn
2U [det(U)]−γ Γp(ρ+ γ)

Γp(ρ+ γ + n− α)
, Y = V − U,W = U− 1

2Y U− 1
2

=
Γp(ρ+ γ)

Γp(ρ+ γ + n− α)

1

Γp(γ)

∫
S>O

[det(S)]γ−
p+1
2 Dn

2Ue
−tr(US)dS

=
Γp(ρ+ γ)

Γp(ρ+ γ + n− α)

Γp(γ + n)

Γp(γ)
[det(U)]−(γ+n). (5.4)

This is the αth order Kober fractional derivative of the second kind in the Riemann-
Liouville sense.

Case 5.1b: The Caputo derivative in Case 5.1a

Consider

Kα
2,Uf = K

−(n−α)
2,U [Dn

2V f ]

=
[det(U)]ρ

Γp(n− α)

∫
V >U

[det(V − U)]n−α− p+1
2 [det(V )]−ρ−n+α

× {Dn
2V [det(V )]−γ}dV

=
[det(U)]ρ

Γp(n− α)

Γp(γ + n)

Γp(γ)

∫
V >U

[det(V − U)]n−α− p+1
2 [det(V )]−ρ−2n−γ+αdV

=
Γp(γ + n)

Γp(γ)

Γp(ρ+ n+ γ)

Γp(γ + ρ+ 2n− α)
[det(U)]−(γ+n)

for ℜ(γ) > p−1
2 , n > ℜ(α) + p−1

2 . Note that the Caputo derivative is different from
the Riemann-Liouville derivative in this case.

Case 5.2a: f(V ) = e−tr(V )

This will go to a Whittaker function of matrix argument, both in the Riemann-
Liouvile and in the Caputo senses. For the final integrals, see [4]. Final integrals
will be of the form∫

S>O

[det(S)]α1− p+1
2 [det(I + S)]−(α1+β1)e−tr(S)dS

for some ℜ(α1) >
p−1
2 ,ℜ(β1) >

p−1
2 . Hence this case will not be discussed here.

6. Kober Fractional Derivatives of the First Kind, of order α

We will consider fractional derivative of order α in the Riemann-Liouville and in
the Caputo senses for some special cases of f(V ). The Kober integral operator of
the first kind is given by the following, see [8]:
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K−α
1,Uf =

[det(U)]−ρ−α

Γp(α)

∫
V <U

[det(V )]ρ[det(U − V )]α−
p+1
2 f(V )dV. (6.1)

The αth order fractional derivative of the first kind in the Riemann-Liouville sense
is then given by the following:

Kα
1,Uf = Dn

1U{K
−(n−α)
1,U f}

= Dn
1U

[det(U)]−ρ−n+α

Γp(n− α)

∫
V <U

[det(V )]ρ[det(U − V )]n−α− p+1
2 f(V )dV (6.2)

for n > ℜ(α) + p−1
2 , and that in the Caputo sense is given by the following:

Kα
1,Uf =

[det(U)]−ρ−n+α

Γp(n− α)

∫
V <U

[det(V )]ρ[det(U − V )]n−α− p−1
2 {Dn

1V f(V )}dV.

(6.3)
Let us examine these two types of derivatives for some special cases of f(V ).

Case 6.1: f(V ) = e±tr(V )

In this case the integrals to be evaluated, corresponding to (6.2) and (6.3) will
be of the form∫

O<W<I

[det(W )]γ1− p+1
2 [det(I −W )]γ2− p+1

2 e±tr(UW )dW

for ℜ(γi) > p−1
2 , i = 1, 2 and the integral will go to confluent hypergeometric

function of matrix argument, see [4], and hence it will not be discussed here.

Case 6.2: f(V ) = [det(V )]γ− p+1
2

Γp(γ)
,ℜ(γ) > p−1

2

In this case (6.2) will reduce to the following for n > ℜ(α) + p−1
2 ,ℜ(γ) > p−1

2 :

Kα
1,Uf = Dn

1U{K
−(n−α)
1,U f}

= Dn
1U{

[det(U)]−ρ−n+α

Γp(n− α)

∫
V <U

[det(V )]ρ[det(U − V )]n−α− p+1
2

× [det(V )]γ−
p+1
2

Γp(γ)
dV }

= Dn
1U{

[det(U)]γ−
p+1
2

Γp(γ)

1

Γp(n− α)

∫
O<W<I

[det(W )]ρ+γ− p+1
2

× [det(I −W )]n−α− p+1
2 dW}

=
[det(U)]γ−n− p+1

2

Γp(γ − n)

Γp(ρ+ γ)

Γp(n− α+ ρ+ γ)
(6.4)

for ℜ(γ) > n+ p−1
2 ,ℜ(ρ+ γ) > p−1

2 , n > ℜ(α)−ℜ(γ). This is the Kober fractional
derivative of order α of the first kind in the Riemann-Liouville sense. Now, consider
(6.3).
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Dn
1V f(V ) = Dn

1V

[det(V )]γ−
p+1
2

Γp(γ)
=

[det(V )]γ−n− p+1
2

Γp(γ − n)
,ℜ(γ) > n+

p− 1

2
.

Then

Kα
1,Uf =

[det(U)]−ρ−n+α

Γp(n− α)

∫
V <U

[det(V )]ρ+γ−n− p+1
2

Γp(γ − n)
[det(U − V )]n−α− p+1

2 dV

=
[det(U)]γ−n− p+1

2

Γp(γ − n)

Γp(ρ+ γ − n)

Γp(ρ+ γ − α)
(6.5)

for n > ℜ(α) + p−1
2 , n < ℜ(γ) − p−1

2 ,ℜ(ρ + γ) > ℜ(α) + p−1
2 . Note that the

expressions in (6.4) and (6.5) are different.

7. Fractional Derivatives of Matrix-variate Statistical Densities

In [8] it is shown that matrix-variate statistical densities are directly connected
to Kober fractional integral operators. Let X1 and X2 be p × p statistically inde-

pendently distributed real matrix-variate random variables. Let U2 = X
1
2
2 X1X

1
2
2

and U1 = X
1
2
2 X

−1
1 X

1
2
2 . Then U2 and U1 are called product and ratio of matrices X1

and X2 where X
1
2
2 denotes the real positive definite square root of the real positive

definite matrix X2. If the densities of U2 and U1 are denoted by g2(U2) and g1(U1)
respectively then it is shown in [8] that

g2(U2) =
Γp(α+ γ + p+1

2 )

Γp(γ + p+1
2 )

K−α
2,U and g1(U1) =

Γp(α+ γ)

Γp(γ)
K−α

1,U (7.1)

where K−α
2,U is the Kober fractional integral operator of order α and of the second

kind, given in (5.1), and K−α
1,U is the Kober fractional integral operator of order

α and of the first kind, given in (6.1). Hence, fractional derivatives of order α
of the second kind, in the Riemann-Liouville and in the Caputo senses, of the
density g2(U2), are available from (5.2) and (5.3) by multiplying with the constant
Γp(α+γ+ p+1

2 )

Γp(γ+
p+1
2 )

. For the density g1(U1) the fractional derivative of order α and of the

first kind, in the Riemann-Liouville and in the Caputo senses, are available from

(6.2) and (6.3) by multiplying with the constant
Γp(α+γ)
Γp(γ)

. In both these cases f(V )

is assumed to be a statistical density of the real positive definite p × p matrix V .
For f(V ) we have considered two special cases in Section 6. One was [det(V )]−ρ.
Note that the results will go through for the function [det(I +V )]−ρ also. This can
be made into a statistical density by multiplying with a constant. Note that

f(V ) =
Γp(ρ)

Γp(
p+1
2 )Γp(ρ− p+1

2 )
[det(I + V )]−ρ

=
Γp(ρ)

Γp(
p+1
2 )Γp(ρ− p+1

2 )
[det(V )]

p+1
2 − p+1

2 [det(I + V )]−ρ, V > O (7.2)

which is a type-2 matrix-variate beta density with parameters (p+1
2 , ρ− p+1

2 ). Hence
the fractional derivative of g2(U2) is available from those of the Kober fractional
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integral operator of order α, namely K−α
2,U . Thus, we can define the fractional

derivative of the density, Dα
2,U2

g2(U2), by using the density in (7.2).

The second function that we have considered for f(V ) was of the form

f(V ) =
[det(V )]ρ−

p+1
2

Γp(ρ)
=

1

Γp(ρ)
[det(V )]ρ−

p+1
2 [det(I − U)]

p+1
2 − p+1

2 . (7.3)

Hence
Γp(ρ+

P+1
2 )

Γp(
p+1
2 )

f(V ) is a statistical density, which is a type-1 matrix-variate beta

density with parameters (ρ, p+1
2 ). Hence the fractional derivative of order α for

the density g1(U1) in (7.1) is available from the corresponding derivative of K−α
1,U

with f(V ) in (7.3) multiplied by the constant
Γp(ρ+

p+1
2 )

Γp(
p+1
2 )

. Thus, we can define the

fractional derivative of the density g1(U1), that is, Dα
1,U1

g1(U1), with the help of

K−α
1,U of (7.1) and the density in (7.3).
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