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DIRECT ESTIMATES FOR DURRMEYER-BASKAKOV-STANCU
TYPE OPERATORS USING HYPERGEOMETRIC
REPRESENTATION

VISHNU NARAYAN MISHRA, PREETI SHARMA

ABSTRACT. In the present article, we introduced and study hypergeometric
representation of Durrmeyer-Baskakov-Stancu type operators. First, we esti-
mate moments of these operators using hypergeometric series. Furthermore,
we obtain an error estimation in simultaneous approximation for said opera-
tors.

1. INTRODUCTION

For f € C]0,00), the Durrmeyer-Baskakov operators were study by Sahai and
Prashad [15] is defined as

Du(f0) = (=13 pus(@) / pai(t) (), (1)
k=1 0
where p,, i (z) = (Zik ﬁ

In [5] Gupta and Yadav introduced the Baskakov-Beta-Stancu operators and
invetigated some approximation properties like asymptotic formula, moments of
these operators using hypergeometric series and errors estimation in simultaneous
approximation. The behavior of these operators is very similar to the operators
recently introduced by Mishra et al. [§], [9].

It is observed that as an application of the special functions, we can write the
different form of the operators ©,(f,z) in terms of Hypergeometric series. For
details on Hypergeometric series, we refer the readers to [3].

The hypergeometric function is defined as

ez = S (@O g
gFl(a,b, ] )—kgo (C)kk' .
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The confluent hypergeometric function is a degenerate form of the hypergeomet-
ric function 2 F(a, b; ¢; &) which arises as a solution the confluent hypergeometric
differential equation is defined as

o (@) 2"
Fila: cz) — ol
1 1(0’767 .I) kZ:O (C)]g k' )
where the Pochhammer symbol (n)j is defined as
n)k=nn+1)(n+2)(n+3)...(n+k—1).

Motivated by the recent studies on certain operators by Gupta et al.[5] and Mishra
et al.[9] using hypergeometric form, we can write the operators (1) as

= (n zF *“(n tk
Dulfix) = (n=1)3 (k)!k 1+ z)nFF /0 (k)!k N

k=0

_ R (ORI SN )/ S €0,
= (- 1)/0 (14 2)(1+t)]" kZ:O (k!)]; (1 +2)(1+ 1)) "

By hypergeometric series oF(a,b;c;x) = Z;O:o %xk and the Pochhammer
symbol (n), and using the equality (1), = k!, we can write
- Q)
Dn(f,2) =(n— 1)/ —— | n,n;l;
o [A+z)A+D)"

Now, applying Pfaff-Kummer transformation

xt
(1+x)(1+t))dt'

2Fi(a,bycw) = (1 —2)"“2F <a, c—b;c %)
-

we have

_ T f@) .ot

This is the another form of the operators ([I) in terms of hypergeometric functions.
In 1974, Khan [6] studied approximation of functions in various classes using dif-
ferent types of operators. Several other researchers have studied in this direction
and obtained different approximation properties of many operators and we men-
tion some of them as [T}, 2, [7, 0, 0T}, 12| 13, 14]. Here, we introduce Durrmeyer-
Baskakov-Stancu operators in terms of hypergeometric functions, for 0 < a <
as

(@.8) o ° nt + « 1 R —xt
e f) =001 [ 1 (S ) g o (1 - it )

For ae = 8 = 0 the operators ([B]) reduces to the operators ().
We know that

o0 ) 1
an)k(‘r) =1, / pn,k(t)dt = T
k=0 0 n —

Let us consider

C,[0,00) ={f € C[0,00) : f(t) = O(t)",v > 0}.
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The operators @5{1’6 ) are well defined for f € C[0,00). In the present article we
establish moments of Durrmeyer-Baskakov-Stancu operators using the technique of
hypergeometric series. Next, we give an error estimation in simultaneous approxi-
mation for the operators (B

2. MOMENT ESTIMATION AND AUXILIARY RESULTS

In this section, we establish certain lemmas which will be useful for the proof of
our main theorems.
Lemma 1 For n > 0 and r > —1, we have

F'n—r+1I(r+1)

Dp(t",x)=(n—-1) )

(1+2x)"2F (1 —n,—r;1; 1—T——x) .4

Moreover,
m—r=2ln+r-10! . S(n+r—2)(n—r—2)!
mn—Dn—2! =~ T = 1Din-2)

D,(t", x) = "1+ 0(n?).
()

Proof. Taking f(t) =", t = (1 + x)u and using Pfaff-Kummer transformation the
right-hand side of (@), we get

(14 )" " i 1—n;C (—2(1 4 z)u)*

Du(t@) = (n- 1)/000 o)1+ 2= RN ST L
— -1 go 7(”)’“(%)‘2 P () (1 4 2y /OOO %du
= (n— 1)}2%7!);%(_@’“(1 +2)"" M Br+k+1n—r—1)
o ”,i N LS )
Using T(n + k + 1) = T(n + 1)(n + 1)1, we have
Dt 2) = (m—1) go (n)k((;!)_z n)k (—2)*(1 + 2)7 ="+ D(r+ 1)(Trﬂzn1))(1;1;£n -r—1)
- o4 :C)T_nﬂr(r + 1)1?((2)— r—1) ki:o T+ 12k'()1 —n) ()t

r+1)I'(n—r—
L(n)

Using Pfaff-Kummer transformation transformation

oFi(a,b;c;2) = (1 — x)_“2F1< —bjc; & 1), we have

= (n-1)(1+ :U)T_"'HF( D) oFi(1—n,1+7;1;—2).

N G T;(i))r(r D 42y, (1 —n, -1 14%1:)

The other consequence (@) follows from the above equation by writting the expan-
sion of hypergeometric series. O
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Lemma 2 For 0 < a < 8 we have
n" (n+r—Dl(n—r-—2)

R G I e O TRy
o1 2 " (n+r=2)(n—r—2)! n"l (n4+r—2)(n—r+1)!
o {T Wt 0 m-Din-20 masr (m-Dln -2 }

nmt (n+r=3)!(n—r-—1)!
@i A D)

rir—1) 5 n™2 (n+r—3)!(n—r+2) 9
R B ey B ]

Proof. By using binomial theorem, the relation between operators ) and (B]) can
be defined as

@D 2 = e DS (2 [ nt+a\”

n+pg
D) [ a3 (1)
= 1);%,1@()/0 pn,k(t)Z(.) &

=\

i=o M

+ xT_Q{r(r — 1)2a

+

Using (@), we get Lemma (2)). O
Lemma 3[4 For m € N{J{0}, if

unte) = Yo (1 +)

then Uy, o(x) = 1,U,,1(z) = 0 and we have the recurrence relation:
nUnm+1(x) = (1 + z) I:U’rllm(x) + mUn,mfl(x)} :
Consequently, Uy, () = O (n~lm+D/2)) " where [m] is integral part of m.
Lemma 4 For m € NJ{0}, if
finm(2) = @%a,ﬁ)((t — )", x)

= (n—l)gpn,k(x) /Ooopn,ka) (Zf:g —:v)mdt

then
B  @2n+28-np)z+(1+a)n -2«
/Ln,o(x) - 17 ILLn71(I) - (n — 2)(TL ¥ B) )
2 = 2n% + (b — 48+ 6)n? + (128 — 55%)n + 632 2
mate) = (0= 2)(n— 3+ P )

N (2n3 + (6 +4a — 28 — 2aB)n? + (68 + 10aB — 12a)n — 12a6)
(n—2)(n—3)(n + 5)? !
(2 +a? 4+ 2a)n? — (6a + 5a2)n + 602
(n—2)(n=3)(n+B)? ’
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and for n>m we have recurrence relation:
(4 Bpnm1(x) = (1 + )| 0 (2) + Mpt 0 —1(2)]
«
+ [m+14+a—nz— Bz —z)pnm(c) — (Tﬂ — x) Ponm—1(2)

From the recurrence relation, it easily verified that for all « € [0, 00), we have
finm () = O(n 1 FD/),

Proof. Taking derivative of jip m ()

) = =03 [ st (5 o)
—m(n —1) ipnk(lv) /OO Dk (t) (Zt:ﬁa — :E) dt

nt + « m
—Mpn m— 1 n—l ank / p"’k(t>(n+6 —I> dt

o m ()
using (1 + x)p;, . (z) = (k — (n + 1)z)pn,k (), we get

(k= 1+ Do) (o) | wpn,k@)(?jfj °- x)mdt

M8

21+ @)y (2) + Mptn -1 (2)] = (n—1)

b
Il

0
nt+a

0 )
(s

— Zfin,m ()
:(n—l)anyk(a:)/ kE—nt+n(t —x)|pp it > dt
k=0 0
—fin,m(2)

= I— 2 pnm(z). (6)

= (n-1)

NE

(k= nalpusa) [ posto)(

=
i

We can write I as

) 3 ] e R

Y puate) [ st (S <)
+ 8
”_1(ank / (t_x)pn,k(t)<2t_—:g_‘T>mdt>:|

= L+ I, (say).

To estimate I3 using ¢ = # [(’if_tg - a:> - <$ - 3:)] , we have



6 VISHNU NARAYAN MISHRA, PREETI SHARMA JFCA-2015/6(2)

L = n—l(ank / (t_x)pn,k(t)(’;‘f:;‘_x)mdtﬂ
_ (n—1”+ﬂ [annk / snyk(t)<:f:g—x>m+ldt

—(n— 1)(n+ﬁ ) ank / pn,k(f)(zbtig —w)mdt]

= (048 o) - (n )]

Next to estimate I1 using the equality, tp), ,(t) = [k — nt]p, (t)

> > nt + « "
= - n ;1 LR d’
Bo= e [ (g )

: ; _ ntB t+
again putting t = == K’;H‘; —x) — (#"B —x>] , we get

m—+1
L o= (n- n+ﬁ[zpnk /Opnk(t)(%_x> dt

(n+5 )ank /Opnk(t)(zt:g—x>mdt].

Now integrating by parts and by simple computation, we get

ho= | =0t Do)+ (25 = ) nna(o)].

Put the values of I7 and I in I, we get

= = ot D) (2 = 0t a 0] 4 04 8) i) = (225 = |

+ 5 n+ 0
Now, put value of I in (7)), we get
o1+ ) 0) (2] = =0+ Dt 0) (2 = 2 1 (2)
04 8) (snmia@) = (555 = Yo ) = o),

Hence,

(n+ Bpnm1(x) = (14 2) [y, () + Mpin m—1 ()]

+m+1+a—nz— Bz —z|pnm(x) — m<n—?—6 — x) Pnm—1(2),

which is the required result. (|
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Lemma 5[4] There exist the polynomials g¢; j () on [0, 00), independent of n
and k such that

T

d . )
21+ 2) Tpar(@) = 3 0k = 2P g (0)pas(e).
2itj<r
i,j>0

3. MAIN RESULT

In this section, we give an estimate of the degree of approximation by CDn ap(f(t)2)
for smooth functions.
Theorem 1 Let f € C,[0,00) for some v >0 and r < ¢ <r+2. If 1@ exists and
is continuous on (a —n,b+ 1) C (0,00), n > 0, then for sufficiently large n

q
19, 5(F,2)=F D (@)l ctar) < Crn™ 3 N1 F lcpau+Cont 2w (fD, n1/2)+0(n™™),

) ™)
where Cy, Cy are constants independent of f and n, w(f,d) is the modulus of
continuity of f on (a —n,b+n) and ||.||¢[e,5 denotes the sup-norm on [a, b].

Proof. Using the Taylor’s, expansion, we have

@ F19 (@) = F9)
; ' )t~z +#

(t —2)"x(t) + h(t, z)(1 = x(¢))

where £ lies between ¢ and z, and x(t) is the characteristic function on interval

(a_n7b+n)'
For t € (a —n,b+n) and x € [a, ], we have

NN , @ (g) — @
Zf t—fﬂl—FM(t—{)q.
i=0 ! q:
For t € [0,00)\(a —7n,b+n) and z € [a, ], we define
h(t, x Z 1 (t—=x) i.
i=0
Now,
~ (@) - . @ () — F@
Oyt = 1) = { S L0, - ar'o) - f(”(a:)} T
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Using Lemma 2] we get

B f<z e i [ (ntj—-Dln—j—2)
Sio= Z ! ZQ)(_:”) dxr[x n+p)Y  (n—1D(n—2)!

7=0
jafp_ W (4i-n—j-2) . w7 (n+j-2)ln—j+1)
T (3 m+B7  m—Dlm=21 i pi  m—Din—2)! )

I e (R [ (]
T (3(3 VT3 o im =2
](.]_1> 2 nj72 (7’L+]—3)(n—j+2)' —m r

e T )+ O] 1)

+

Hence

q
1S1llctas < Con D [ lcray + O(n™™), uniformly on [a,b].

=7

Next, we estimate Sy as

o >0 @ (z) — @ ; 4
|52 < (n—l)kz_o|p23€(x)|/o pmk(t){‘f (x)q!f ©) Zig—w X(t)}dt
q
w(f@,§) = o0 e — it
< T(n—l)[;|pn7k(ﬂl¢)|/g Par(t) | 1+ 5 7 N
w(f,9) S 1) > nt+a [T |nt+a |7
: TW—ULZ_O@W»/O I R e e

Now, using Schwarz inequality for integration and then for summation, we get

ank Ik—nx|3</ooopn,k(t)dt>

[e%e] 2q %
([ (22"
0 n

g(lipn,k(x)( ~ na) ) <ank

> nt + « 2 3
| p””“(“(nw “’”) dt) |

dt = 0On’*o(n=1?)

[SE

nt+a

(1) Zm M= nal? [ (o) 2
0

Hence

n—l ank |I€—7’L$|J/ pn,k(ﬂ
0

nt + «a
n+p

= 0O(nU-9/%), (8)

uni formly on [a,b].
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Therefore, by Lemma 2] and (8]), we get

r) o nt+a n' ‘Jw, o[
n—1 E D, 1 (T / D,k ‘dt< E E xk—nxﬂ/ D k(¢
( )k:O| ,k( )| o ( ) n—|—[3 T T 1_|_ ( )| | o ( )
i,§>0

nt + « 4
— dt
<n+ﬁ x)

q
dt

nt + «
n+p

<K > (anmnk—mv / " pul®)

2i4j<r k=1
,§>0

=K Z n'O(nY=9/2y = O(n"=9/2) uniformly on [a,b], (9)

2i+4j<r
i,5>0

dij.r(2)

P . Choosing § = n~/? and making use of (8], we

where K = sup sup

21+J><7" z€(a,b]
get for any m > 0,
w(f@, n=1/2)
q!

For ¢ € [0,00)\(a — n,b+ 1), we can choose ¢ such that |t — x| > § for all z € [a, b].
Thus by Lemma 2, we get

n‘hgr
5] < P (@)|k — nal? / P (£) 1t ) dt
21;T wr(1+ )" Z " PN

i,5>0

[152]lcfap < [O(nT=D72) + 0! 20(n=17D72) + O(n=1)] < Co(n™ "=V 2)w(f @, n71/2).

We can find a constant M; such that

B

t
nta for |t —x| >0,

h(t <M
bt )| < M| 2o

— X

where 8 > (v,q). Hence applying Schwarz inequality and Lemma (2) and (@), it
is easy to see that S3 = O(n~") for any r > 0 uniformly on [a,b]. Combining the
estimates of S7,.52 and S3, the required result follows. O
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