Journal of Fractional Calculus and Applications,

Vol. 6(1) Jan. 2015, pp. 110-119.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

SOME INEQUALITIES OF HADAMARD TYPE FOR MAPPINGS WHOSE SECOND DERIVATIVES ARE H-CONVEX VIA FRACTIONAL INTEGRALS

M. MATŁOKA

ABSTRACT. In this paper, we establish some Hadamard type inequalities involving Riemann-Liouville fractional integrals for mappings whose second derivatives are h-convex.

1. Introduction

If $f: I \to R$ is a convex function on the interval I, then for any $a, b \in I$ with a < b we have the following inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a)+f(b)}{2} \tag{1}$$

This remarkable results is well known in the literature as the Hermite-Hadamard inequality.

In 1978, Breckner in [1] introduced an s-convex function as a generalization of a convex function. Such a function is defined in the following way: a function $f:[0,\infty)\to R$ is said to be s-convex in the second sense if

$$f(tx + (1-t)y) < t^{s} f(x) + (1-t)^{s} f(y)$$
(2)

hold for all $x, y \in [0, \infty]$, $t \in [0, 1]$ and for fixed $s \in [0, 1]$.

Dragomir and Fitzpatrick [3] proved the following variant of Hermite-Hadamard inequality for s-convex functions:

$$2^{s-1}f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le \frac{f(a) + f(b)}{s+1}$$
 (3)

In 2007, Varošanec in [9] introduced a large class of non-negative functions, the so-called h-convex functions. This class contains several well-known classes of functions such as non-negative convex functions. This class is defined in the

²⁰¹⁰ Mathematics Subject Classification. 26A15, 26A51, 26D15.

Key words and phrases. Riemann-Liouville integrals, Hadamard inequality, convex function, s-convex function, h-convex function.

Submitted Jun 2, 2014.

following way: a non-negative function $f: I \longrightarrow R, \emptyset \neq I \subset R$ is an interval, is called h-convex if

$$f(tx + (1-t)y) \le h(t)f(x) + h(1-t)f(y) \tag{4}$$

holds for all $x, y \in I$, $t \in (0, 1)$, where $h: J \longrightarrow R$ is non-negative function, $h \not\equiv 0$ and J is an interval, $(0, 1) \subseteq J$.

In 2008, Sarikaya, Saglam and Yildirim [7] proved that for h-convex function the following variant of the Hermite-Hadamard inequality is fulfilled:

$$\frac{1}{2h\left(\frac{1}{2}\right)}f(\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)d(x) \le \left[f(a) + f(b)\right] \cdot \int_0^1 h(t)dt \tag{5}$$

For recent results, refinement, generalizations and new Hermite-Hadamard type inequalities see [2, 4, 5, 6].

In 2013, Sarikaya, Set, Yaldiz and Basak [8] establish the following Hermite-Hadamard inequalities for Riemann-Liouville fractional integral

$$f\left(\frac{a+b}{2}\right) \le \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} [J_{a+}^{\alpha}f(b) + J_{b-}^{\alpha}f(a)] \le \frac{f(a)+f(b)}{2},\tag{6}$$

where f is convex function and the symbols $J_{a^+}^{\alpha}f$ and $J_{b^-}^{\alpha}f$ denote the left-sided and right-sided Riemann-Liouville fractional integral of the order $a \geq 0$ that are defined by

$$J_{a+}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x - t)^{\alpha - 1} f(t) dt \qquad (a < x), \tag{7}$$

$$J_{b^{-}}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t - x)^{\alpha - 1} f(t) dt \qquad (x < b), \tag{8}$$

respectively. Here $\Gamma(\cdot)$ is the gamma function.

The aim of this paper is to establish Hermite-Hadamard inequalities for Riemann-Liouville fractional integral for mappings whose second derivatives are h-convex.

2. Main Results

To prove our main results, we consider the following lemma.

Lemma 1 Let $f: I \longrightarrow R$ be a differentiable mapping in the interior I° where $a, b \in I$ with a < b. If $f^{''} \in L[a, b]$ (the space of integrable functions), then the following equality holds:

$$(\alpha + 1)\Gamma(\alpha + 1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha + 1) f\left(\frac{a+b}{2}\right)$$

$$= \left(\frac{b-a}{2} \right)^{\alpha+2} \left[\int_{0}^{1} t^{\alpha+1} f'' \left(t \frac{a+b}{2} + (1-t)a \right) dt + \int_{0}^{1} (1-t)^{\alpha+1} f'' \left(tb + (1-t) \frac{a+b}{2} \right) dt \right]$$
(9)

112 M. MATŁOKA JFCA-2015/6(1)

Proof. By integration by parts and by the change of the variables, we have

$$\int_{0}^{1} t^{\alpha+1} f'' \left(t \frac{a+b}{2} + (1-t)a \right) dt = \frac{2}{b-a} f' \left(\frac{a+b}{2} \right)$$

$$- \frac{2(\alpha+1)}{b-a} \int_{0}^{1} t^{\alpha} f' \left(t \frac{a+b}{2} + (1-t)a \right) dt = \frac{2}{b-a} f' \left(\frac{a+b}{2} \right)$$

$$- \frac{4(\alpha+1)}{(b-a)^{2}} f \left(\frac{a+b}{2} \right) + \frac{4\alpha(\alpha+1)}{(b-a)^{2}} \int_{0}^{1} t^{\alpha-1} f \left(t \frac{a+b}{2} + (1-t)a \right) dt$$

$$= \frac{2}{b-a} f' \left(\frac{a+b}{2} \right) - \frac{4(\alpha+1)}{(b-a)^{2}} f \left(\frac{a+b}{2} \right) + \frac{2^{\alpha+2}\alpha(\alpha+1)}{(b-a)^{\alpha+2}} \int_{a}^{\frac{a+b}{2}} (u-a)^{\alpha-1} f(u) du$$

$$= \frac{2}{b-a} f' \left(\frac{a+b}{2} \right) - \frac{4(\alpha+1)}{(b-a)^{2}} f \left(\frac{a+b}{2} \right) + \frac{2^{\alpha+2}\alpha(\alpha+1)\Gamma(\alpha+1)}{(b-a)^{\alpha+2}} J_{\left(\frac{a+b}{2} \right)}^{\alpha} - f(a)$$

$$(10)$$

Similarly, by integration by parts and by the change of the variables, we have

$$\int_{0}^{1} (1-t)^{\alpha+1} f'' \left(tb + (1-t) \frac{a+b}{2} \right) dt = \frac{-2}{b-a} f' \left(\frac{a+b}{2} \right)$$

$$+ \frac{2(\alpha+1)}{b-a} \int_{0}^{1} (1-t)^{\alpha} f' \left(tb + (1-t) \frac{a+b}{2} \right) dt = \frac{-2}{b-a} f' \left(\frac{a+b}{2} \right)$$

$$- \frac{4(\alpha+1)}{(b-a)^{2}} f \left(\frac{a+b}{2} \right) + \frac{4\alpha(\alpha+1)}{(b-a)^{2}} \int_{0}^{1} (1-t)^{\alpha-1} f \left(tb + (1-t) \frac{a+b}{2} \right) dt$$

$$= \frac{-2}{b-a} f' \left(\frac{a+b}{2} \right) - \frac{4(\alpha+1)}{(b-a)^{2}} f \left(\frac{a+b}{2} \right) + \frac{2^{\alpha+2}\alpha(\alpha+1)}{(b-a)^{\alpha+2}} \int_{\frac{a+b}{2}}^{b} (b-u)^{\alpha-1} f(u) du$$

$$= \frac{-2}{b-a} f' \left(\frac{a+b}{2} \right) - \frac{4(\alpha+1)}{(b-a)^{2}} f \left(\frac{a+b}{2} \right) + \frac{2^{\alpha+2}\alpha(\alpha+1)\Gamma(\alpha+1)}{(b-a)^{\alpha+2}} J_{\left(\frac{a+b}{2} \right)}^{\alpha} + f(b)$$

$$(11)$$

From (10) and (11), we get (9). This completes the proof.

Theorem 1. Let $f: I \subset [0, \infty) \to R$ be a differentiable mapping on I° such that $f'' \in L[a,b]$, where $a,b \in I$, with a < b. If |f''| is h-convex on [a,b], then the following inequality holds:

$$\left| (a+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f\left(\frac{a+b}{2} \right) \right| \\
\leq \left(\frac{b-a}{2} \right)^{\alpha+2} \left[2 \left| f''\left(\frac{a+b}{2}\right) \right| \int_{0}^{1} t^{\alpha+1} h(t) dt + (|f''(a)| + |f''(b)|) \int_{0}^{1} (1-t)^{\alpha+1} h(t) dt \right] \\
+ |f''(b)| \int_{0}^{1} (1-t)^{\alpha+1} h(t) dt \right] (12)$$

Proof. From Lemma 1, using the h-convexity of |f''|, we have

$$\left| (a+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f \left(\frac{a+b}{2} \right) \right| \\
\leq \left(\frac{b-a}{2} \right)^{\alpha+2} \left[\int_{0}^{1} t^{\alpha+1} \left| f'' \left(t \frac{a+b}{2} + (1-t)a \right) \right| dt \\
+ \int_{0}^{1} (1-t)^{\alpha+1} \left| f'' \left(t b + (1-t) \frac{a+b}{2} \right) \right| dt \right] \\
\leq \left(\frac{b-a}{2} \right)^{\alpha+2} \left[\int_{0}^{1} t^{\alpha+1} \left(h(t) \left| f'' \left(\frac{a+b}{2} \right) \right| + h(1-t) |f''(a)| \right) dt \\
+ \int_{0}^{1} (1-t)^{\alpha+1} \left(h(t) |f''(b)| + h(1-t) \left| f'' \left(\frac{a+b}{2} \right) \right| dt \right] \\
= \left(\frac{b-a}{2} \right)^{\alpha+2} \left[2 \left| f'' \left(\frac{a+b}{2} \right) \right| \int_{0}^{1} t^{\alpha+1} h(t) dt + \\
(|f''(a)| + |f''(b)|) \int_{0}^{1} (1-t)^{\alpha-1} h(t) d(t) \right] \quad (13)$$

this proves inequality (12) and thus the proof is completed.

Corrolary 1. If in Theorem 1 we take h(t) = t then the inequality (12) reduces to the following inequality for the convex function:

$$\left| (a+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f\left(\frac{a+b}{2} \right) \right|$$

$$\leq \left(\frac{b-a}{2} \right)^{\alpha+2} \left[\left| f''\left(\frac{a+b}{2}\right) \right| \frac{2}{\alpha+3} + (\left| f''(a) \right| + \left| f''(b) \right|) \frac{2-\alpha}{2\alpha} \right]. \quad (14)$$

Corrolary 2. If in Theorem 1 we take $h(t) = t^s$ then the inequality (12) reduces to the following inequality for the s-convex function:

$$\left| (a+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \left(\frac{b-a}{2} \right)^{\alpha+2} \left[\left| f''\left(\frac{a+b}{2}\right) \right| \frac{2}{\alpha+s+2} + (\left| f''(a) \right| + \left| f''(b) \right|) \frac{\Gamma(s+1)\Gamma(\alpha)}{\Gamma(\alpha+s+1)} \right].$$

$$(15)$$

Theorem 2. Let $f: I \subset [0, \infty) \longrightarrow R$ be a differentiable mapping on I° such that $f^{''} \in L[a,b]$, where $a,b \in I$ with a < b. If $|f^{''}|^q$ is h-convex on [a,b] and q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ then the following inequality holds:

$$\left| (a+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f\left(\frac{a+b}{2}\right) \right| \\
\leq \left(\frac{b-a}{2} \right)^{\alpha+2} \left(\frac{1}{\alpha p+p+1} \right)^{\frac{1}{p}} \left(\int_{0}^{1} h(t) dt \right)^{\frac{1}{q}} \\
\times \left[\left(\left| f''\left(\frac{a+b}{2}\right) \right|^{q} + \left| f''(a) \right|^{q} \right)^{\frac{1}{q}} + \left(\left| f''\left(\frac{a+b}{2}\right) \right|^{q} + \left| f''(b) \right|^{q} \right)^{\frac{1}{q}} \right] \tag{16}$$

114 M. MATŁOKA JFCA-2015/6(1)

Proof. From Lemma 1 and the Hőlder inequality, we have

$$\begin{split} \left| (a+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f\left(\frac{a+b}{2}\right) \right| \\ & \leq \left(\frac{b-a}{2} \right)^{\alpha+2} \left[\int_{0}^{1} t^{\alpha+1} \left| f'' \left(t \frac{a+b}{2} + (1-t)a \right) \right| dt \\ & + \int_{0}^{1} (1-t)^{\alpha+1} \left| f'' \left(tb + (1-t) \frac{a+b}{2} \right) \right| dt \right] \\ & \leq \left(\frac{b-a}{2} \right)^{\alpha+2} \left[\left(\int_{0}^{1} t^{\alpha p+p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left| f'' \left(t \frac{a+b}{2} + (1-t)a \right) \right|^{q} dt \right)^{\frac{1}{q}} \\ & + \left(\int_{0}^{1} (1-t)^{\alpha p+p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} \left| f'' \left(tb + (1-t) \frac{a+b}{2} \right) \right|^{q} dt \right)^{\frac{1}{q}} \right]. \end{split}$$

Because $|f''|^q$ is h-convex, we have

$$\begin{split} \int_{0}^{1} \left| f^{''} \left(t \frac{a+b}{2} + (1-t)a \right) \right|^{q} dt \\ & \leq \left| f^{''} \left(\frac{a+b}{2} \right) \right|^{q} \int_{0}^{1} h(t) dt + |f^{''}(a)|^{q} \int_{0}^{1} h(1-t) dt \\ & = \left[\left| f^{''} \left(\frac{a+b}{2} \right) \right|^{q} + |f^{''}(a)|^{q} \right] \int_{0}^{1} h(t) dt \end{split}$$

and

$$\begin{split} \int_0^1 \left| f^{''} \left(tb + (1-t) \frac{a+b}{2} \right) \right|^q dt \\ & \leq \left| f^{''}(b) \right|^q \int_0^1 h(t) dt + \left| f^{''} \left(\frac{a+b}{2} \right) \right|^q \int_0^1 h(1-t) dt \\ & = \left[\left| f^{''} \left(\frac{a+b}{2} \right) \right|^q + \left| f^{''}(b) \right|^q \right] \int_0^1 h(t) dt \end{split}$$

Using the fact

$$\int_0^1 t^{\alpha p+p} dt = \frac{1}{\alpha p+p+1}$$

and

$$\int_0^1 (1-t)^{\alpha p+p} dt = \frac{1}{\alpha p + p + 1}$$

and using the last two inequalities we obtain (16). This completes the proof of the theorem.

Corrolary 3. If in Theorem 2 we take h(t) = t then the inequality (16) reduces to

the following inequality for the convex function:

$$\left| (\alpha+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \left(\frac{b-a}{2} \right)^{\alpha+2} \left(\frac{1}{\alpha p+p+1} \right)^{\frac{1}{p}} \left(\frac{1}{2} \right)^{\frac{1}{q}}$$

$$\times \left[\left(\left| f''\left(\frac{a+b}{2}\right) \right|^{q} + \left| f''(a) \right|^{q} \right)^{\frac{1}{q}} + \left(\left| f''\left(\frac{a+b}{2}\right) \right|^{q} + \left| f''(b) \right|^{q} \right)^{\frac{1}{q}} \right]. \quad (17)$$

Corrolary 4. If in Theorem 2 we take $h(t) = t^s$ then the inequality (16) reduces to the following inequality for the s-convex function:

$$\left| (\alpha+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f\left(\frac{a+b}{2}\right) \right| \\
\leq \left(\frac{b-a}{2} \right)^{\alpha+2} \left(\frac{1}{\alpha p+p+1} \right)^{\frac{1}{p}} \left(\frac{1}{s+1} \right)^{\frac{1}{q}} \\
\times \left[\left(\left| f''\left(\frac{a+b}{2}\right) \right|^{q} + \left| f''(a) \right|^{q} \right)^{\frac{1}{q}} + \left(\left| f''\left(\frac{a+b}{2}\right) \right|^{q} + \left| f''(b) \right|^{q} \right)^{\frac{1}{q}} \right]. \quad (18)$$

Theorem 3. Let $f: I \in [0, \infty) \longrightarrow R$ be a differentiable mapping on I° such that $f'' \in L[a, b]$, where $a, b \in I$ with a < b. If $|f''|^q$, $q \ge 1$ is h-convex on [a, b], then the following inequality holds:

$$\begin{split} \left| (\alpha+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f\left(\frac{a+b}{2} \right) \right| \\ & \leq \left(\frac{b-a}{2} \right)^{\alpha+1} \left(\frac{1}{\alpha+2} \right)^{1-\frac{1}{q}} \left[\left(\left| f''\left(\frac{a+b}{2}\right) \right|^{q} \int_{0}^{1} t^{\alpha+1} h(t) dt \right. \\ & + \left| f''(a) \right|^{q} \int_{0}^{1} t^{\alpha+1} h(1-t) dt \right)^{\frac{1}{q}} \\ & + \left(\left| f''(b) \right|^{q} \int_{0}^{1} (1-t)^{\alpha+1} h(t) dt + \left| f''\left(\frac{a+b}{2}\right) \right|^{q} \int_{0}^{1} t^{\alpha+1} h(t) dt \right)^{\frac{1}{q}} \right] \end{split}$$
(19)

116 M. MATŁOKA JFCA-2015/6(1)

Proof. From Lemma 1 and the power mean inequality, we have that the following inequality holds:

$$\begin{split} \left| (\alpha+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f \left(\frac{a+b}{2} \right) \right| \\ & \leq \left(\frac{b-a}{2} \right)^{\alpha+1} \left[\int_{0}^{1} t^{\alpha+1} \left| f'' \left(t \frac{a+b}{2} + (1-t)a \right) \right| dt \\ & + \int_{0}^{1} (1-t)^{\alpha+1} \left| f'' \left(t b + (1-t) \frac{a+b}{2} \right) \right| dt \right] \\ & \leq \left(\frac{b-a}{2} \right)^{\alpha+1} \left[\left(\int_{0}^{1} t^{\alpha+1} dt \right)^{1-\frac{1}{q}} \left(\int_{0}^{1} t^{\alpha+1} \left| f'' \left(t \frac{a+b}{2} + (1-t)a \right) \right|^{q} dt \right)^{\frac{1}{q}} \\ & + \left(\int_{0}^{1} (1-t)^{\alpha+1} dt \right)^{1-\frac{1}{q}} \left(\int_{0}^{1} (1-t)^{\alpha+1} \left| f'' \left(t b + (1-t) \frac{a+b}{2} \right) \right|^{q} dt \right)^{\frac{1}{q}} \right] \end{split}$$

By the h-convexity of $|f''|^q$, we have

$$\begin{split} \int_{0}^{1} t^{\alpha+1} \left| f^{''} \left(t \frac{a+b}{2} + (1-t)a \right) \right|^{q} dt \\ & \leq \left| f^{''} \left(\frac{a+b}{2} \right) \right|^{q} \int_{0}^{1} t^{\alpha+1} h(t) dt + |f^{''}(a)|^{q} \int_{0}^{1} t^{\alpha+1} h(1-t) dt \end{split}$$

and

$$\int_{0}^{1} (1-t)^{\alpha+1} \left| f''\left(tb + (1-t)\frac{a+b}{2}\right) \right|^{q} dt$$

$$\leq |f''(b)|^{q} \int_{0}^{1} (1-t)^{\alpha+1} h(t) dt + \left| f''\left(\frac{a+b}{2}\right) \right|^{q} \int_{0}^{1} (1-t)^{\alpha+1} h(1-t) dt$$

$$= |f''(b)|^{q} \int_{0}^{1} (1-t)^{\alpha+1} h(t) dt + \left| f''\left(\frac{a+b}{2}\right) \right|^{q} \int_{0}^{1} t^{\alpha+1} h(t) dt$$

Using the fact that

$$\int_0^1 t^{\alpha+1} dt = \int_0^1 (1-t)^{\alpha+1} dt = \frac{1}{\alpha+2}$$

and the last two inequalities in we obtain (19). This completes the proof.

Corrolary 5. If in Theorem 3 we take h(t) = t then the inequality (19) reduces to the following inequality for the convex function:

$$\left| (\alpha+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \left(\frac{b-a}{2} \right)^{\alpha+1} \left(\frac{1}{\alpha+2} \right)^{1-\frac{1}{q}} \left[\left(\frac{1}{\alpha+3} \left| f''\left(\frac{a+b}{2}\right) \right|^{q} - \frac{1}{(\alpha+1)(\alpha+2)} |f''(a)|^{q} \right)^{\frac{1}{q}} \right]$$

$$+ \left(\frac{1}{\alpha+3} \left| f''\left(\frac{a+b}{2}\right) \right|^{q} - \frac{1}{(\alpha+1)(\alpha+2)} |f''(b)|^{q} \right)^{\frac{1}{q}} \right]. \tag{20}$$

Corrolary 6. If in Theorem 3 we take $h(t) = t^s$ then the inequality (19) reduces to the following inequality for the s-convex function:

$$\left| (\alpha+1)\Gamma(\alpha+1) \left[J_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) + J_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \right] - 2 \left(\frac{b-a}{2} \right)^{\alpha} (\alpha+1) f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \left(\frac{b-a}{2} \right)^{\alpha+1} \left(\frac{1}{\alpha+2} \right)^{1-\frac{1}{q}} \left[\left(\frac{1}{\alpha+s+2} \left| f''\left(\frac{a+b}{2}\right) \right|^{q} + \frac{\Gamma(\alpha+2)\Gamma(s+1)}{\Gamma(\alpha+s+3)} |f''(a)|^{q} \right)^{\frac{1}{q}} \right]$$

$$+ \left(\frac{1}{\alpha+s+2} \left| f''\left(\frac{a+b}{2}\right) \right|^{q} + \frac{\Gamma(\alpha+2)\Gamma(s+1)}{\Gamma(\alpha+s+3)} |f''(b)|^{q} \right)^{\frac{1}{q}} \right]. \quad (21)$$

References

- [1] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter Konvexer Functionen in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) Vol. 23, 13-20, 1978.
- [2] M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the Hermite -Hadamard - Fejér inequalities, Comput. Math. Appl. Vol. 58 1869-1877, 2009.
- [3] S. S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstration Math., Vol. 32 (4), 687-696, 1999.
- [4] M. Matłoka, On some Hadamard type inequalities for (h₁, h₂) preinvex functions on the co-ordinates, J. Inequl. Appl. doi: 10.1186/1029-242X-2013-227, 2013.
- [5] M. Matłoka, On some new inequalities for differentiable (h_1, h_2) preinvex functions on the co-ordinates, Mathematics and Statistics Vol. 2 (1), 6-14, 2014.
- [6] M. S. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math. Vol. 8, (30), 1-6, 2007.
- [7] M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard type inequalities for h-convex functions, Journal of Mathematical Inequalities Vol. 2, 335-341, 2008.
- [8] M. Z. Sarikaya, E. Set, H.Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model Vol. 57, 2403-2407, 2013.
- [9] S. Varošanec, On h convexity, J. Math. Anal. Appl. Vol. 326, 303-311, 2007.

M. Matłoka

Poznań University of Economics, Poznań, Poland

E-mail address: marian.matloka@ue.poznan.pl