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ON THE PROPERTIES OF SOLUTION OPERATORS OF

FRACTIONAL EVOLUTION EQUATIONS

BAMBANG HENDRIYA GUSWANTO

Abstract. In this paper, we study solution operators for a fractional evo-
lution equation involving an (almost) sectorial operator A. By employing

fractional powers of operators notion, for an initial data lying in a domain of
the fractional power of A, we obtain a solution for the Cauchy problem of the
fractional evolution equation. Moreover, we also find a new semigroup-like
property.

1. Introduction

Let H be a Banach space. We consider the fractional Cauchy problem

Dα
t u = Au, t > 0,

u(0) = u0,
(1.1)

where A : D(A) ⊂ H → H is a linear operator and Dα
t is the Caputo fractional

time derivative of order α with 0 < α < 1. There were some researches studying
this problem, for intances, see [1, 2, 6]. Bajlekova [1] introduced a solution operator
for (1.1) as follows. Let B(H) be the set of all bounded linear operators on H.

Definition 1.1. A family {Sα(t)}t≥0 ⊂ B(H) is called a solution operator for (1.1)
if the following conditions are satisfied :

(i) Sα(t) is strongly continuous for t ≥ 0 and Sα(0) = I,
(ii) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0,
(iii) Sα(t)x is a solution of

u(t) = x+

∫ t

0

(t− s)α−1

Γ(α)
Au(s)ds

for all x ∈ D(A), t ≥ 0.

Chen et al. [2] also introduced what they called as fractional resolvent operator
functions defined by purely algebraic condition.
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Definition 1.2. Let α > 0. A function Sα : R+ → B(H) is called an α-resovent
operator function if the following conditions are satisfied :

(i) Sα(·) is strongly continuous on R+ and Sα(0) = I,
(ii) Sα(s)Sα(t) = Sα(t)Sα(s) for all s, t ≥ 0,
(iii) The functional equation

Sα(s)

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)dτ −

∫ s

0

(s− τ)α−1

Γ(α)
Sα(τ)dτSα(t)

=

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)dτ −

∫ s

0

(s− τ)α−1

Γ(α)
Sα(τ)dτ.

(1.2)

holds for all s, t ≥ 0.

In [6], Peng et al. introduced what they named as strongly continuous fractional
semigroup of order α.

Definition 1.3. Let 0 < α < 1. A one-parameter family {Sα(t)}t≥0 of bounded
linear operators of H is called strongly continuous fractional semigroup of order α
if it possesses the following two properties :

(i) For every x ∈ H, the mapping t 7→ Sα(t)x is continuous over [0,∞),
(ii) Sα(0) = I and, for all s, t ≥ 0,∫ t+s

0

Sα(τ)

(t+ s− τ)α
dτ −

∫ t

0

Sα(τ)

(t+ s− τ)α
dτ −

∫ s

0

Sα(τ)

(t+ s− τ)α
dτ

= α

∫ t

0

∫ s

0

Sα(τ1)Sα(τ2)

(t+ s− τ1 − τ2)1+α
dτ1dτ2,

(1.3)

where the integrals are defined in the strong operator topology.

In [1, 2, 6], the authors showed that the operator that each of them introduced in
Definition 1.1, 1.2, and 1.3 is the solution operator for the problem (1.1) with each
certain conditions. All of them found that, for u0 ∈ D(A) and t ≥ 0, u(t) = Sα(t)u0

is the solution to the problem (1.1).
Wang et al., in [10], studied the Cauchy problem for the linear evolution equation

Dα
t u(t) +Au(t) = f(t), t > 0,

u(0) = u0,
(1.4)

where Dα
t is the Caputo fractional time derivative of order α (0 < α < 1), f :

(0,∞) → H, and A : D(A) ⊂ H → H is a linear operator satisfying the properties
that there are constants 0 < γ < 1 and 0 < ω < π/2 such that

σ(A) ⊂ Σω (1.5)

and, for every ω < µ < π, there exists a constant Cµ > 0 such that

∥R(λ;A)∥ ≤ Cµ

|λ|γ
, λ ∈ C \ Σµ, (1.6)

where σ(A) is the spectrum set of A, R(λ;A) = (λ−A)−1 is the resolvent operator
of A, and Σω = {λ ∈ C : λ ̸= 0, |arg(λ)| < ω}. They defined a pair of operators

Sα(t) =
1

2πi

∫
Γθ

Eα,1(−λtα)R(λ;A)dλ, t ∈ Σπ/2−ω,

Pα(t) =
1

2πi

∫
Γθ

Eα,α(−λtα)R(λ;A)dλ, t ∈ Σπ/2−ω,
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where the integral contour Γθ = {R+e
iθ} ∪ {R+e

−iθ} is oriented counterclockwise
with ω < θ < µ < π/2− | arg(t)| and Eα,β(z) is the Mittag-Leffler function. They
showed that this pair of the operators is the solution operator for the problem (1.4)
and, for u0 ∈ D(A) and t > 0, u(t) = Sα(t)u0 is the solution to the homogeneous
case of the problem (1.4).

In this paper, we study the fractional Cauchy problem

Dα
t u(t) = Au(t) + f(t), t > 0,

u(0) = u0,
(1.7)

where Dα
t is the Caputo fractional time derivative of order α (0 < α < 1), f :

(0,∞) → H, and A : D(A) ⊂ H → H is a linear operator satisfying the properties
that there are constants θ ∈ (π/2, π), M > 0, and 0 < γ ≤ 1 such that

ρ(A) ⊃ Σθ, (1.8)

∥R(λ;A)∥ ≤ M

|λ|γ
, λ ∈ Σθ, (1.9)

where ρ(A) is the resolvent set of A. If γ = 1, we call A as a sectorial operator,
otherwise, A is called as an almost sectorial operator. Here, we define a pair of
operators

Sα(t) =
1

2πi

∫
Γr,ω

eλtλα−1R(λα;A)dλ, t > 0,

Pα(t) =
1

2πi

∫
Γr,ω

eλtR(λα;A)dλ, t > 0,

where r > 0, π/2 < ω < θ, and the integral contour

Γr,ω = {λ ∈ C : |arg(λ)| = ω, |λ| ≥ r} ∪ {λ ∈ C : |arg(λ)| ≤ ω, |λ| = r}

is oriented counterclockwise. We also show that this pair of the operators is the
solution operator for the problem (1.7). By employing some estimates for AβSα(t)
and AβPα(t), where A

β denotes the fractional power of A, we obtain that, not only
for u0 ∈ D(A) but also for u0 ∈ D(Aβ) with 1−γ < β < γ (1/2 < γ ≤ 1) and t > 0,
u(t) = Sα(t)u0 is the solution to the homogeneous case of the problem (1.7) and
moreover, differently from (1.2) and (1.3), we get a new semigroup-like property,
that is

Sα(t+s)u0 = Sα(t)Sα(s)u0−A

∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
Pα(τ)Pα(r)u0drdτ, s, t > 0.

This paper is composed of four sections. In section 2, we introduce briefly the
fractional integration and differentiation of Riemann-Liouville and Caputo opera-
tors. Some special function related to fractional differential equations and its prop-
erties are also introduced in this section. In section 3, we study analytic solution
operators of a fractional evolution equation both in homogeneous and inhomoge-
neous case. In the last section, the fractional power of an (almost) sectorial operator
is discussed and our main results are showed.
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2. Fractional Time Derivative

Let 0 < α < 1, a ≥ 0 and I = (a, T ) for some T > 0. The Riemann-Liouville
fractional integral of order α is defined by

Jα
a,tf(t) =

∫ t

a

(t− s)α−1

Γ(α)
f(s)ds, f ∈ L1(I), t > a. (2.1)

We set J0
a,tf(t) = f(t). The fractional integral operator (2.1) obeys the semigroup

property

Jα
a,tJ

β
a,t = Jα+β

a,t , 0 ≤ α, β < 1. (2.2)

The Riemann-Liouville fractional derivative of order α is defined by

Dα
a,tf(t) = Dt

∫ t

a

(t− s)−α

Γ(1− α)
f(s)ds, f ∈ L1(I), t−α ∗ f ∈ W 1,1(I), t > a, (2.3)

where ∗ denotes the convolution of functions

(f ∗ g)(t) =
∫ t

a

f(t− τ)g(τ)dτ, t > a,

and W 1,1(I) is the set of all functions u ∈ L1(I) such that the distributional
derivative of u exists and belongs to L1(I). The operator Dα

a,t is a left inverse of
Jα
a,t, that is

Dα
a,tJ

α
a,tf(t) = f(t), t > a,

but it is not a right inverse, that is

Jα
a,tDα

a,tf(t) = f(t)− (t− a)α−1

Γ(α)
J1−α
a,t f(a), t > a.

The Caputo fractional derivative of order α is defined by

Dα
a,tf(t) = Dt

∫ t

a

(t− s)−α

Γ(1− α)
(f(s)− f(0))ds, t > a, (2.4)

if f ∈ L1(I), t−α ∗ f ∈ W 1,1(I), or

Dα
a,tf(t) =

∫ t

a

(t− s)−α

Γ(1− α)
Dsf(s)ds, t > a, (2.5)

if f ∈ W 1,1(I). The operator Dα
a,t is also a left inverse of Jα

a,t, that is

Dα
a,tJ

α
a,tf(t) = f(t), t > a, (2.6)

but it is not also a right inverse, that is

Jα
a,tD

α
a,tf(t) = f(t)− f(a), t > a. (2.7)

The relation between the Riemann-Liouville and Caputo fractional derivative is

Dα
a,tf(t) = Dα

a,tf(t)−
(t− a)−α

Γ(1− α)
f(a), t > a. (2.8)

For a = 0, we set Jα
a,t = Jα

t , Dα
a,t = Dα

t , and Dα
a,t = Dα

t .
We also have the Laplace transform of the Riemann-Liouville and Caputo frac-

tional derivative for a = 0. Those are

L(Dα
t f)(λ) = λαL(f)(λ)− (J1−α

t )f(0), (2.9)

L (Dα
t f) (λ) = λαL(f)(λ)− λα−1f(0), (2.10)
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where the Laplace tranform is defined by

L(f)(λ) =
∫ ∞

0

e−λtf(t)dt.

Next, we introduce the Mittag-Leffler function defined by

Eα,β(z) =
∞∑

n=0

zn

Γ(αn+ β)
, α, β > 0, z ∈ C. (2.11)

This function is entire and can be also represented in an integral form, that is, for
0 < α < 2 and an arbitrary complex number β,

Eα,β(z) =
1

2παi

∫
Γϵ,µ

eζ
1/α

ζ(1−β)/α

ζ − z
dζ, z ∈ Γ−

ϵ,µ (2.12)

and

Eα,β(z) =
1

α
z(1−β)/αez

1/α

+
1

2παi

∫
Γϵ,µ

eζ
1/α

ζ(1−β)/α

ζ − z
dζ, z ∈ Γ+

ϵ,µ, (2.13)

where ϵ > 0, πα/2 < µ < min{π, πα},

Γϵ,µ = {λ ∈ C : |arg(λ)| = µ, |λ| ≥ ϵ} ∪ {λ ∈ C : |arg(λ)| ≤ µ, |λ| = ϵ},

and Γ−
ϵ,µ (Γ+

ϵ,µ) is the area lying on the left (right) hand side of the contour Γϵ,µ.

Now, we suppose r = ϵ1/α and ω = µ/α. Thus we have r > 0 and π/2 < ω < π. By
the transformation σ = ζ1/α, we obtain, for 0 < α < 2 and an arbitrary complex
number β,

Eα,β(z) =
1

2πi

∫
Γr,ω

eσσα−β

σα − z
dσ, z1/α ∈ Γ−

r,ω (2.14)

and

Eα,β(z) =
1

α
z(1−β)/αez

1/α

+
1

2πi

∫
Γr,ω

eσσα−β

σα − z
dσ, z1/α ∈ Γ+

r,ω. (2.15)

For β = 1, we set Eα,β(z) = Eα(z), and, for α = β = 1, we get that Eα,β(z) is
nothing but exponential function ez.

Now, we give the asymptotic formulas for the Mittag-Leffler function. For 0 <
α < 2, β is an arbitrary complex number, and µ is an arbitrary number such that

πα

2
< µ < min{π, πα},

then, for an arbitrary integer p ≥ 1, the following expansions hold, those are

Eα,β(z) =
1

α
z(1−β)/αez

1/α

−
p∑

n=1

z−n

Γ(β − αn)
+O(|z|−1−p),

|z| → ∞, | arg(z)| ≤ µ,

(2.16)

and

Eα,β(z) = −
p∑

n=1

z−n

Γ(β − αn)
+O(|z|−1−p), |z| → ∞, µ ≤ | arg(z)| ≤ π. (2.17)
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Next, we also provide the estimates of the behaviour of the Mittag-Leffler function
in different parts of the complex plane, those are, there are real constants D1, D2,
and D3 such that

|Eα,β(z)| ≤ D1(1 + |z|)(1−β)/αeRe(z1/α) +
D2

1 + |z|
, |z| ≥ 0, arg(z)| ≤ µ. (2.18)

and

|Eα,β(z)| ≤
D3

1 + |z|
, |z| ≥ 0, µ ≤ | arg(z)| ≤ π. (2.19)

We also have the Laplace transform of Mittag-Leffler function, that is

L
(
tβ−1Eα,β(λt

α)
)
(ξ) =

ξα−β

ξα − λ
, Re(ξ) > |λ|1/α.

Another Properties of Mittag-Leffler function which will be used frequently later
are

DtEα(λt
α) = λtα−1Eα,α(λt

α), t > 0, (2.20)

Dα
t Eα(λt

α) = λEα(λt
α), t ≥ 0, (2.21)

Eα(λt
α) = J1−α

t tα−1Eα,α(λt
α), t > 0. (2.22)

The following well known Proposition show us the application of Mittag-Leffler
function to fractional ordinary differential equations.

Proposition 2.1. Let λ ∈ C and f be given complex functions defined in (0,∞). If
v : [0,∞) → C is a continuous function solving the fractional ordinary differential
equation

Dα
t v(t) = λv(t) + f(t), t > 0,

v(0) = v0,
(2.23)

then it is given uniquely by

v(t) = Eα(λt
α)v0 +

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)f(s)ds, t > 0. (2.24)

Proof. We use the Laplace tranform method to derive (2.24). Thus the laplace
transform of (2.23) is

ξαL(v)(ξ)− ξα−1v0 = λL(v)(ξ) + L(f)(ξ).

Then

L(v)(ξ) = ξα−1

ξα − λ
v0 +

ξα−α

ξα − λ
L(f)(ξ), Re(ξ) > |λ|1/α.

By the invers of Laplace transform, it follows that

v(t) = Eα(λt
α)v0 +

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)f(s)ds, t > 0.

This representation of v is unique by the uniqueness property of the invers of the
Laplace tranform. �

For more details concerning the fractional integrals and derivatives and the
Mittag-Lefller function, we refer to Kilbas et al. [3] or Podlubny [8].
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3. Solution Operators for Fractional Evolution Equations

In this section, we construct solution operators for the fractional Cauchy problem
(1.7) with A which is (almost) sectorial and derive their properties. Note that every
(almost) sectorial operator is closed since its resolvent set is not empty. For related
results in the case of A satisfying (1.5) and (1.6), one can refer to [10]. The authors
in [10] needed a third object, namely the semigroup associated with A, to derive the
properties of their solution operators. Here, we do not use it. In the case of α = 1
or the evolution equation involving the first order time derivative, Periago et al.
[7] studied what is called by the semigroup of growth order 1− γ. Concerning this
kind of semigroup, Prato [9] is the one who introduced it for nonnegative integer
growth order. Then Okazawa [4] defined it for positive growth order.

If Au, u, f ∈ L1((0,∞);H), by (2.10), we have the Laplace transform of the
problem (1.7), that is

−λα−1u0 + λαL(u)(λ) = AL(u)(λ) + L(f)(λ).
Then we get

(λα −A)L(u)(λ) = λα−1u0 + L(f)(λ), (3.1)

and, by the invers of the Laplace transform, we may obtain

u(t) =
1

2πi

∫
Γ

eλtλα−1R(λα;A)u0dλ+

∫ t

0

(
1

2πi

∫
Γ

eλtR(λα;A)dλ

)
f(t− τ)dτ,

(3.2)

where Γ is any vertical line Re(λ) = c such that c is greater than all real part of all
singularities of the integrand of the integral (3.2). If both integrals of (3.2) exist, we
have a solution to the problem (1.7). These motivate in defining solution operators
for the problem (1.7).

3.1. Homogeneous Problem. The first term of the right hand side of (3.2) moti-
vates in defining a solution operator for the homogeneous case of the problem (1.7).
Now, we consider the operator

1

2πi

∫
Γr,ω

eλtλα−1R(λα;A)dλ,

where r > 0, π/2 < ω < θ, and

Γr,ω = {λ ∈ C : |arg(λ)| = ω, |λ| ≥ r} ∪ {λ ∈ C : |arg(λ)| ≤ ω, |λ| = r}
is oriented counterclockwise. Note that λ 7→ eλtλα−1R(λ;A) is analytic on Σθ.
Furthermore, for each λ ∈ Γr,ω, it holds that

∥eλtλα−1R(λα;A)∥ ≤ M |λ|α(1−γ)−1et|λ| cos arg(λ).

Therefore, for t > 0, we have∥∥∥∥∥
∫
Γr,ω

eλtλα−1R(λ;A)dλ

∥∥∥∥∥ ≤ 2M

∫ ∞

r

ρα(1−γ)−1etρ cosωdρ+Mrα(1−γ)

∫ ω

−ω

etr cosφdφ.

Thus we can define

Sα(t) =
1

2πi

∫
Γr,ω

eλtλα−1R(λα;A)dλ, t > 0. (3.3)

By the Cauchy’s theorem, the integral form (3.3) is independent of r > 0 and
ω ∈ (π/2, θ).
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The properties of the family {Sα(t)}t>0 are given in the following theorem.

Theorem 3.1. Let A be an (almost) sectorial operator and Sα(t) be an operator
defined by (3.3). Then the following statements hold.

(i) Sα(t) ∈ B(H) and there exists C1 = C1(α, γ) > 0 such that

∥Sα(t)∥ ≤ C1t
−α(1−γ), t > 0,

(ii) Sα(t) ∈ B(H;D(A)) for t > 0, and if x ∈ D(A) then ASα(t)x = Sα(t)Ax.
Moreover, there exists C2 = C2(α, γ) > 0 such that

∥ASα(t)∥ ≤ C2t
−α(t−α(1−γ) + 1), t > 0,

(iii) The function t 7→ Sα(t) belongs to C∞((0,∞);B(H)) and it holds that

S(n)
α (t) =

1

2πi

∫
Γr,ω

etλλα+n−1R(λα;A)dλ, n = 1, 2, . . .

and there exist Mn = Mn(α, γ) > 0, n = 1, 2, . . . such that

∥S(n)
α (t)∥ ≤ Mnt

−α(1−γ)−n, t > 0.

Moreover, it has an analytic continuation Sα(z) to the sector Σθ−π/2 and,
for z ∈ Σθ−π/2, η ∈ (π/2, θ), it holds that

Sα(z) =
1

2πi

∫
Γr,η

eλzλα−1R(λα;A)dλ,

(iv) For x ∈ H,

Sα(t)Sα(s)x = Sα(s)Sα(t)x, s, t > 0.

Proof.

(i) We suppose cosω = −a for some 0 < a < 1. Then, for t > 0,∥∥∥∥∫
Γr,ω

eλtλα−1R(λα;A)dλ

∥∥∥∥ =

∥∥∥∥∥
∫
Γt−1,ω

eλtλα−1R(λα;A)dλ

∥∥∥∥∥
≤ 2M

∫ ∞

t−1

e−taρρα(1−γ)−1dρ+M

∫ ω

−ω

ecosφt−α(1−γ)dφ

= 2Mt−α(1−γ)a−α(1−γ)

∫ ∞

a

e−uuα(1−γ)−1du

+Mt−α(1−γ)

∫ ω

−ω

ecosφdφ.

It means that Sα(t) ∈ B(H) and there exists C1 = C1(α, γ) > 0 such that

∥Sα(t)∥ ≤ C1t
−α(1−γ), t > 0.

(ii) By the definiton of resolvent operator, for each λ ∈ Γr,ω, R(λα;A) :
D(R(λα;A)) ⊂ H → D(A) is bounded and D(R(λα;A)) is dense in H.
This and the closedness of A imply R(λα;A)x ∈ D(A) for each x ∈ H.
Therefore eλtλα−1R(λα;A)x ∈ D(A). Moreover, λ 7→ eλtλα−1R(λα;A)x is
integrable along Γr,ω.
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Now, we consider the function λ 7→ eλtλα−1AR(λα;A)x, x ∈ H. Since
AR(λ;A) = λR(λ;A)− I, we have∫

Γr,ω

eλtλα−1AR(λα;A)xdλ =

∫
Γr,ω

eλtλ2α−1R(λα;A)xdλ

−
∫
Γr,ω

eλtλα−1xdλ.

Then, for t > 0, we get∥∥∥∥∫
Γr,ω

eλtλ2α−1R(λα;A)dλ

∥∥∥∥ =

∥∥∥∥∥
∫
Γt−1,ω

eλtλ2α−1R(λα;A)dλ

∥∥∥∥∥
≤ 2Mt−α(2−γ)a−α(2−γ)

∫ ∞

a

e−uuα(2−γ)−1du

+Mt−α(2−γ)

∫ ω

−ω

ecosφdφ

and
1

2πi

∫
Γr,ω

eλtλα−1dλ =
t−α

Γ(1− α)
.

It means that λ 7→ eλtλα−1AR(λα;A)x is integrable along Γr,ω for each
x ∈ H. Therefore, since A is closed, we find that, for each x ∈ H,

Sα(t)x =
1

2πi

∫
Γr,ω

eλtλα−1R(λα;A)xdλ ∈ D(A),

ASα(t)x =
1

2πi

∫
Γr,ω

eλtλα−1AR(λα;A)xdλ.

Moreover, there exists C2 = C2(α, γ) > 0 such that

∥ASα(t)∥ ≤ C2t
−α(t−α(1−γ) + 1), t > 0.

Thus we obtain Sα(t) ∈ B(H;D(A)). Since AR(λ;A) = R(λ;A)A, we also
have that, for each x ∈ D(A), ASα(t)x = Sα(t)Ax.

(iii) Now, observe that, for any λ ∈ C and t, h > 0 such that t < t+ h < 2t and
Re(λ) ≤ 0, we have

|e(t+h)λ − etλ| = |etλ(ehλ − 1)| = etRe(λ)

∣∣∣∣∣
∫ h

0

λeλsds

∣∣∣∣∣ ≤ etRe(λ)|λ|h.

If Re(λ) ≥ 0, we obtain

|e(t+h)λ − etλ| ≤ e2tRe(λ)|λ|h.

Similarly, for any λ ∈ C and h < 0 such that 0 < t/2 < t + h < t and
Re(λ) ≤ 0, we find

|e(t+h)λ − etλ| ≤ e
t
2Re(λ)|λ||h|.

If Re(λ) ≥ 0, we get

|e(t+h)λ − etλ| ≤ etRe(λ)|λ||h|.
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Thus, for h > 0 and t < t+ h < 2t,∣∣∣∣e(t+h)λ − etλ

h

∣∣∣∣ ≤ f(t, λ) =

{
etRe(λ)|λ|, Re(λ) ≤ 0,

e2tRe(λ)|λ|, Re(λ) ≥ 0,
(3.4)

and, for h < 0 and t/2 < t+ h < t,∣∣∣∣e(t+h)λ − etλ

h

∣∣∣∣ ≤ g(t, λ) =

{
e

t
2Re(λ)|λ|, Re(λ) ≤ 0,

etRe(λ)|λ|, Re(λ) ≥ 0.
(3.5)

Therefore

Sα(t+ h)− Sα(t)

h
=

1

2πi

∫
Γr,ω

e(t+h)λ − etλ

h
λα−1R(λα;A)dλ. (3.6)

Next, note that λ 7→ f(t, λ)|λ|α(1−γ)−1 and λ 7→ g(t, λ)|λ|α(1−γ)−1 are
integrable along Γr,ω. Then, by taking a limit as h → 0 and applying the
Dominated Convergence Theorem to (3.6), we obtain

S′
α(t) =

1

2πi

∫
Γr,ω

etλλαR(λα;A)dλ, t > 0.

It means Sα(t) is differentiable at t ∈ (0,∞). By using the similar procedure
as above, we can deduce that S′

α(t) is also differentiable at t ∈ (0,∞). By
induction, we can obtain that t 7→ Sα(t) belongs to C∞((0,∞);B(H)) and

S(n)
α (t) =

1

2πi

∫
Γr,ω

etλλα+n−1R(λα;A)dλ, t > 0.

Moreover, for t > 0,∥∥∥∥∫
Γr,ω

eλtλα+n−1R(λα;A)dλ

∥∥∥∥ =

∥∥∥∥∥
∫
Γt−1,ω

eλtλα+n−1R(λα;A)dλ

∥∥∥∥∥
≤ 2M

∫ ∞

t−1

e−taρρα(1−γ)+n−1dρ+M

∫ ω

−ω

ecosφt−α(1−γ)−ndφ

= 2Mt−α(1−γ)−na−α(1−γ)−n

∫ ∞

a

e−uuα(1−γ)+n−1du

+Mt−α(1−γ)−n

∫ ω

−ω

ecosφdφ.

Hence there exist Mn = Mn(α, γ) > 0, n = 1, 2, . . . such that

∥S(n)
α (t)∥ ≤ Mnt

−α(1−γ)−n, t > 0.

Now, let 0 < δ < θ − π/2 and η = θ − δ. We suppose z ∈ Ση−π/2 and

λ = |λ|e±ηi, |λ| ≥ r. Then zλ = |z||λ|ei(arg(z)±η) with π/2 < arg(z) + η <
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3π/2 and −3π/2 < arg(z)−η < −π/2. This means that Re(zλ) < 0. Then

∥Sα(z)∥ =

∥∥∥∥∥ 1

2πi

∫
Γr,η

ezλλα−1R(λα;A)dλ

∥∥∥∥∥
=

∥∥∥∥∥ 1

2πi

∫
Γ|z|−1,η

ezλλα−1R(λα;A)dλ

∥∥∥∥∥
≤ |z|−α(1−γ)

2π

∫
Γ1,η

eRe(ρ)|ρ|α(1−γ)−1|dρ|.

Thus, for z ∈ Ση−π/2, the function

z 7→ Sα(z) =
1

2πi

∫
Γr,η

ezλλα−1R(λα;A)dλ.

is bounded. Furthermore, the function is analytic in the sector Ση−π/2.
Also observe that the union of the sector Ση−π/2 is Σθ−π/2. This completes
the proof.

(iv) First, note that, for each µ ∈ Γr,ω, the function λ 7→ (µ− λ)−1 is analytic
in Σω \ {λ ∈ C : 0 < |λ| ≤ r,−ω < arg(λ) < ω}. Therefore, for each
λ ∈ Σω \ {λ ∈ C : 0 < |λ| ≤ r,−ω < arg(λ) < ω}, we can define a bounded
operator

(λ−A)−1 =
1

2πi

∫
Γr,ω

(λ− µ)−1R(µ;A)dµ. (3.7)

Next, we select r′ > r1/α and π/2 < ω′ < θ such that αω′ < ω. Thus, by
(2.14) and (3.7), we get

Sα(t) =
1

2πi

∫
Γr′,ω′

etλλα−1R(λα;A)dλ

=
1

2πi

∫
Γr′,ω′

etλλα−1

(
1

2πi

∫
Γr,ω

(λα − µ)−1R(µ;A)dµ

)
dλ

=
1

2πi

∫
Γr,ω

(
1

2πi

∫
Γr′t,ω′

eρρα−1(ρα − µtα)−1dρ

)
R(µ;A)dµ

=
1

2πi

∫
Γr,ω

Eα(µt
α)R(µ;A)dµ.

(3.8)

Now, we suppose 0 < r < r′ and π/2 < ω′ < ω. Consider that

Sα(t)Sα(s) =

(
1

2πi

)2 ∫
Γr,ω

Eα(λt
α)R(λ;A)dλ

∫
Γr′,ω′

Eα(µs
α)R(µ;A)dµ

=

(
1

2πi

)2 ∫
Γr,ω

∫
Γr′,ω′

Eα(λt
α)Eα(µs

α)
R(λ;A)−R(µ;A)

µ− λ
dλdµ

=

(
1

2πi

)2 ∫
Γr,ω

Eα(λt
α)R(λ;A)dλ

∫
Γr′,ω′

Eα(µs
α)

µ− λ
dµ

−
(

1

2πi

)2 ∫
Γr′,ω′

Eα(µs
α)R(µ;A)dµ

∫
Γr,ω

Eα(λt
α)

µ− λ
dλ.

(3.9)
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By (2.19), the Mittag-Leffler function Eα,β(z) tends to 0 in the sector {z ∈
C : ω ≤ arg(z) ≤ 2π−ω} as |z| → ∞. Therefore, by the Cauchy’s theorem,
we can find that∫

Γr,ω

Eα(λt
α)

µ− λ
dλ = 0, µ ∈ Γr′,ω′ .

By the similar argument, we can also obtain that∫
Γr′,ω′

Eα(µs
α)

µ− λ
dµ = 2πiEα(λs

α), λ ∈ Γr,ω.

Then (3.9) is now reduced to

Sα(t)Sα(s) =
1

2πi

∫
Γr,ω

Eα(λt
α)Eα(λs

α)R(λ;A)dλ. (3.10)

Hence Sα(t)Sα(s) = Sα(s)Sα(t) for s, t > 0.

�

3.2. Inhomogeneous Problem. The second term of the right hand side of (3.2)
motivates in defining another solution operator, besides the solution operator (3.3),
for the inhomogeneous case of the problem (1.7). Thus our concern now is to
consider the operator

1

2πi

∫
Γr,ω

eλtR(λα;A)dλ.

Note that, for each λ ∈ Γr,ω, we have ∥eλtR(λα;A)∥ ≤ M |λ|−αγet|λ| cos arg(λ). Then,
for all t > 0, we get∥∥∥∥∥

∫
Γr,ω

eλtR(λ;A)dλ

∥∥∥∥∥ ≤ 2M

∫ ∞

r

ρ−αγetρ cosωdρ+Mr−αγ+1

∫ ω

−ω

etr cosφdφ.

Thus we can also define

Pα(t) =
1

2πi

∫
Γr,ω

eλtR(λα;A)dλ, t > 0. (3.11)

By Cauchy’s Theorem again, the integral form of (3.11) does not depend on the
choice of r > 0 and ω ∈ (π/2, θ). The properties of the family {Pα(t)}t>0 are given
in the following theorem.

Theorem 3.2. Let A be an (almost) sectorial operator and Pα(t) be an operator
defined by (3.11). Then the following statements hold.

(i) Pα(t) ∈ B(H) and there exists L1 = L1(α, γ) > 0 such that

∥Pα(t)∥ ≤ L1t
αγ−1, t > 0,

(ii) Pα(t) ∈ B(H;D(A)) for all t > 0, and if x ∈ D(A) then APα(t)x =
Pα(t)Ax. Moreover, there exists L2 = L2(α, γ) > 0 such that

∥APα(t)∥ ≤ L2t
α(γ−1)−1, t > 0,

(iii) The function t 7→ Pα(t) belongs to C∞((0,∞);B(H)) and it holds that

P (n)
α (t) =

1

2πi

∫
Γr,ω

etλλnR(λα;A)dλ, n = 1, 2, . . .
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and there exist Kn = Kn(α, γ) > 0, n = 1, 2, . . . such that

∥P (n)
α (t)∥ ≤ Knt

αγ−n−1, t > 0.

Moreover, it has an analytic continuation Pα(z) to the sector Σθ−π/2 and,
for z ∈ Σθ−π/2, η ∈ (π/2, θ), it holds that

Pα(z) =
1

2πi

∫
Γr,η

eλzR(λα;A)dλ,

(iv) For x ∈ H,

Pα(s)Pα(t)x = Pα(t)Pα(s)x, s, t > 0.

Proof.

(i) We suppose again cosω = −a for some 0 < a < 1. Then, for t > 0,∥∥∥∥∫
Γr,ω

eλtR(λα;A)dλ

∥∥∥∥ =

∥∥∥∥∫
Γt−1,ω

eλtR(λα;A)dλ

∥∥∥∥
≤ 2M

∫ ∞

t−1

e−taρρ−αγdρ+Mr−αγ+1

∫ ω

−ω

etr cosφdφ

= 2Mtαγ−1aαγ−1

∫ ∞

a

e−uu−αγdu+Mtαγ−1

∫ ω

−ω

ecosφdφ.

Therefore we can conclude that Pα(t) ∈ B(H) and there exists L1 =
L1(α, γ) > 0 such that

∥Pα(t)∥ ≤ L1t
αγ−1, t > 0.

(ii) We have that, for each x ∈ H, eλtR(λα;A)x ∈ D(A) and λ 7→ eλtR(λα;A)x
is integrable along Γr,ω. Next, we consider the function λ 7→ eλtAR(λα;A)x,
x ∈ H. Since AR(λ;A) = λR(λ;A)− I and∫

Γr,ω

eλtdλ = 0,

we get∫
Γr,ω

eλtAR(λα;A)xdλ =

∫
Γr,ω

eλtλαR(λα;A)xdλ−
∫
Γr,ω

eλtxdλ

=

∫
Γr,ω

eλtλαR(λα;A)xdλ.

Then, for t > 0, we obtain∥∥∥∥∫
Γr,ω

eλtλαR(λα;A)dλ

∥∥∥∥ =

∥∥∥∥∫
Γt−1,ω

eλtλαR(λα;A)dλ

∥∥∥∥
≤ 2Mt−α(1−γ)−1a−α(1−γ)−1

∫ ∞

a

e−uuα(1−γ)du

+Mt−α(1−γ)−1

∫ ω

−ω

ecosφdφ.
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It means that λ 7→ eλtAR(λα;A)x is integrable along Γr,ω. Therefore, since
A is closed, we get that, for each x ∈ H,

Pα(t)x =
1

2πi

∫
Γr,ω

eλtR(λα;A)xdλ ∈ D(A),

APα(t)x =
1

2πi

∫
Γr,ω

eλtAR(λα;A)xdλ.

Moreover, there exists L2 = L2(α, γ) > 0 such that

∥APα(t)∥ ≤ L2t
−α(1−γ)−1, t > 0.

Therefore Pα(t) ∈ B(H;D(A)). Since AR(λ;A) = R(λ;A)A, we also get
that, for each x ∈ D(A), APα(t)x = Pα(t)Ax.

(iii) From the proof of theorem 3.1(iii), we have that, for h > 0 and t < t+ h <
2t, ∣∣∣∣e(t+h)λ − etλ

h

∣∣∣∣ ≤ f(t, λ) =

{
etReλ|λ|, Reλ ≤ 0,

e2tReλ|λ|, Reλ ≥ 0,

and, for h < 0 and t/2 < t+ h < t,∣∣∣∣e(t+h)λ − etλ

h

∣∣∣∣ ≤ g(t, λ) =

{
e

t
2Reλ|λ|, Reλ ≤ 0,

etReλ|λ|, Reλ ≥ 0.

Now, we consider

Pα(t+ h)− Pα(t)

h
=

1

2πi

∫
Γr,ω

e(t+h)λ − etλ

h
R(λα;A)dλ. (3.12)

Note that λ 7→ f(t, λ)|λ|−αγ and λ 7→ g(t, λ)|λ|−αγ are integrable along Γr,ω

for t > 0. Then, by taking a limit as h → 0 and applying the Dominated
Convergence Theorem to (3.12), we obtain

P ′
α(t) =

1

2πi

∫
Γr,ω

etλλR(λα;A)dλ, t > 0.

It means Pα(t) is differentiable at t ∈ (0,∞). Similarly, we can deduce that
P ′
α(t) is also differentiable at t ∈ (0,∞). By induction, we can obtain that

t 7→ Pα(t) belongs to C∞((0,∞);B(H)) and

P (n)
α (t) =

1

2πi

∫
Γr,ω

etλλnR(λα;A)dλ, t > 0.

Moreover, for t > 0,∥∥∥∥∥
∫
Γr,ω

eλtλnR(λα;A)dλ

∥∥∥∥∥ =

∥∥∥∥∥
∫
Γt−1,ω

eλtλnR(λα;A)dλ

∥∥∥∥∥
≤ 2M

∫ ∞

t−1

e−taρρ−αγ+ndρ+M

∫ ω

−ω

ecosφtαγ−n−1dφ

= 2Mtαγ−n−1aαγ−n−1

∫ ∞

a

e−uu−αγ+ndu+Mtαγ−n−1

∫ ω

−ω

ecosφdφ.

Hence there exist Kn = Kn(α, γ) > 0, n = 1, 2, . . . such that

∥P (n)
α (t)∥ ≤ Knt

αγ−n−1, t > 0.
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Furthermore, it has an analytic continuation Pα(z) to the sector Σθ−π/2,
that is, for z ∈ Σθ−π/2, η ∈ (π/2, θ), we can find that

Pα(z) =
1

2πi

∫
Γr,η

eλzR(λα;A)dλ

(see the proof of Theorem 3.1(iii)).
(iv) As in the proof of Theorem 3.1(iv), we select r′ > r1/α and π/2 < ω′ < θ

such that αω′ < ω. Then we have, for x ∈ H,

Pα(t)x =
1

2πi

∫
Γr′,ω′

etλR(λα;A)xdλ

=
1

2πi

∫
Γr′,ω′

etλ

(
1

2πi

∫
Γr,ω

(λα − µ)−1R(µ;A)dµ

)
xdλ

=
1

2πi

∫
Γr,ω

(
tα−1

2πi

∫
Γr′t,ω′

eρρα−α(ρα − µtα)−1dρ

)
R(µ;A)xdµ

=
1

2πi

∫
Γr,ω

tα−1Eα,α(µt
α)R(µ;A)xdµ.

(3.13)

By using the similar way as used in the proof of Theorem 3.1(iv), we can
find that

Pα(t)Pα(s) =
1

2πi

∫
Γr,ω

(ts)α−1Eα,α(λt
α)Eα,α(λs

α)R(λ;A)dλ (3.14)

and hence Pα(t)Pα(s) = Pα(s)Pα(t) for s, t > 0.

�

The following theorem states some identities concerning the operators Sα(t) and
Pα(t) including our new semigroup-like property.

Theorem 3.3. Let A be an (almost) sectorial operator, Sα(t) and Pα(t) be op-
erators defined by (3.3) and (3.11), respectively. Then the following statements
hold.

(i) For x ∈ H and t > 0,

Sα(t)x = J1−α
t Pα(t)x, DtSα(t)x = APα(t)x,

(ii) For x ∈ D(A) and s, t > 0,

Dα
t Sα(t)x = ASα(t)x,

Sα(t+ s)x = Sα(t)Sα(s)x−A

∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
Pα(τ)Pα(r)xdrdτ.

Proof.
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(i) By using (2.22), (3.8), and (3.13), we get, for x ∈ H,

Sα(t)x =
1

2πi

∫
Γr,ω

Eα(λt
α)R(λ;A)xdλ

=
1

2πi

∫
Γr,ω

J1−α
t

(
tα−1Eα,α(λt

α)
)
R(λ;A)xdλ

= J1−α
t

(
1

2πi

∫
Γr,ω

tα−1Eα,α(λt
α)R(λ;A)xdλ

)
= J1−α

t Pα(t)x, t > 0.

Next, by Theorem 3.1(iii), the identity AR(λ;A) = λR(λ;A) − I, and
the equation ∫

Γr,ω

eλtdλ = 0,

we find, for x ∈ H,

DtSα(t)x =
1

2πi

∫
Γr,ω

eλtλαR(λα;A)xdλ

=
1

2πi

∫
Γr,ω

eλtAR(λα;A)xdλ+
1

2πi

∫
Γr,ω

eλtxdλ

= APα(t)x, t > 0.

(ii) We prove the first identity of this part. Observe that, by Theorem 3.2(i),
for x ∈ H and s, t > 0,∫ t

0

(t− τ)−α

Γ(1− α)
∥Pα(τ)x∥dτ ≤ L1(α, γ)

∫ t

0

(t− τ)−α

Γ(1− α)
ταγ−1dτ∥x∥

= L1(α, γ)t
−α+αγ

∫ 1

0

(1− s)−α

Γ(1− α)
sαγ−1ds∥x∥

=
L1(α, γ)B(αγ, 1− α)

Γ(1− α)
t−α+αγ∥x∥

and, by Theorem 3.2(i) and 3.2(ii), for x ∈ D(A) and s, t > 0,∫ t

0

(t− τ)−α

Γ(1− α)
∥APα(τ)x∥dτ =

∫ t

0

(t− τ)−α

Γ(1− α)
∥Pα(τ)Ax∥dτ

≤ L1(α, γ)

∫ t

0

(t− τ)−α

Γ(1− α)
ταγ−1dτ∥Ax∥

= L1(α, γ)t
−α+αγ

∫ 1

0

(1− s)−α

Γ(1− α)
sαγ−1ds∥Ax∥

=
L1(α, γ)B(αγ, 1− α)

Γ(1− α)
t−α+αγ∥Ax∥,

where

B(a, b) =

∫ 1

0

sa−1(1− s)b−1ds, a, b > 0,

is the Beta Function. Then, by the closedness of A, for x ∈ D(A),

A

∫ t

0

(t− τ)−α

Γ(1− α)
Pα(τ)xdτ =

∫ t

0

(t− τ)−α

Γ(1− α)
APα(τ)xdτ.
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Thus, by the identities in part (i), for x ∈ D(A),

ASα(t)x = AJ1−α
t Pα(t)x

=

∫ t

0

(t− τ)−α

Γ(1− α)
APα(τ)xdτ

=

∫ t

0

(t− τ)−α

Γ(1− α)
DτSα(τ)xdτ

= Dα
t Sα(t)x, t > 0.

The first identity in this part is shown.
Now, we prove the second identity of this part, the semigroup-like prop-

erty. The first step, we show that the complex function F defined by

F (t) =

∫ s

0

(t+ s− r)−α

Γ(1− α)
DrEα(λr

α)dr

is defined in (0,∞) for any λ ∈ C with s > 0. Let πα/2 < ϕ < min{π, πα}.
Note that, by (2.19) and (2.20), for λ ∈ C with ϕ ≤ | arg(λ)| ≤ π,

|F (t)| ≤ |λ|
Γ(1− α)

∫ s

0

(t+ s− r)−αrα−1|Eα,α(λr
α)|dr

≤ |λ|D3

Γ(1− α)

∫ s

0

(t+ s− r)−αrα−1(1 + |λ|rα)−1dr

≤ |λ|D3

Γ(1− α)

∫ s

0

(s− r)−αrα−1dr

=
|λ|D3B(α, 1− α)

Γ(1− α)
, t > 0,

and, by (2.18) and (2.20), for λ ∈ C with | arg(λ)| ≤ ϕ,

|F (t)| ≤ |λ|D2B(α, 1− α)

Γ(1− α)

+
|λ|D1

Γ(1− α)

∫ s

0

(t+ s− r)−αrα−1(1 + |λ|rα)
1−α
α erRe(λ1/α)dr

≤ |λ|D2B(α, 1− α)

Γ(1− α)

+
|λ|(1 + |λ|sα) 1−α

α D1

Γ(1− α)

∫ s

0

(s− r)−αrα−1erRe(λ1/α)dr

=
|λ|D2B(α, 1− α)

Γ(1− α)
+

|λ|(1 + |λ|sα) 1−α
α D1D4

Γ(1− α)
, t > 0,

where

D4 =

∫ 1

0

(1− ρ)−αρα−1esρRe(λ1/α)dρ.

It means that F is defined in (0,∞) for any λ ∈ C.
The next step, we prove that Eα(λ(t+ s)α) solves the problem

Dα
t v(t) = λv(t)− F (t), t > 0,

v(0) = Eα(λs
α).

(3.15)
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Consider that

Dα
t Eα(λ(t+ s)α) =

∫ t

0

(t− τ)−α

Γ(1− α)
DτEα(λ(τ + s)α)dτ

=

∫ t+s

s

(t+ s− r)−α

Γ(1− α)
DrEα(λr

α)dr

=

∫ t+s

0

(t+ s− r)−α

Γ(1− α)
DrEα(λr

α)dr

−
∫ s

0

(t+ s− r)−α

Γ(1− α)
DrEα(λr

α)dr

= Dα
τ Eα(λτ

α)|τ=t+s − F (t), t > 0.

(3.16)

By (2.21), we see that Eα(λ(t + s)α) solves the problem (3.15) and, by
Proposition 2.1, it is represented uniquely by

Eα(λ(t+ s)α) = Eα(λt
α)Eα(λs

α)−
∫ t

0

τα−1Eα,α(λτ
α)F (t− τ)dτ.

Furthermore, by (2.20), we obtain

Eα(λ(t+ s)α) = Eα(λt
α)Eα(λs

α)−
∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)

· (τr)α−1λEα,α(λτ
α)Eα,α(λr

α)drdτ.

(3.17)

The last step, by using (3.17), we show the semigroup-like property. By
(3.14), the closedness of A, the identity AR(λ;A) = λR(λ;A)− I, and the
equation ∫

Γr,ω

Eα,α(λτ
α)Eα,α(λr

α)dλ = 0,

we have, for each x ∈ H,

1

2πi

∫
Γr,ω

(τr)α−1Eα,α(λτ
α)Eα,α(λr

α)λR(λ;A)xdλ

=
1

2πi

∫
Γr,ω

(τr)α−1Eα,α(λτ
α)Eα,α(λr

α)AR(λ;A)xdλ

= APα(τ)Pα(r)x, τ, r > 0.

(3.18)

Now, observe that, by Theorem 3.2(i), for x ∈ H and s, t > 0,∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
∥Pα(τ)Pα(r)x∥ drdτ

≤ L1(α, γ)
2

∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
ταγ−1rαγ−1drdτ∥x∥

≤ L1(α, γ)
2B(αγ, 1− α)B(αγ, 1− α+ αγ)

Γ(1− α)
(t+ s)−α+2αγ∥x∥



JFCA-2015/6(1) FRACTIONAL EVOLUTION EQUATIONS 149

and, by Theorem 3.2(i) and 3.2(ii), for x ∈ D(A) and s, t > 0,∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
∥APα(τ)Pα(r)x∥ drdτ

=

∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
∥Pα(τ)Pα(r)Ax∥ drdτ

≤ L1(α, γ)
2B(αγ, 1− α)B(αγ, 1− α+ αγ)

Γ(1− α)
(t+ s)−α+2αγ∥Ax∥.

Thus, by the closedness of A, for x ∈ D(A) and s, t > 0,

A

∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
Pα(τ)Pα(r)xdrdτ

=

∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
APα(τ)Pα(r)xdrdτ.

(3.19)

Finally, by (3.10), (3.17), (3.18), and (3.19), we obtain, for x ∈ D(A) and
s, t > 0,

Sα(t+ s)x = Sα(t)Sα(s)x− 1

2πi

∫
Γr,ω

R(λ;A)

∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)

· (τr)α−1λEα,α(λτ
α)Eα,α(λr

α)xdrdτdλ

= Sα(t)Sα(s)x−
∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
APα(τ)Pα(r)xdrdτ

= Sα(t)Sα(s)x−A

∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
Pα(τ)Pα(r)xdrdτ.

�

Next theorem shows us the behavior of the operator Sα(t) at t close to 0+.

Theorem 3.4. Let A be an (almost) sectorial operator and Sα(t) be an operator
defined by (3.3). Then the following statements hold.

(i) If x ∈ D(A) then limt→0+ Sα(t)x = x.
(ii) For every x ∈ D(A) and t > 0,∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ ∈ D(A),∫ t

0

(t− τ)α−1

Γ(α)
ASα(τ)xdτ = Sα(t)x− x,

(iii) If x ∈ D(A2) then

lim
t7→0+

Sα(t)x− x

tα
=

1

Γ(α+ 1)
Ax.

Proof.

(i) First, we assume x ∈ D(A). By using the identity

λR(λ;A)x = x+AR(λ;A)x = x+R(λ;A)Ax,
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we get, for t > 0,

Sα(t)x =
1

2πi

∫
Γr,ω

eλt

λ
λαR(λα;A)xdλ

=
1

2πi

∫
Γr,ω

eλt

λ
xdλ+

1

2πi

∫
Γr,ω

eλt

λ
R(λα;A)Axdλ.

Since eλt tends to 0 in the sector {z ∈ C : ω ≤ arg(z) ≤ 2π−ω} as |λ| → ∞,
we have that ∫

Γr,ω

eλt

λ
dλ = 2πi

by Cauchy’s theorem. Then we obtain

∥Sα(t)x− x∥ =

∥∥∥∥∥ 1

2πi

∫
Γr,ω

eλt

λ
R(λα;A)Axdλ

∥∥∥∥∥
=

∥∥∥∥∥ 1

2πi

∫
Γt−1,ω

eλt

λ
R(λα;A)Axdλ

∥∥∥∥∥
≤ M

2π
∥Ax∥tαγ

∫
Γ1,ω

|eµ||µ|−αγ−1|dµ|.

Hence we conclude ∥Sα(t)x− x∥ → 0 as t → 0+.

Remark 3.1. Now, we suppose x ∈ D(A). Then there exists a sequence
{xn} ⊂ D(A) such that xn → x in H. Consider that, for t > 0,

∥Sα(t)x− x∥ ≤ ∥Sα(t)(x− xn)∥+ ∥Sα(t)xn − xn∥+ ∥xn − x∥

≤ (C1t
−α(1−γ) + 1)∥xn − x∥+ ∥Sα(t)xn − xn∥.

Thus if A is sectorial or γ = 1, we obtain limt→0+ ∥Sα(t)x−x∥ = 0. But, if
A is almost sectorial or 0 < γ < 1, we can not conclude the similar result.

Next, let y = limt→0+ Sα(t)x. Since Sα(t)x ∈ D(A), then y ∈ D(A).
Observe that, since R(λ;A)x ∈ D(A), we can obtain

R(λ;A)y = lim
t→0+

R(λ;A)Sα(t)x = lim
t→0+

Sα(t)R(λ;A)x = R(λ;A)x.

Therefore x = y ∈ D(A).

Thus, we can conclude that for A which is sectorial, x ∈ D(A) is the
sufficient and necessary condition for limt→0+ Sα(t)x = x.
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(ii) We take λ ∈ ρ(A) and x ∈ D(A). Then, by part (i), (2.7), and the first
identity in Theorem 3.3(ii), we have

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ =

∫ t

0

(t− τ)α−1

Γ(α)
(λ−A)R(λ;A)Sα(τ)xdτ

= λ

∫ t

0

(t− τ)α−1

Γ(α)
R(λ;A)Sα(τ)xdτ −

∫ t

0

(t− τ)α−1

Γ(α)
R(λ;A)ASα(τ)xdτ

= λR(λ;A)

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ −R(λ;A)

∫ t

0

(t− τ)α−1

Γ(α)
Dα

τ Sα(τ)xdτ

= λR(λ;A)

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ −R(λ;A)Sα(t)x+ lim

ϵ→0+
Sα(ϵ)R(λ;A)x

= R(λ;A)

(
λ

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ − (Sα(t)x− x)

)
.

Since R(λ;A)y ∈ D(A) for each y ∈ H, then

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ ∈ D(A)

and, furthermore,

(λ−A)

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ

= λ

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ − (Sα(t)x− x) .

Therefore

A

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ = Sα(t)x− x.

Next, by Theorem 3.1(i) and 3.1(ii), for x ∈ D(A) and t > 0,

∫ t

0

(t− τ)α−1

Γ(α)
∥ASα(τ)x∥dτ =

∫ t

0

(t− τ)α−1

Γ(α)
∥Sα(τ)Ax∥dτ

≤ C1(α, γ)

∫ t

0

(t− τ)α−1

Γ(α)
τ−α(1−γ)dτ∥Ax∥

=
C1(α, γ)B(1− α(1− γ), α)

Γ(α)
tαγ∥Ax∥.

Thus, by the closedness of A, we obtain

∫ t

0

(t− τ)α−1

Γ(α)
ASα(τ)xdτ = Sα(t)x− x.
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(iii) Given ε > 0 and y ∈ D(A). Then, by part (i), there exists t0 > 0 such that,
for 0 < t < t0, it holds that ∥Sα(t)y − y∥ < ε. Thus we have∥∥∥∥Γ(α+ 1)

tα

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)ydτ − y

∥∥∥∥
=

∥∥∥∥Γ(α+ 1)

tα

∫ t

0

(t− τ)α−1

Γ(α)
(Sα(τ)y − y) dτ

∥∥∥∥
≤ Γ(α+ 1)

tα

∫ t

0

(t− τ)α−1

Γ(α)
∥Sα(τ)y − y∥ dτ

< ε
Γ(α+ 1)

tα

∫ t

0

(t− τ)α−1

Γ(α)
dτ = ε.

Therefore, by part (ii), we obtain, for x ∈ D(A2),

lim
t→0+

Sα(t)x− x

tα
= lim

t→0+

1

tα

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)Axdτ =

1

Γ(α+ 1)
Ax.

Remark 3.2. Based on Remark 3.1, if x ∈ D(A), Ax ∈ D(A), we have the
same conclusion when A is sectorial.

�
The following proposition provides the representation formula for the resolvent

operator R(λα;A) in term Sα(t).

Proposition 3.1. Let A : D(A) ⊂ H → H be an (almost) sectorial operator. For
every λ ∈ C with Re(λ) > 0 and x ∈ D(A),

λα−1R(λα;A)x =

∫ ∞

0

e−λtSα(t)xdt.

Proof. We suppose x ∈ D(A). By the Theorem 3.1(i), for every λ ∈ C with
Re(λ) > 0, we have t 7→ e−λtSα(t) is integrable over (0,∞). By Theorem 3.4(ii),
we have that∫ ∞

0

e−λt

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)Axdτdt =

∫ ∞

0

e−λt (Sα(t)x− x) dt.

Equivalently,
λ−αL(Sα(t))(λ)Ax = L(Sα(t))(λ)x− λ−1x.

It follows that
L(Sα(t))(λ)(λ

α −A)x = λα−1x.

Therefore we obtain

λα−1R(λα;A)x =

∫ ∞

0

e−λtSα(t)xdt, Re(λ) > 0.

�
We also have the representation of the resolvent operator R(λα;A) in term Pα(t)

as stated below.

Proposition 3.2. Let A : D(A) ⊂ H → H be an (almost) sectorial operator. For
every λ ∈ C with Re(λ) > 0 and x ∈ D(A),

R(λα;A)x =

∫ ∞

0

e−λtPα(t)xdt.
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Proof. Based on Proposition 3.1, for every λ ∈ C with Re(λ) > 0 and x ∈ D(A),

R(λα;A)x = λ1−α

∫ ∞

0

e−λtSα(t)xdt.

By the first identity in Theorem 3.3(i), we get∫ ∞

0

e−λtSα(t)xdt =

∫ ∞

0

e−λtJ1−α
t Pα(t)xdt = λα−1

∫ ∞

0

e−λtPα(t)xdt.

Therefore

R(λα;A)x =

∫ ∞

0

e−λtPα(t)xdt, Re(λ) > 0.

�

Then we obtain a unique solution to the problem (1.7).

Theorem 3.5. Let u ∈ C1((0,∞);H)∩L1((0,∞);H), u(t) ∈ D(A) for t ∈ [0,∞),
Au ∈ L1(0,∞);H), f ∈ L1((0,∞);D(A)), and Af ∈ L1((0,∞);H). If u is a
solution to the problem (1.7) then

u(t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f(s)ds, t > 0. (3.20)

Proof. We suppose u is a solution to the problem (1.7). Then, by the Laplace
tranform, we get (3.1). Since A is an (almost) sectorial operator, we have that, for
every λ ∈ C with Re(λ) > 0,

L(u)(λ) = λα−1R(λα;A)u0 +R(λα;A)L(f)(λ).

By Proposition 3.1 and 3.2, for every λ ∈ C with Re(λ) > 0,∫ ∞

0

e−λtu(t)dt =

∫ ∞

0

e−λtSα(t)u0dt+

∫ ∞

0

e−λtPα(t)dt

∫ ∞

0

e−λtf(t)dt

=

∫ ∞

0

e−λtSα(t)u0dt+

∫ ∞

0

e−λtPα(t) ∗ f(t)dt

=

∫ ∞

0

e−λt

{
Sα(t)u0 +

∫ t

0

Pα(t− s)f(s)ds

}
.

By the uniqueness of the Laplace transform, we obtain

u(t) = Sα(t)u0 +

∫ t

0

Pα(t− s)f(s)ds, t > 0.

�

Remark 3.3. In particular, for f = 0, the function

t 7→ u(t) = Sα(t)u0, t > 0,

is the unique solution to the homogeneous case of the problem (1.7).
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4. Fractional Powers of (Almost) Sectorial Operators

We consider the fractional power of the operator A

A−βx =
1

2πi

∫
Γr,ω

λ−βR(λ;A)xdλ, x ∈ H, β > 1− γ,

and

Aβx = A(Aβ−1x) =
1

2πi

∫
Γr,ω

λβ−1R(λ;A)Axdλ, x ∈ D(A), 0 < β < γ.

Both integrals above are independent of r > 0 and ω ∈ (π/2, θ). As for frac-
tional powers of operators notion in more details, one can refer to [11]. Here, we
state some results concerning some estimates involving Aβ and the operators fam-
ilies {Sα(t)}t>0, {Pα(t)}t>0 generated by the (almost) sectorial operator A. These
estimates are analogous to those as stated in Theorem 6.13 in [5] for analytic semi-
groups. We derive the estimates directly from the definition of Aβ . Then we obtain
our main results by employing these estimates.

Proposition 4.1. For each 0 < β < γ, there exist positive constants C ′
1 =

C ′
1(α, β, γ) and C ′

2 = C ′
2(α, β, γ) such that, for all x ∈ H,

∥AβSα(t)x∥ ≤ C ′
1t

−α(t−α(β−γ) + 1)∥x∥, t > 0, (4.1)

∥AβPα(t)x∥ ≤ C ′
2t

−α(β−γ)−1∥x∥, t > 0. (4.2)

Proof. We prove (4.1) first. Let π/2 < ω′ < θ such that ω′ < ω/α and r′ > r1/α.
Thus, for x ∈ H and t > 0, we have

AβSα(t)x =

(
1

2πi

)2 ∫
Γr,ω

λβ−1R(λ;A)dλ

∫
Γr′,ω′

eµtµα−1AR(µα;A)xdµ

=

(
1

2πi

)2 ∫
Γr,ω

λβ−1R(λ;A)dλ

∫
Γr′,ω′

eµtµ2α−1R(µα;A)xdµ

−
(

1

2πi

)2 ∫
Γr,ω

λβ−1R(λ;A)dλ

∫
Γr′,ω′

eµtµα−1xdµ

= (I − II)x

where

I =

(
1

2πi

)2 ∫
Γr,ω

∫
Γr′,ω′

λβ−1eµtµ2α−1R(λ;A)−R(µα;A)

µα − λ
dµdλ

=

(
1

2πi

)2 ∫
Γr,ω

λβ−1R(λ;A)dλ

∫
Γr′,ω′

eµtµ2α−1

µα − λ
dµ

−
(

1

2πi

)2 ∫
Γr′,ω′

eµtµ2α−1R(µα;A)dµ

∫
Γr,ω

λβ−1

µα − λ
dλ

= III − IV.

Note that

II =
1

2πi

∫
Γr,ω

λβ−1R(λ;A)dλ · t−α

Γ(1− α)
,
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III = t−α

(
1

2πi

)2 ∫
Γr,ω

λβ−1R(λ;A)dλ

∫
Γr′t,ω′

eρρα−(1−α)

ρα − λtα
dρ

=
t−α

2πi

∫
Γr,ω

λβ−1Eα,1−α(λt
α)R(λ;A)dλ

=
t−αβ−α

2πi

∫
Γrtα,ω

ηβ−1Eα,1−α(η)R(ηt−α;A)dη,

and

IV = t−αβ−α

(
1

2πi

)2 ∫
Γr′t,ω′

eρρ2α−1R(ραt−α;A)dρ

∫
Γrtα,ω

ηβ−1

ρα − η
dη.

Next, by (2.18) and (2.19), for η ∈ Γ1 = {η ∈ Γrtα,ω : αω′ < | arg(η)| < 2π − αω′},

|Eα,1−α(η)| ≤
D3

1 + |η|
,

and, for η ∈ Γ2 = {η ∈ Γrtα,ω : | arg(η)| ≤ αω′},

|Eα,1−α(η)| ≤ D1(1 + |η|)eRe(η1/α) +
D2

1 + |η|
.

Since the integrals involved do not depend on the choice of r > 0 and π/2 < ω < θ,
then, by taking r = t−α, we get∥∥∥∥∥

∫
Γrtα,ω

ηβ−1Eα,1−α(η)R(ηt−α;A)dη

∥∥∥∥∥ ≤ MD3t
αγ

∫
Γ1

|η|β−γ−1

1 + |η|
|dη|

+Mtαγ
∫
Γ2

(
D1(1 + |η|)eRe(η1/α) +

D2

1 + |η|

)
|dη| < ∞.

We also have∥∥∥∥∥
∫
Γr′t,ω′

eρρ2α−1R(ραt−α;A)dρ

∥∥∥∥∥ ≤ Mtαγ
∫
Γ1,ω′

eRe(ρ)|ρ|2α−αγ−1|dρ| < ∞,∣∣∣∣∣
∫
Γrtα,ω

ηβ−1

ρα − η
dη

∣∣∣∣∣ ≤
∫
Γ1,ω

|η|β−1

|ρα − η|
|dη| < ∞,

and, clearly, ∥∥∥∥∥
∫
Γr,ω

λβ−1R(λ;A)dλ

∥∥∥∥∥ < ∞.

Hence there exists C ′
1 = C ′

1(α, β, γ) > 0 such that

∥AβSα(t)x∥ ≤ C ′
1t

−α(t−α(β−γ) + 1)∥x∥, x ∈ H, t > 0.

Next, we prove (4.2). Since ∫
Γr′,ω′

eµtdµ = 0
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and AR(µ;A) = µR(µ;A)− I, we find

AβPα(t)x =

(
1

2πi

)2 ∫
Γr,ω

λβ−1R(λ;A)dλ

∫
Γr′,ω′

eµtAR(µα;A)xdµ

=

(
1

2πi

)2 ∫
Γr,ω

∫
Γr′,ω′

λβ−1eµtµαR(λ;A)−R(µα;A)

µα − λ
dµdλ

=

(
1

2πi

)2 ∫
Γr,ω

λβ−1R(λ;A)dλ

∫
Γr′,ω′

eµtµα

µα − λ
xdµ

−
(

1

2πi

)2 ∫
Γr′,ω′

eµtµαR(µα;A)dµ

∫
Γr,ω

λβ−1

µα − λ
xdλ

= (V − V I)x.

Note that

V = t−1

(
1

2πi

)2 ∫
Γr,ω

λβ−1R(λ;A)dλ

∫
Γr′t,ω′

eρρα

ρα − λtα
dρ

=
t−1

2πi

∫
Γr,ω

λβ−1Eα,0(λt
α)R(λ;A)dλ

=
t−αβ−1

2πi

∫
Γrtα,ω

ηβ−1Eα,0(η)R(ηt−α;A)dη

and

V I = t−αβ−1

(
1

2πi

)2 ∫
Γr′t,ω′

eρραR(ραt−α;A)dρ

∫
Γrtα,ω

ηβ−1

ρα − η
dη.

Observe that, by (2.18) and (2.19) again, for η ∈ Γ1 = {η ∈ Γrtα,ω : αω′ <
| arg(η)| < 2π − αω′},

|Eα,0(η)| ≤
D3

1 + |η|
,

and, for η ∈ Γ2 = {η ∈ Γrtα,ω : | arg(η)| ≤ αω′},

|Eα,0(η)| ≤ D1(1 + |η|)1/αeRe(η1/α) +
D2

1 + |η|
.

By taking r = t−α again, we have∥∥∥∥∥
∫
Γrtα,ω

ηβ−1Eα,1−α(η)R(ηt−α;A)dη

∥∥∥∥∥ ≤ MD3t
αγ

∫
Γ1

|η|β−γ−1

1 + |η|
|dη|

+Mtαγ
∫
Γ2

(
D1(1 + |η|)1/αeRe(η1/α) +

D2

1 + |η|

)
|dη| < ∞,

and ∥∥∥∥∥
∫
Γr′t,ω′

eρραR(ραt−α;A)dρ

∥∥∥∥∥ ≤ Mtαγ
∫
Γ1,ω′

eRe(ρ)|ρ|α−αγ |dρ| < ∞.

Then there exists C ′
2 = C ′

2(α, β, γ) > 0 such that

∥AβPα(t)x∥ ≤ C ′
2t

−α(β−γ)−1∥x∥, x ∈ H, t > 0.

�
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Next, we observe that −1 < −α(β − γ) − 1 < −α − α(β − γ) < 0. Now, let
ξζ = α(ζ − γ) + 1, for 0 < ζ < γ. Then we get 0 < ξβ − α− α(β − γ) = 1− α < 1.
Note also that −1 < ξβ − α < 1. It means that ξβ − α may be negative. However,
by assuming β > (1−1/α+γ)+, we find ξβ −α > 0, where x+ = max{0, x}, x ∈ R.
Thus we obtain

tξβ∥AβSα(t)x∥ ≤ C ′
1t

ξβ−α(t−α(β−γ) + 1)∥x∥, t > 0, (4.3)

tξβ∥AβPα(t)x∥ ≤ C ′
2∥x∥, t > 0. (4.4)

Consequently, we have the following.

Corollary 4.1. For each β > (1− 1/α+ γ)+ and x ∈ H,

tξβ∥AβSα(t)x∥ ≤ 2C ′
1∥x∥, 0 < t ≤ 1, (4.5)

tξβ∥AβPα(t)x∥ ≤ C ′
2∥x∥, t > 0, (4.6)

and

tξβ∥AβSα(t)x∥ → 0, as t → 0+. (4.7)

Remark 4.1. If β = 1−1/α+γ > 0, implying ξβ −α = 0, the estimates (4.5) and
(4.6) also hold for all x ∈ H. As for the limit (4.7), it remains valid for all x ∈ H
if A is sectorial (γ = 1). In the case of A which is almost sectorial (0 < γ < 1), it
is valid only for x ∈ D(A).

Now, observe that, for x ∈ D(Aβ) with 1 − γ < β < γ and 1/2 < γ ≤ 1, we
have ASα(t)x = A1−βSα(t)A

βx, APα(t)x = A1−βPα(t)A
βx, and APα(s)Pα(t)x =

Pα(s)A
1−βPα(t)A

βx, for s, t > 0. Then, by using the same method as used in the
proof of Theorem 3.3(ii), we obtain a theorem that is similar to Theorem 3.3(ii).

Theorem 4.1. Let 1 − γ < β < γ with 1/2 < γ ≤ 1. Then, for every x ∈ D(Aβ)
and s, t > 0,

Dα
t Sα(t)x = ASα(t)x,

Sα(t+ s)x = Sα(t)Sα(s)x−A

∫ t

0

∫ s

0

(t+ s− τ − r)−α

Γ(1− α)
Pα(τ)Pα(r)xdrdτ.

Next, we get the following proposition.

Proposition 4.2. Let 1 − γ < β < γ and 1/2 < γ ≤ 1. Then there exists
C ′

3 = C ′
3(α, β, γ) > 0 such that, for all x ∈ D(Aβ),

∥Sα(t)x− x∥ ≤ C ′
3t

−α(−β−γ+1)∥Aβx∥, t > 0. (4.8)

Proof. Let 1 − γ < β < γ, 1/2 < γ ≤ 1, and x ∈ D(Aβ). By using (4.1), the first
identity in Theorem 4.1, and following the way used in proving Theorem 3.4(ii), we
also have that

A

∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ = Sα(t)x− x. (4.9)

Now, observe that, by (2.2) and the first identity in Theorem 3.3(i),∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ = Jα

t J
1−α
t Pα(t)x =

∫ t

0

Pα(τ)xdτ. (4.10)
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Next, by (4.2), we find∫ t

0

∥APα(s)x∥ds =
∫ t

0

∥A1−βPα(s)A
βx∥ds

≤ C ′
2(α, 1− β, γ)

∫ t

0

s−α(1−β−γ)−1ds∥Aβx∥

= C ′
3t

−α(1−β−γ)∥Aβx∥

(4.11)

where C ′
3 = C ′

2(α, 1− β, γ). Then, by the closedness of A,

A

∫ t

0

Pα(τ)xdτ =

∫ t

0

APα(τ)xdτ. (4.12)

Thus, by (4.9), (4.10), (4.12), and (4.11),

∥Sα(t)x− x∥ ≤
∫ t

0

∥APα(s)x∥ds ≤ C ′
3t

−α(1−β−γ)∥Aβx∥, t > 0.

�

Furthermore, by using (4.8) and the same method as used in the proof of Theo-
rem 3.4(ii) and 3.4(iii), we have a theorem that is similar to Theorem 3.4.

Theorem 4.2. Let 1− γ < β < γ with 1/2 < γ ≤ 1. Then

(i) If x ∈ D(Aβ) then limt→0+ Sα(t)x = x,
(ii) For every x ∈ D(Aβ) and t > 0,∫ t

0

(t− τ)α−1

Γ(α)
Sα(τ)xdτ ∈ D(A),∫ t

0

(t− τ)α−1

Γ(α)
ASα(τ)xdτ = Sα(t)x− x,

(iii) If x ∈ D(A) and Ax ∈ D(Aβ) then

lim
t7→0+

Sα(t)x− x

tα
=

1

Γ(α+ 1)
Ax.
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