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ON THE PROPERTIES OF SOLUTION OPERATORS OF
FRACTIONAL EVOLUTION EQUATIONS

BAMBANG HENDRIYA GUSWANTO

ABSTRACT. In this paper, we study solution operators for a fractional evo-
lution equation involving an (almost) sectorial operator A. By employing
fractional powers of operators notion, for an initial data lying in a domain of
the fractional power of A, we obtain a solution for the Cauchy problem of the
fractional evolution equation. Moreover, we also find a new semigroup-like
property.

1. INTRODUCTION

Let H be a Banach space. We consider the fractional Cauchy problem
Diu = Au, t > 0,

w(0) = g4 (1.1)

where A : D(A) C H — H is a linear operator and Dy is the Caputo fractional
time derivative of order a with 0 < a < 1. There were some researches studying
this problem, for intances, see [1, 2, 6]. Bajlekova [1] introduced a solution operator
for (1.1) as follows. Let B(H) be the set of all bounded linear operators on H.

Definition 1.1. A family {Sa(t)}+>0 C B(H) is called a solution operator for (1.1)
if the following conditions are satisfied :
(1) Sa(t) is strongly continuous for t > 0 and S, (0) =1,
(il) So(t)D(A) C D(A) and ASq(t)x = Sa(t)Ax for all x € D(A), t >0,
(i) Sa(t)z is a solution of

t — g a—1
u(t) =x +/0 (trm))Au(s)ds

for allz € D(A), t > 0.

Chen et al. [2] also introduced what they called as fractional resolvent operator
functions defined by purely algebraic condition.
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Definition 1.2. Let a > 0. A function S, : Ry — B(H) is called an a-resovent
operator function if the following conditions are satisfied :

(i) Sa(+) is strongly continuous on Ry and S, (0) =1,
(i1) So(8)Sa(t) = Sa(t)Sa(s) for all s,t >0,
(iii) The functional equation

Su(s) /O (t}gz;lsa(T)dT— /0 S(S}(;);sa(f)drsa(t)

= ti(t_ﬂa_l T)dT — 57(8_7)(1_1 7)dT
- [ s [ Sa(r)ir

(1.2)

holds for all s,t > 0.

In [6], Peng et al. introduced what they named as strongly continuous fractional
semigroup of order a.

Definition 1.3. Let 0 < a < 1. A one-parameter family {Sq(t)}i>0 of bounded
linear operators of H is called strongly continuous fractional semigroup of order «
if it possesses the following two properties :

(i) For every x € H, the mapping t — S, (t)x is continuous over [0, 00),
(ii) So(0) = I and, for all s,t >0,

t+s t s
/ 7SQ(T) dr — / 7SQ(T) dr — / 7SQ(T) dr
0o (t+s—m7) 0 t+s—7') 0 (t+s—71)
_ Sa(72)
a/ / t+s—T1 —TQ)IJradﬁdT27

where the integrals are defined in the strong operator topology.

In [1, 2, 6], the authors showed that the operator that each of them introduced in
Definition 1.1, 1.2, and 1.3 is the solution operator for the problem (1.1) with each
certain conditions. All of them found that, for ug € D(A) and t > 0, u(t) = Sa(t)uo
is the solution to the problem (1.1).

Wang et al., in [10], studied the Cauchy problem for the linear evolution equation

Diu(t) + Au(t) = f(t), t >0,
u(0) = wo,
where D§ is the Caputo fractional time derivative of order a (0 < o < 1), f :

(0,00) - H, and A: D(A) C H — H is a linear operator satisfying the properties
that there are constants 0 <y < 1 and 0 < w < 7/2 such that

(1.4)

o(A) C X, (1.5)
and, for every w < p < 7, there exists a constant C,, > 0 such that
Cu
IR A < [ A€ C\S,, (16)

where o(A) is the spectrum set of A, R(\; A) = (A — A)~! is the resolvent operator
of A, and ¥, = {A € C: A # 0, |arg(\)| < w}. They defined a pair of operators

1
Sa (t) = 5 Ea,l(_Ata)R(A; A)d)H te E7\'/27w)
271 Ty

1
P,(t) = — Eqo(=MY)R(X; A)dA, te€ X /o .,
2mi Jp,
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where the integral contour I'y = {Re®} U {R,e~%} is oriented counterclockwise
with w < 0 < p < 7/2 —|arg(t)| and E, g(2) is the Mittag-Leffler function. They
showed that this pair of the operators is the solution operator for the problem (1.4)
and, for ug € D(A) and ¢t > 0, u(t) = Sa(t)uo is the solution to the homogeneous
case of the problem (1.4).

In this paper, we study the fractional Cauchy problem

Diu(t) = Au(t) + f(t), t >0,

1.7

u(0) = uyg, (1.7)
where Dy is the Caputo fractional time derivative of order o (0 < o < 1), f :
(0,00) = H, and A: D(A) C H — H is a linear operator satisfying the properties
that there are constants 6 € (7/2,7), M > 0, and 0 < v < 1 such that

p(A) D Xy, (1.8)
M
. < .
IR Al < 7550 X € Zo, (1.9)

where p(A) is the resolvent set of A. If v = 1, we call A as a sectorial operator,
otherwise, A is called as an almost sectorial operator. Here, we define a pair of
operators

1
Sa(t):—,/ AR A)dA, £ 0,
271 Trw
1
P _ At (xA
A1) = 5 /F RO A, >0

where r > 0, 7/2 < w < 6, and the integral contour
Iw={AeC:lag\)|=w, |\ >r}U{reC:larg(N)| <w,|A| =7}

is oriented counterclockwise. We also show that this pair of the operators is the
solution operator for the problem (1.7). By employing some estimates for A%S,(t)
and AP P,(t), where A® denotes the fractional power of A, we obtain that, not only
for ug € D(A) but also for ug € D(AP) with1—y < <~y (1/2<y<1)andt >0,
u(t) = Sa(t)up is the solution to the homogeneous case of the problem (1.7) and
moreover, differently from (1.2) and (1.3), we get a new semigroup-like property,
that is

Sao(t+s)ug = Sa(t)sa(S)UO—A/O /03 U +li(; i;)r)_a P, (1) Py (r)updrdr, s,t > 0.

This paper is composed of four sections. In section 2, we introduce briefly the
fractional integration and differentiation of Riemann-Liouville and Caputo opera-
tors. Some special function related to fractional differential equations and its prop-
erties are also introduced in this section. In section 3, we study analytic solution
operators of a fractional evolution equation both in homogeneous and inhomoge-
neous case. In the last section, the fractional power of an (almost) sectorial operator
is discussed and our main results are showed.
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2. FRACTIONAL TIME DERIVATIVE

Let 0 < o < 1,a>0and I = (a,T) for some T > 0. The Riemann-Liouville
fractional integral of order « is defined by

t a—1
(t—>s) 1
¢ = —_— L (I . 2.1
Tt = [ Sh—r@as, ferm. t>a (21)
We set J9 . f(t) = f(t). The fractional integral operator (2.1) obeys the semigroup
property
Je e, =J80 0<a, B<1. (2.2)
The Riemann-Liouville fractional derivative of order « is defined by
f(t—s)" 1 1,1
D2, f(t) = Dy / Ty s, £ e LMD, £ e f WMD), 1> 0, (23)

where * denotes the convolution of functions
t
(Fa)® = [ ft-ngrr. t>a

and WHL(I) is the set of all functions u € L(I) such that the distributional
derivative of u exists and belongs to L'(I). The operator DS, is a left inverse of
Jgt, that is

Dgydadf(t)=f(t), t>a,
but it is not a right inverse, that is

Jo D F(t) = f(t) — Mﬁ*“ (a), t>a
a,t~a,t F(Oz) a,t ) .
The Caputo fractional derivative of order « is defined by
t _
« (t — 5) ¢
D2 f(0) = Di [ F s () = 1(0)ds. > a (24)
if fe L), t=* f € WHi(D), or
t _
(t—s)""
DS f(t) = ——D;, ds, t , 2.
20 = [ S Def(9)s. > a (25)
if f € Wh'(I). The operator Dg, is also a left inverse of JZ,, that is
Dg Jaf @) = f(t), t>a, (2.6)
but it is not also a right inverse, that is
JaiDg J(t) = f(t) = f(a), t>a. (2.7)
The relation between the Riemann-Liouville and Caputo fractional derivative is
Do) =0 ) - LoV r), s a (2.8)
a,t a,t F(l _ Oé) )

For a =0, we set J3', = Ji*, Dy, = Dy, and Dg, = Dy".

a,t = a,t —
We also have the Laplace transform of the Riemann-Liouville and Caputo frac-
tional derivative for a = 0. Those are

L(DFf)A) = X L()(A) = (F/ ) f(0), (2.9)
L(DFf)(N) = A LF)(A) = AT1f(0), (2.10)
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where the Laplace tranform is defined by

L= | T e M@,

0

Next, we introduce the Mittag-Leffler function defined by
o0 ZTL

Eop(2) = - a,f>0, z€C. 2.11
8(2) Zr(an+6) B (2.11)

n=0

This function is entire and can be also represented in an integral form, that is, for
0 < a < 2 and an arbitrary complex number 3,

1 / S/ ¢(1=B)/a
r., (=2

Eop(2) =

= d I~ 2.12
o ¢, zeTl_, (2.12)

and

1 N 1 ¢Me (1= /e
E,p(z) = = (=B gzt / ¢ < ¢, zel} (2.13)
r.,

a 2o (-2 G
where € > 0, ma/2 < p < min{r, Ta},
Pew={AeCx larg(N)| = A > €} U A € C: Jarg(V)] < g | = e},

and I';, (T'},) is the area lying on the left (right) hand side of the contour I'c .

Now, we suppose r = ¢/ and w = p/a. Thus we have r > 0 and 7/2 < w < 7. By
the transformation o = ¢/, we obtain, for 0 < o < 2 and an arbitrary complex
number S,

1 o a—f3
Eup(z) = /F 7 _ds, ey, (2.14)

oY —z
w
and
1 eCo B

1 1/a
E. — — (1-B)/a,z il
8(2) ozz € + 2mi Jp,, 0% —z

do, zY*eT},. (2.15)

For 8 = 1, we set Ey 3(z) = Eo(2), and, for « = § = 1, we get that E, g(z) is
nothing but exponential function e®.

Now, we give the asymptotic formulas for the Mittag-Leffler function. For 0 <

a < 2, f is an arbitrary complex number, and g is an arbitrary number such that

T

2

then, for an arbitrary integer p > 1, the following expansions hold, those are

< p < min{rm, Ta},

1 - o e P z " 1
Bap@) = G0 = 2 pg ey FOUTT
n=1 :

|z| = oo, [arg(2)| < u,
and

p —n
Bople) = =3 frrmamy + O, [zl 0, < farg(a)] < 7. (217

n=1
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Next, we also provide the estimates of the behaviour of the Mittag-Leffler function
in different parts of the complex plane, those are, there are real constants Dy, Do,
and D3 such that

@ D
Bap()| < DL+ ()00 4 25, el 20, ang(2)] < (218)
and
Fap()] S 700 120, s arg(a)] < (219)
wp(2)] £ ——, |2/ 20, p<larg(2)| < 7. .
B 1+ 2] 12 g
We also have the Laplace transform of Mittag-Lefler function, that is
8-1 a £ F 1/a
£ Ba (M) €)= g Rel©) > A

Another Properties of Mittag-Leffler function which will be used frequently later
are

DiEo (M) = MO E, o (M), t >0, (2.20)
DEEo (M%) = AEL(M?), t > 0, (2.21)
Eo(\t%) = J " By o (M), t > 0. (2.22)

The following well known Proposition show us the application of Mittag-Leffler
function to fractional ordinary differential equations.

Proposition 2.1. Let A € C and f be given complex functions defined in (0,00). If
v : [0,00) = C is a continuous function solving the fractional ordinary differential
equation

Dfv(t) = dv(t) + f(t), t>0,
iu(t) () + f(t) (2.23)
v(0) = v,
then it is given uniquely by

v(t):Ea()\ta)vo—i—/O (t— ) Byt —8)) f(s)ds, ¢>0.  (2.24)

Proof. We use the Laplace tranform method to derive (2.24). Thus the laplace
transform of (2.23) is

EXL(v)(€) — € v = AL(v)(€) + L()(©).
Then
a—1 goz—a

£OIO) = g0+ e LUNE, Re(e) > N

By the invers of Laplace transform, it follows that

v(t) = Eq (M%) v + /0 (t —8)* By (At — 5)*) f(s)ds, t>0.

This representation of v is unique by the uniqueness property of the invers of the
Laplace tranform. O

For more details concerning the fractional integrals and derivatives and the
Mittag-Lefller function, we refer to Kilbas et al. [3] or Podlubny [8].
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3. SOLUTION OPERATORS FOR FRACTIONAL EVOLUTION EQUATIONS

In this section, we construct solution operators for the fractional Cauchy problem
(1.7) with A which is (almost) sectorial and derive their properties. Note that every
(almost) sectorial operator is closed since its resolvent set is not empty. For related
results in the case of A satisfying (1.5) and (1.6), one can refer to [10]. The authors
in [10] needed a third object, namely the semigroup associated with A, to derive the
properties of their solution operators. Here, we do not use it. In the case of @ =1
or the evolution equation involving the first order time derivative, Periago et al.
[7] studied what is called by the semigroup of growth order 1 — . Concerning this
kind of semigroup, Prato [9] is the one who introduced it for nonnegative integer
growth order. Then Okazawa [4] defined it for positive growth order.

If Au,u,f € L'((0,00); H), by (2.10), we have the Laplace transform of the
problem (1.7), that is

A g + A L(u)(N) = ALu)(N) + L(f)(N).
Then we get
(A = A)L(u)(N) = X Fug + L))V, (3.1)
and, by the invers of the Laplace transform, we may obtain

t
u(t) = %m/re/\t)\a_lR()\a;A)uodA—l—/o (%AWR(AG;A)@) F(t —7)dr,
(3.2)

where I is any vertical line Re(\) = ¢ such that c¢ is greater than all real part of all
singularities of the integrand of the integral (3.2). If both integrals of (3.2) exist, we
have a solution to the problem (1.7). These motivate in defining solution operators
for the problem (1.7).

3.1. Homogeneous Problem. The first term of the right hand side of (3.2) moti-
vates in defining a solution operator for the homogeneous case of the problem (1.7).
Now, we consider the operator

1

— MACTIR(AY; A)dA
211 Trw € ( ’ ) ’

where r > 0, 7/2 < w < 6, and
Iw={AeC:lag(\)| =w,|A| >r}U{r e C:|arg(\)| < w,|A| =7}
is oriented counterclockwise. Note that A + eMA*"1R(); A) is analytic on Y.
Furthermore, for each A € I, ,,, it holds that
”e/\t)\a—lR()\a; A)H < M|/\|a(1—'y)—1et|/\\ cos arg()\).

Therefore, for ¢t > 0, we have

S 2M /OO pa(l_'Y)_letPCOSUJdp_’_ M,rll(l—’y) /‘—‘-’ et’rcoscpdgo.

—w

/ MNTIR(N; A)dA
r

rw

Thus we can define
1
Sa () —/ HMNTIR(AY; A)dN,  t > 0. (3.3)
Fr,w

- 211

By the Cauchy’s theorem, the integral form (3.3) is independent of r > 0 and
w e (7/2,0).
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The properties of the family {S,(t)}+~o are given in the following theorem.

Theorem 3.1. Let A be an (almost) sectorial operator and So(t) be an operator
defined by (3.3). Then the following statements hold.

(i)

(i)

(iii)

Sa(t) € B(H) and there exists C1 = Ci(a,y) > 0 such that
1Sa(B)]| < Crt= =1 ¢ >0,
Sa(t) € B(H; D(A)) fort >0, and if x € D(A) then AS,(t)x = S, (t)Ax.
Moreover, there ezists Co = Ca(cr,7y) > 0 such that
|ASa(t)]] < Cot=(t=" +1), ¢ >0,
The function t — S, (t) belongs to C*((0,00); B(H)) and it holds that

1
S(t) = -— / eANHTIRONY A)dN, n=1,2,...
Trw

~ omi
and there exist M,, = M, (a,v) > 0,n=1,2,... such that
1S ()] < Mut=o(=D=n 1 ¢ >,

Moreover, it has an analytic continuation So(2) to the sector Xg_r /o and,
for z € Xg_r /2, n € (1/2,0), it holds that

1

= omi

NE)) /F M NTIR(AY; A)dA,

™n

Forx e H,
Sa(t)Sa(s)x = Sa(s)Sa(t)x, s,t>0.

We suppose cosw = —a for some 0 < a < 1. Then, for ¢ > 0,

/ MATIR(NY, A)d/\H = ‘
Trw

/ MATIR(AY; A)d\
I, 1

t

< 2M/ e—tappa(l—‘y)—ldp_i_M/ ecosgat—oz(l—'y)d<p
t—1 —w

_ o pft—all—m) g—a(l—y) /°° e—tig o= =1,

+Mt7a(17”)/ e“C¥dp.

—w

It means that S, (t) € B(H) and there exists C; = C;(a, ) > 0 such that
[Sa(®)]| < Ct=*=7 ¢ > 0.

By the definiton of resolvent operator, for each A € TI',,, R(A%A) :
D(R(A*;A)) ¢ H — D(A) is bounded and D(R(A%; A)) is dense in H.
This and the closedness of A imply R(A*; A)x € D(A) for each x € H.
Therefore eMA*"1R(AY; A)z € D(A). Moreover, \ — e A LR(A; A)x is
integrable along I', .
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Now, we consider the function A — eMA*"TAR(AY; A)x, © € H. Since
AR(M; A) = AR(M; A) — I, we have

/ MATTARNY; A)zd\ = / MAZTIR(AY; A)zd
Ty Trw

- / M d.
FT“U)

Then, for t > 0, we get

/ e’\t/\zalR()\o‘;A)d/\H = ‘
Lrw

/ MAZTIR(AY; A)dA
1

t

< oM@ g-a2) / o1y,

+ Mt—a(Q—’y) / eCos Lpd(p

—w

and
1 Atya—1 2
— AT AN = ——.
2mi Jr, . © T(1—a)
It means that A\ — eMA*"LAR(AY; A)z is integrable along T, for each
x € H. Therefore, since A is closed, we find that, for each z € H,

1
Sy (t)r = — MATIR(ANY; A)zd € D(A),
27TZ Trw
1
AS,(t)r = — MATLARNY; A)zd.
271 T

Moreover, there exists Co = Ca(a,y) > 0 such that
[ASa(t)]| < Cot™ (" + 1), t>0.

Thus we obtain S, (t) € B(H; D(A)). Since AR(\; A) = R(X; A)A, we also
have that, for each € D(A), AS,(t)x = S, (t)Ax.
(i) Now, observe that, for any A € C and ¢, h > 0 such that ¢ < ¢+ h < 2t and

Re(X) <0, we have
h
/ e ds
0
If Re(\) > 0, we obtain

|e(t+h))\ . et)\| < 62tRe()\) ‘/\|h

(RN gA| — A (A _ )] = fRe() < eV A,

Similarly, for any A € C and h < 0 such that 0 < ¢/2 < t+ h < t and
Re(A\) <0, we find

|e(t+h)>\ o et)\| < S%Re()\)‘)\||h|.
If Re(A) > 0, we get

|e(t+h))\ - et)\‘ < etRe(A)p\Hh‘.
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Thus, for h >0 and t < t+ h < 2t,

(t+R)X _ JtA tRe(N) |\ Re(\) <0
S < f(t,A) = €2R ,\| : oY) <0, (3.4)
h e?Re|)|] Re()) >0,
and, for h < O0and t/2 <t+h <t
(t+h)A _ tA FRe(M) )|, Re()\) <0
= Cl<glty) = 62R A Jb ety =0 (3.5)
h etfRe Al Re(N\) >0
Therefore
Sa (t + h) - Sa(t) _ 1 (A — ¢t a—1 o,
) - /F ST IROS A (3.6)

Next, note that A +— f(£, \)|A*0=071 and X — g(t, \)|A[*0 1)~ are
integrable along I',.,. Then, by taking a limit as h — 0 and applying the
Dominated Convergence Theorem to (3.6), we obtain

S (1) = QL/ PNROAY AN, ¢ 0,
e Trw

It means S, (t) is differentiable at ¢ € (0, 00). By using the similar procedure
as above, we can deduce that S/ (¢) is also differentiable at ¢ € (0,00). By
induction, we can obtain that t — S, (t) belongs to C*°((0,00); B(H)) and

1
SI(t) = -— / eMNFPTIRNY AN, t > 0.
Trw

2w

Moreover, for t > 0,

/ CAt)\OH_n_lR()\a;A)d)\H — ‘
Fr,w

/ e)\t)\a+n—1R<)\o<; A)d)\
I 1

t

<2M [ eterpr Tl 4 M/ ecos ep=all=7)-ng,

t—1

= 2Mt_a(1_7)_"a_a(l_7)_n/ e~ Uy (1= +n—14,

a

+ M¢—e=v)-n /w e Pdp.

—w

Hence there exist M,, = M, (a,y) >0, n = 1,2,... such that
1SS @) < Mut=eC=0=n >0,

Now, let 0 < § < 6 —7/2 and n = 6 — 6. We suppose z € X, _,/, and
A= |A\et" |\| > 7. Then 2\ = |z||\|e?@8(=)EM with 7/2 < arg(z) + 1 <
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3w/2 and —37/2 < arg(z) —n < —m/2. This means that Re(zA) < 0. Then

1Sa ()]l =

L / EMNTIR(AY; A)dA

211 T

n

1
/ EMNTIR(ANY; A)dA
T

2mi

|z|=1n

—a(l—

e A ™!
2T Iy

5N

Thus, for z € ¥, _; /3, the function

z2 > So(2) = i/ EANTIR(AY; A)d.
2mi Jr,,
is bounded. Furthermore, the function is analytic in the sector X, _;/o.
Also observe that the union of the sector ¥, _ /5 is ¥g_r /2. This completes
the proof.

(iv) First, note that, for each u € T, the function A — (u — A)~! is analytic
in ¥,\{A € C:0< A <r—w < arg(\) < w}. Therefore, for each
AeZ,\{AeC:0< | <r,—w<arg(A\) <w}, we can define a bounded
operator

A—A)'= !

=5 [ (A=) R(w; A)dp. (3.7)
i Jp

Next, we select ' > 7/ and 7/2 < W’ < 6 such that aw’ < w. Thus, by
(2.14) and (3.7), we get

1
Salt) = 5 /F AR A)dA

rw!

1 tA -1 1 / —1
- P XY — )" R(p; A)dp | dA
e <2m. FW( ) R(p; A)dp

(3.8)
1 1
- - p o=l a ta_ld - A)d
2 Jr, (27”. /meep (p™ — pt®) p> R(p; A)dp
1
= — Ea ta ;A d .
s el A
Now, we suppose 0 < r < 7’ and 7/2 < w’ < w. Consider that
1\2
500500 = (55 ) [ EaOWRO AN [ Els™ (s A)d
27TZ Thw F'r‘/,w/
1)’ A)— R(u; A
= () / / Ea()\ta)Ea(usa)R(/\’ ) = Rl )d/\du
27-(-7/ F’V‘W v ! ILL*A
I . (3.9)
o(ps
= (— Ea(M)R(\; A Zalpd )
<2m') /FM (MR A)dA v A an
E,(\tY)

1\? N
- (27”) | Palus®) R Ay | S

! w!
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By (2.19), the Mittag-Leffler function E, g(z) tends to 0 in the sector {z €
C:w <arg(z) < 2m—w} as |z| = oco. Therefore, by the Cauchy’s theorem,
we can find that

/ Md)\ =0, e Fr’,w“
T M~ A

By the similar argument, we can also obtain that

Eq(us® .
/ Ealis) b oriBL(\s®), A€ Tha,
r p—=A

! w!

Then (3.9) is now reduced to
1
Sa(t)Sa(s) = 2—7”/ Eo(At*)Eq(As®)R(A; A)dA. (3.10)
Frw

Hence S, (t)Sa(s) = Sa(s)Sa(t) for s,t > 0.
(]

3.2. Inhomogeneous Problem. The second term of the right hand side of (3.2)
motivates in defining another solution operator, besides the solution operator (3.3),
for the inhomogeneous case of the problem (1.7). Thus our concern now is to

consider the operator
1
— MR\ A)dA.
2mi Jr,
Note that, for each A € T',.,, we have [|eM R(AY; A)|| < M|A|~*VetM cosare(N)  Then,
for all t > 0, we get

w

oo
< 2M/ p*avetpcoswdp+ M,rfa’erl/ 6trcos<pd(p.
s

—w

/ eMR(X; A)d)
Trw

Thus we can also define
1

" 2mi

Pu(t) /F MR A)dN, t > 0. (3.11)

By Cauchy’s Theorem again, the integral form of (3.11) does not depend on the
choice of r > 0 and w € (7/2,6). The properties of the family {P,(¢)}+>0 are given
in the following theorem.

Theorem 3.2. Let A be an (almost) sectorial operator and P, (t) be an operator
defined by (3.11). Then the following statements hold.

(i) P.(t) € B(H) and there exists L1 = L1 (o, 7y) > 0 such that
[Pa()] < Lyt>™h, ¢ >0,

P,(t) € B(H;D(A)) for all t > 0, and if x € D(A) then AP,(t)x =
P, (t)Ax. Moreover, there exists Ly = La(a,y) > 0 such that

|AP, ()] < Lot®O~D=1 ¢ >0,

(iii) The function t — Py (t) belongs to C*°((0,00); B(H)) and it holds that

1
P{M(t) = 7/ ePATR(AY A)dA, n=1,2,...
Fr,w

(i)

T omi
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and there exist K, = K, (a,7) > 0,n=1,2,... such that
[PM (1) < Kpt®Y ™7 > 0.

Moreover, it has an analytic continuation P, (z) to the sector Xg—_r/2 and,
for z € Xg_r /2, n € (1/2,0), it holds that

Po(2) = /F M R(\Y; A)d),

- 21

P, (s)Py(t)x = Py(t)Po(s)z, s,t>0.

(i) We suppose again cosw = —a for some 0 < a < 1. Then, for ¢ > 0,

/F e“R(Aa;A)dAH = ’

W

/ eMR(NY; A)d)\H
thl,

w

< 2M/ eftappfa'ydp+MT7a'y+1/ 6trcostpds0
$—1

—w

oo w

:2Mt0‘7_1a‘”_1/ e_“u_o‘7du+Mto‘7_1/ e ¥dep.

a —Ww

Therefore we can conclude that P,(t) € B(H) and there exists Ly =
Li(a,7) > 0 such that

[Pa()ll < Lat®7™Y, > 0.

(i) We have that, for each z € H, eMR(AY; A)x € D(A) and A — e R(\Y; A)x
is integrable along T',.,. Next, we consider the function A — e} AR(\; A)z,
x € H. Since AR(\; A) = AR(NA) — I and

/ Md\ =0,
Ty

/ MARNY; A)zd) = / MAYR(NY; A)zd\ — / eMad\
Tro Ty Ty

we get

= / MAYR(NY; A)zd).
Fr,w

Then, for ¢t > 0, we obtain

/ AR, A)d)\H = ‘
Ty

/ AR, A)d)\H
thl,w
< 2Mt7a(17'y)71a7a(177)71 /OO efuua(lf'y)du

a
w

+ Mtfoz(lf'y)fl / ecos<pd<p.

—w
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It means that A — e AR(A\%; A)x is integrable along T, ,,. Therefore, since
A is closed, we get that, for each x € H,

1
Py (t)x = —/ MR\ A)zd) € D(A),
271 Tho

_ L At .
AP, (t)x = i Fwe AR(AY; A)xdA.

Moreover, there exists Ly = La(c,7y) > 0 such that
|AP,(t)]| < Lot™(=D71 ¢ > 0.

Therefore P,(t) € B(H; D( ). Since AR(MN A) = R(A\; A)A, we also get
that, for each x € D(A), AP, (t)x = P,(t)Ax.
From the proof of theorem 3. 1(111), we have that, for h >0and t <t+h <
2,
(t+h)X _ St tReA| \ Re) <0
e p N = e ReA=0
h e?eAIN] ReA > 0,

and, for h < 0 and /2 <t+ h <,

e E R St b
h | eBeAN], Rex > 0.
Now, we consider
Pa(t + h) - Pa(t) ]. / 6(t+h)/\ - et)\
= ————  R(\%; A)dA. 3.12
h 27'('2 T h ( ' ) ( )

Note that A — f(t, \)|A|~*Y and X — g(t, A)|A|~*" are integrable along T’ ,
for t > 0. Then, by taking a limit as A — 0 and applying the Dominated
Convergence Theorem to (3.12), we obtain

1
P (t) = — AR A)dN, t> 0.
20 =5 [ ARG A
It means P, (t) is differentiable at ¢ € (0, 00). Similarly, we can deduce that
P/ (t) is also differentiable at ¢t € (0, 00). By induction, we can obtain that
t — P, (t) belongs to C*°((0,00); B(H)) and
1

—/ ePATR(AY; A)dN,  t> 0.
27 Jr,

© w
< 2M/ e—tapp—oz"/-‘rndp + M/ ecoswta’y_n_ldgo
t—1 —w

P 0) =

Moreover, for ¢t > 0,

/ eMATR(AY; A)d\
Irw

/ eMATR(AY; A)d\
r, 1

t

00 w
— 2Mtowfn71aa'yfn71/ efuufa“/+ndu + Mta'yfnfl/ ecosapd(p'
a

—w

Hence there exist K,, = K,(«a,v) >0, n =1,2,... such that
[P (1)) € Kot ™71 £ > 0.
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Furthermore, it has an analytic continuation P,(z) to the sector ¥y_ /o,
that is, for z € ¥y_, /5, n € (7/2,0), we can find that

Po(2) = 1/F M R(\Y; A)d\

T 2mi

(see the proof of Theorem 3.1(iii)).
(iv) As in the proof of Theorem 3.1(iv), we select ' > r'/® and 7/2 < w’ < 0
such that aw’ < w. Then we have, for x € H,

1
P(t)z = -— AR(AY; A)zdA
(t)x ori o, e R(AY; A)x

1 N 1 /
27 T,/ 21 T
1 tozfl /
27 Trw 21 T

1
21 T

(A" = )" R(p; A)du> zd)

(3.13)

P p T (p* — ut“)ldp> R(p; A)adp

r't,w!

£ B (ut®) R(p; A)adp.

W

By using the similar way as used in the proof of Theorem 3.1(iv), we can
find that

Pa(t)Pa(s) = 2% / (t5)° " Ba o (M) Ea o (As®)R(\; A)dA (3.14)

W

and hence P, (t)P,(s) = Pa(s)P,(t) for s,t > 0.
O

The following theorem states some identities concerning the operators S, (¢) and
P, (t) including our new semigroup-like property.

Theorem 3.3. Let A be an (almost) sectorial operator, S, (t) and P,(t) be op-
erators defined by (3.3) and (3.11), respectively. Then the following statements
hold.

(i) Forx € H and t > 0,
So(t)r = J T *Pa(t)z, DySy(t)x = APy(t)x,
(ii) For x € D(A) and s,t > 0,
DSy (t)r = ASq(t)x,

Sa(t + )z = Sa(t)sa(s)x_A/Ot /OS(

t+s—7—1r)""
I'(l—a)

P, (T)Py(r)xdrdr.

Proof.
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(i) By using (2.22), (3.8), and (3.13), we get, for x € H,

1
= — E « (A
Sa(t)x o i W (AtY)R(A; A)zd
_ 1 l-a (ja—1 a .
=5 ) (17 Eq o (A®)) R(X; A)zdA

W

1
_ 7l
=i <2m' /F

t* By o MY R(X; A)di)

= J} Py (t)z, t>0.
Next, by Theorem 3.1(iii), the identity AR(A; A) = AR(\; A) — I, and
the equation
/ eMd\ =0,
r

W

we find, for =z € H,

1
DSy (t)r = — MAYR(NY; A)zd)
271 Trw
1 1
= eMARMNY; A)zd) + —/ eMrd\
211 T 271 Ty

= AP,(t)x, t>0.

(ii) We prove the first identity of this part. Observe that, by Theorem 3.2(i),
for x € H and s,t > 0,

ti(tiT)ia )z||dr o ti(tiT)iaTCw*l 7|z
| S m el < Lt [ s e

1 —
1—s)¢
=T t—a+o¢'y (7 a'y—ld
Tl A e e
_ Ll(a7 ’}/)B(OL’Y, 1- O[)
'l —a)
and, by Theorem 3.2(i) and 3.2(ii), for x € D(A) and s,¢ > 0,

ft-n Y N ek TS
/0 T(1l—a) ||APa(T)Z‘||dT—/O o) (| Po(7) Azt||d

R Bl

t _
(t=7)"% ar1
< Li(a, 77 dr||Ax

571 ds|| Az ||

:Ll(a7y)t_“+“7/0 (;(IS);;

_ Ll(a77)B(a73 1- Oz) tfaJraw”AzH
I'l-a) ’

where )
B(a,b) = / 5711 —s)ds, a,b>0,
0

is the Beta Function. Then, by the closedness of A, for x € D(A),

o) N
A/o mPa(T)xdT—/o Ti—a) AP, (7)xdr.
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Thus, by the identities in part (i), for z € D(A),
AS,(t)x = AT Py (t)x

= /t t-n= AP, (7)xdr
0

N(l—a)
= ti(t_T)_a T)xaTt
—/O Ty DeSa(r)ad

= DS, (t)x, t>0.

The first identity in this part is shown.
Now, we prove the second identity of this part, the semigroup-like prop-
erty. The first step, we show that the complex function F' defined by

F(t) = /OS WD,.EQ(/\TO‘MT

is defined in (0, 00) for any A € C with s > 0. Let ma/2 < ¢ < min{m, 7a}.
Note that, by (2.19) and (2.20), for A € C with ¢ < |arg(\)| < 7,

|)‘| /S —a,o—1 [
<7 —
|F(t)| < Ti—a) J, (t+s—7)" " Eqa(Ar®)|dr
‘)\|D3 /3 —a,,a—1 ay—1
S Ti-a O(t+s )T (14 [ Ar®) TN dr

< I‘(i\|DZ) /0 (s —r)"r*tdr

_ AD3B(a,1 - )

r'l—«) ’

and, by (2.18) and (2.20), for A € C with |arg(\)| < ¢,
[A|D2B(a, 1 — «)

t>0,

F <
FO < ST
AD s o o
+ F|(1|— 11) /0 (t+s— 1) P (14 [Ape) = e RO gy
[A\|D2B(a, 1 — )
- I'(l—a)
1-a s
|>‘|(1+ |)‘|Sa) - Dl/ (S—’I’)_a’f'a_leTRe(/\l/a)dT
F(l —Oé) 0
~ AIDeB(a,1—a)  |A[(1+ |A|s*) =" Dy Dy fe 0
B I'l-—a) I'l-a) ’ ’
where

1
Dy = / (1—p)plesrReO g,
0

It means that F' is defined in (0, 00) for any A\ € C.
The next step, we prove that FE,(A(t + s)©) solves the problem
Dfv(t) = (t) — F(t), t>0,

v(0) = Eq(As%). (3.15)
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Consider that

t
t—
DyEL(A(t+ 5) / (1“ D Eo(NT 4+ 8)Y)dr
0
t+s _ —«
:/ t+s ) D, E,(\r®)dr
s (t4 s —1)"@ 3.16
:/ +S Ets=r) " p B (r)dr (3.16)
0

t—l—s—r) @ Oy
—/O =D e

= DgEa(ATa”T:tJ,_S - F(t), t>0.

By (2.21), we see that E,(\(t + s)®) solves the problem (3.15) and, by
Proposition 2.1, it is represented uniquely by

EaM(t+ )%) = B (M) Ea(As) — /0 CalE  (Ow)F(t — )

Furthermore, by (2.20), we obtain

Ea(A(t +5)%) = Ea (M%) // HSIZT) : (3.17)

(Tr)*T 1)\Ea7a()\7' VEo,a(Ar®)drdr.

The last step, by using (3.17), we show the semigroup-like property. By
(3.14), the closedness of A, the identity AR(\; A) = AR(\; A) — I, and the
equation

/ E a(V7) Eay 0 (Ar®)dA = 0,

we have, for each z € H,

L[ ) By (M) B o ()AR(A: A)zd
271'2 Trw ? ’

1
— (Tr)aflEa@()\TO‘)Ea,a(/\ra)AR(/\; A)xd\
27'(’71 Trw

= AP, (7)Py(r)z, T,7>0.

(3.18)

Now, observe that, by Theorem 3.2(i), for x € H and s, ¢ > 0,

/ / t+l§(1 Pt Pu(r)al drds

t —«
< Li(a,7)? / t+s—7—1) Ta'y_lrm_ldrdTHxH
o Jo I'(1-a)

< Li(@)*Blay,1 ~a)Blay, 1 —a+ o)
I'(l—a)

(t+ )77 |
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and, by Theorem 3.2(i) and 3.2(ii), for x € D(A) and s,t > 0,
Est+s—T—1)
| [t 1anm pael drds

/ / ﬂ r)_a | P (7) Pa(r) Az drdr

Ly(a, 7)23(04% 1- a)B(a% 1—a+ay)
- I'l-a)

Thus, by the closedness of A, for x € D(A) and s,t > 0,

A// HS_T_T) " P () Pa(r)wdrdr

(t+ )77 Az].

1—a

/ / A T(1— ar)_a APy (1) Py (r)xdrdr.

Finally, by (3.10), (3.17), (3.18), and (3.19), we obtain, for x € D(A) and
s,t >0,

Sa(t+ s)x = Sa(t)Sa (s)m_i AA// t+s_7—_r) a

21 l—a

(3.19)

()T 1/\Ea a(ATY)Eqy a(/\r YxdrdrdA
Yo — / / (t+s—7-r)" AP, (7)P,(r)xdrdr

1—a

[e3

= Su( x—A// HSIT_T) Po(T) Po(r)zdrdr.
—OL

Next theorem shows us the behavior of the operator S, (t) at ¢ close to 0F.
Theorem 3.4. Let A be an (almost) sectorial operator and S, (t) be an operator
defined by (3.3). Then the following statements hold.

(i) If x € D(A) then lim;_,g+ So(t)x = x.
(ii) For every x € D(A) and t > 0,

ti(t_q—)a_l T)xdT
| S Sa(radr € D)

ti(t_T)a_l T)xdr = T—z
| S ASatryai = Su(a =

(iii) If z € D(A?) then
So(t)r —x 1

lim 22 - Az.
ot o Ta+1)

Proof.
(i) First, we assume x € D(A). By using the identity

ARN; A)r =+ AR\ A)x = o + R(\; A) Az,
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we get, for ¢ > 0,

1 e)\t
= — —)\¢ a'A
Sa(t)x 2 Je . A AYR(AY; A)xdA
1 e)\t

1 e)\t
= — S pd\+ — SR\ A)Azd).
2 Je . A xd 5 i/rw 5 R(\Y; A)Axd)

Since e* tends to 0 in the sector {z € C : w < arg(z) < 2m—w} as |A| — oo,

we have that
At
/ S ——
r A

W

by Cauchy’s theorem. Then we obtain

1 e)\t
150 (B — 2| = / T RO®: A) Azd)
I'rw

2mi A

1 e)\t
— —R(A\*A)A
2me /Ftl A (A% A) AzdA

M (0% —Qy—
oAl [ el

Fl,w

IN

Hence we conclude ||Sq(t)z — z|| — 0 as t — 0T,

Remark 3.1. Now, we suppose x € D(A). Then there exists a sequence
{zn} C D(A) such that x,, — x in H. Consider that, fort >0,

[Sa(t)z — 2| < ISa®)(x — )| + [[Sa®)zn — 20| + |20 — 2
< (Clt_a(l_v) + Dlzy — 2l + [[Sa(t)zn — 240

Thus if A is sectorial or v =1, we obtain lim;_,g+ || S (t)z—2| = 0. But, if
A is almost sectorial or 0 < v < 1, we can not conclude the similar result.

Nezt, let y = lim; o+ So(t)x. Since So(t)x € D(A), then y € D(A).
Observe that, since R(\; A)x € D(A), we can obtain

R\ Ay = tl_i)rélJr R(NA)Sy(H)x = lim S, (t)R(A; A)z = R(A; A)z.

t—0t

Therefore x =y € D(A).
Thus, we can conclude that for A which is sectorial, x € D(A) is the
sufficient and necessary condition for lim;_,o+ Sq(t)x = .
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(ii) We take A € p(A) and = € D(A). Then, by part (i), (2.7), and the first
identity in Theorem 3.3(ii), we have

ko I s ST N
/0 F(a) S, (r)zdr = /0 o) (A= A)R(\; A)Sy (1) zd
(=7t

_)\/ L= R(X\; A)S, (T )wdT—/O (t_F(TO)l;_R()\;A)ASa(T)xdT

(t _ 7_)0471 t (t o 7_)0471

= /\R()\;A)/O WSQ(T)IC{T — R()\;A)/O WD?SQ(T)ICZT

= AR(X\; A) /0 (t_F(Z;_SQ(T)xdT — RN\ A)S,(t)x + 61_i>r(1;1+ Sa(€)R(\; A)x

— R(\ A) <>\ /0 t “F(Ta);lsa(f)xdr (Su(t)z — x)) .

Since R(\; A)y € D(A) for each y € H, then

ti(tiT)ail T)xdT
/0 ) Sa(radr € D(4)

and, furthermore,

(- A)/O (t}(TO);_Sa(T)xdT

= 7(25_7-)&71 T)rdr — T—x
_A/O g e (P = (Sa(t)r — ).

Therefore

ti(t_ﬂail xdT = r—x
A/O o) Se(r)edr = Sa(t)e — .

Next, by Theorem 3.1(i) and 3.1(ii), for x € D(A) and ¢ > 0,

' 7(t _ T)a71 T)T||aT = t 7(t — T)ail T x||aTt
| tasaslar = [ s () el

t 1
( - 7)) (1—~)
< —alt=y
<Gilen) [ 15 7 dr| x|
o Cl(aa’)/)B(l a
B )

T

Thus, by the closedness of A, we obtain

ti(tiT)ail T)xdT = T—x
/0 Ty ASa()edr = Sa(t)z .
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(iii) Givene > 0 and y € D(A). Then, by part (i), there exists ¢y > 0 such that,
for 0 < t < tp, it holds that ||S,(t)y — y|| < €. Thus we have

[ ] sy

0
e 5
< Tt U sy ol dr

Cla+1) [*(t—7)""
<e /0 (o) dr = e.

(Sa(T)y —y)dr

tOl
r
(

tCE
Therefore, by part (ii), we obtain, for x € D(A?),

o (t)r — 1 [t (t—7)t 1
lim Salt)z = = lim — gSa(T)AxdT = — Az
t—0+ te t—0+ t9 Jy I'o) MNa+1)

Remark 3.2. Based on Remark 3.1, if ¢ € D(A), Az € D(A), we have the
same conclusion when A is sectorial.

O

The following proposition provides the representation formula for the resolvent
operator R(A%; A) in term S, (t).
Proposition 3.1. Let A: D(A) C H — H be an (almost) sectorial operator. For
every A € C with Re(\) > 0 and x € D(A),

AQ*R(AO‘;A)x:/ e M8, (t)adt.
0

Proof. We suppose © € D(A). By the Theorem 3.1(i), for every A € C with
Re(\) > 0, we have t — e *tS,,(¢) is integrable over (0,00). By Theorem 3.4(ii),
we have that

[e’e] t (t _ T)a_l o0

/ e_)‘t/ ——————8,(7)Axdrdt :/ e M (S, () — z) dt.

0 0 () 0

Equivalently,
ATL(S, ()N Az = L(Sa(t)(N)x — A2,
It follows that
L(Sa(®) N\ — Az = \> g,
Therefore we obtain
NTIR(AY A = / e NS, (t)xdt, Re(N) > 0.
0
U

We also have the representation of the resolvent operator R(A*; A) in term P, (t)
as stated below.

Proposition 3.2. Let A: D(A) C H — H be an (almost) sectorial operator. For
every A € C with Re(\) > 0 and € D(A),

R(/\Q;A):c:/ e M P, (t)adt.
0
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Proof. Based on Proposition 3.1, for every A € C with Re(A) > 0 and = € D(A),
R(\%; Az = A=« / e M8, (t)adt.
0
By the first identity in Theorem 3.3(i), we get

/ e_’\tSa(t)xdt:/ e‘AtJQ*aPa(t)mdt:Aa_l/ e M Py (t)zdt.
0 0 0

Therefore

R\ A)x :/ e MNPy (t)zdt, Re(\) > 0.
0

Then we obtain a unique solution to the problem (1.7).

Theorem 3.5. Let u € C((0,00); H)NLY((0,00); H), u(t) € D(A) fort € [0, 00),
Au € LY(0,00); H), f € L*((0,00); D(A)), and Af € L*((0,00); H). If u is a
solution to the problem (1.7) then

u(t) = Sa(t)ug + /0 P,(t—s)f(s)ds, t>0. (3.20)

Proof. We suppose u is a solution to the problem (1.7). Then, by the Laplace
tranform, we get (3.1). Since A is an (almost) sectorial operator, we have that, for
every A € C with Re(\) > 0,

L(u)(A) = AT R Ajug + RO A)L(F)(N).

By Proposition 3.1 and 3.2, for every A € C with Re(\) > 0,

/ e—”u(t)dt:/ e_’\tSa(t)uodt—i—/ e—“Pa(t)dt/ e M f(t)dt
0 0 0

0

= /00 e M, (Hupdt + /oo e MNPy (t) * f(t)dt

0 0

_ /OOO A {Sa(t)uo +/Ot Pa(t—s)f(s)ds}.

By the uniqueness of the Laplace transform, we obtain

u(t) = Sa(t)uo +/0 P,(t—s)f(s)ds, t>0.

Remark 3.3. In particular, for f =0, the function
t—=u(t) =S (t)ug, t>0,

is the unique solution to the homogeneous case of the problem (1.7).
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4. FRACTIONAL POWERS OF (ALMOST) SECTORIAL OPERATORS

We consider the fractional power of the operator A

APy = 5 Z/ AN PRN A)zd\, x € H, f>1—7,
e

and

APy = A(AP e / MIR(N; A)Azd), z € D(A), 0< B <.

" 2mi
Both integrals above are independent of r > 0 and w € (7/2,0). As for frac-
tional powers of operators notion in more details, one can refer to [11]. Here, we
state some results concerning some estimates involving A? and the operators fam-
ilies { S (t) }t>0, {Pa(t)}t>0 generated by the (almost) sectorial operator A. These
estimates are analogous to those as stated in Theorem 6.13 in [5] for analytic semi-
groups. We derive the estimates directly from the definition of A”. Then we obtain
our main results by employing these estimates.

Proposition 4.1. For each 0 < [ < =, there exist positive constants C] =
Ci(a, B,7) and C4 = Ch(«, B,7) such that, for all x € H,

147 Sa(t)z]) < Co(*E=D + D], ¢ >0, (4.1)
| AP Po(t)z]) < Cot=2@D Yz, t> 0. (4.2)

Proof. We prove (4.1) first. Let 7/2 < w’ < 6 such that o’ < w/a and ' > rt/e.
Thus, for x € H and t > 0, we have

1\2
APS,(t)x = <2> / MTIR(\; A)d) M P AR(p®; A)xdp
™ Trw T, o
1\2
= (m) /F AﬂflR(A;A)dA/ M 2o R(u®; A)adp
1 2 3 r,w
—<2m> /F AB—IR(A;A)dA/F M tadp
= -1z
where
= <21> / / )\ﬁ 1 ,ut 20— IR(A A) R( * A)d,ud)\
1 2 51 eutMZQ 1
=|-— AN TER(A; A)dA —d
(2 > Ty Rk 4) /T/w, e = A K
B—1
- (2) / e”tu“‘lR(u"‘;A)du/ Aa 7 A
m ! Do M7
=IIT-1V.
Note that
1 —Q
IT=— MZIR(X; A)dX L
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1 2 eppaf(lfa)
T =t — / AﬁflR(A;A)dA/ ——dp
2mi Lo r.,. PY— A
t*&
= 5= N By 1 0 R(N; A)dA
Trw
tfaﬁfa 51 W
= o )T Eo—a(n)R(nt™*; A)dn,
and
2 _
1 A1
IV =t of~« <2> / eppza‘lR(p"t‘“;A)dp/ ’Z, dn.
™ Frlt,w/ Ta o P =1

Next, by (2.18) and (2.19), for n € I'y = {n € ['jpo o : aw’ < arg(n)| < 27 — aw'},

D3
L+ [nl’

|Ea,1—a(77)| <

and, for n € Ty = {n € Ty, : |arg(n)| < aw'},

D,

1/
|Ea1-a(n)| < Di(1+ [pl)ete ™) + :
1+ |n|

Since the integrals involved do not depend on the choice of r > 0 and 7/2 < w < 6,
then, by taking r = t~%, we get

B—v-1
/ 17 Eaa—a(n)R(nt™%; A)dn SMDstCW/ lenl
Tppor r, 1+n|
+Mt°”/ <D1(1+|nl)ep‘e(””a)+ D )Idnl<00~
Ty 1+ [n]

We also have

and, clearly,

/ epp2a—1R(pat—a; A)dp
r

it w!

< Mtory/ eRc(p)|p|2a—a'y—1|dp| < oo,
r

1,w’

B-1 B—1
= g < o,
Tria o pm—n Tiw |p - 77‘

Hence there exists C] = Cj(a, 8,7) > 0 such that

< 0.

/ MZIR(X; A)d)
Fr,w

|AP S, ()] < Cit= (=P~ 4 1)||z||, € H, t > 0.

/ ettdy =0
r

! w!

Next, we prove (4.2). Since
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I, we find

2
/ MIR(X; A)d) / M AR(u; A)zdp
I !

W

) -
()
)
&)

/ MTIR(\; A)dA
Trw

e“tu

xdu
Lo o P = A

W

= (V= VI)a.

2
_ 1 _ e’ p®
V=tt— A8 1R)\-Ad)\/ —F g
<27Ti) /rw A 4) T, PN — A P

-1
211 Tro

t—aB—l 51 Cu
= . /F 0" Eao(n)R(nt™%; A)dn

21

Note that

NE, o( M) R(X; A)dA

and
1\? nﬁ_l
VI=tft () / eppo‘R(p"‘t‘o‘;A)dp/ p
2mi Ty o Cppa,, P =1

Observe that, by (2.18) and (2.19) again, for n € T'y = {n € Tray @ aw’ <
|arg(n)] < 2w — aw'},

dn.

Ds
|Ea0(n)| < :
1+ [n|
and, for n € Iy = {n € Lypa, : |arg(n)| < aw'},
@ D2
E < Dy(1 + |n|)/eeRem®) L .
|Ea,0(n)| < D1(1+ |n)) T 7]

By taking r =t~ again, we have

n|f=7~1
< MDyt™ / I |an)
r, 1+|n]

/F 0P Ea1—a(m)R(nt=*; A)dn

yw

) |dn| < oo,

o
+Mt"‘7/ (Dl 1+ |n)M/@eRem”™) 4
p, (P10 T+

and

/ e’ p* R(p“t™*; A)dp
T

rlt,w!

< Mto‘y/ eleP) | p| 2= |dp| < oo.
r

1w’

Then there exists C4 = C4(a, 8,7) > 0 such that
|AP P, (t)z|| < Cht=*B=IYz||, z € H, t > 0.
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Next, we observe that —1 < —a(8 —7) =1 < —a — a(8 —v) < 0. Now, let
ée=a((—7)+1,for0<( <~y Thenweget 0<ég—a—a(f—7)=1—-a<l.
Note also that —1 < £g — a < 1. It means that {g — o may be negative. However,
by assuming 8 > (1—1/a+7)", we find £ —a > 0, where 27 = max{0,z}, € R.
Thus we obtain

162 | AP S, ()| < Cotse =t =) L 1)||z]|, ¢ >0, (4.3)
18| AP P, (x| < Ch|lzl|, t>0. (4.4)
Consequently, we have the following.

Corollary 4.1. For each > (1 —1/a+~)" and x € H,

8| AP S, ()| < 2C||zl|, 0<t<1, (4.5)
19| AP Po(t)z| < Chlzf|, t>0, (4.6)

and
]| AP S, (x| — 0, ast — 0OF. (4.7

Remark 4.1. If =1—1/a+~ > 0, implying g —a = 0, the estimates (4.5) and
(4.6) also hold for oll x € H. As for the limit (4.7), it remains valid for all x € H
if A is sectorial (v = 1). In the case of A which is almost sectorial (0 <~y < 1), it
is valid only for x € D(A).

Now, observe that, for x € D(A°) with 1 —v < 3 < yand 1/2 < v < 1, we
have AS,(t)r = AYPS,(t) APz, AP,(t)x = A'YPP,(t) APz, and AP,(s)P,(t ):r =
P.(s)A'=PP,(t)APz, for s,t > 0. Then, by using the same method as used in the
proof of Theorem 3.3(ii), we obtain a theorem that is similar to Theorem 3.3(ii).

Theorem 4.1. Let 1 — v < 3 < v with 1/2 < v < 1. Then, for every x € D(A?)
and s,t >0,

DSy (t)xr = AS,(t)x,

Sa(t+ 8)x = S,(t x—A// t+S_T_T) P, (7)Py(r)xdrdr.

I'(l—a)

Next, we get the following proposition.

Proposition 4.2. Let 1 — v < f < v and 1/2 < v < 1. Then there ezists
Ch = C4(a, B,7) > 0 such that, for all z € D(AP),

[Sa(t)z — x| < Cht=F=1+D APz||, > 0. (4.8)

Proof. Let 1 —y < 3<~,1/2<v<1,and z € D(A%). By using (4.1), the first
identity in Theorem 4.1, and following the way used in proving Theorem 3.4(ii), we
also have that

bt — 7)ot B -
A /0 i Sa(radr = 5.0z — . (4.9)

Now, observe that, by (2.2) and the first identity in Theorem 3.3(i),

tw xdr = J¢ -« Tz = ¢ odr
/0 T(a) Sa(T)zdr = J2J{ % Pa(t) _/0 Py (7)zdr. (4.10)
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Next, by (4.2), we find

t t
/ | AP (s)z|lds = / | 418 Py (5) AP ds
0 0

t
< CYa,1— B,v) / =871, 48| (4.11)
0

— C/t*a(lfﬁfv)”ABx”

where C% = C% (o, 1 — 3,7). Then, by the closedness of A,

A/ P,( xdr—/ AP, (7)xdr. (4.12)
Thus, by (4.9), (4.10), (4.12), and (4.11),
Sa(t)z — all < / |APu(s)allds < Cht~ 0= 4%a]|, 1> 0,
0

]

Furthermore, by using (4.8) and the same method as used in the proof of Theo-
rem 3.4(ii) and 3.4(iii), we have a theorem that is similar to Theorem 3.4.
Theorem 4.2. Let 1 — vy < 8 <~ with 1/2 <~y < 1. Then

(i) If x € D(AP) then lim;_,o+ So(t)r =z,
(ii) For every x € D(AP) and t > 0,

ti(tiT)ail T)xdr
| S Su(radr € D)

feone T)adr = r—x
/0 o) ASy(T)xdr = Sa(t) ,

(iii) If z € D(A) and Ax € D(AP) then

Sy (t)x — 1

lim (t)z -z = Ax.

t—0+ te INa+1)
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