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SOME INEQUALITIES OF HADAMARD TYPE FOR MAPPINGS
WHOSE SECOND DERIVATIVES ARE H-CONVEX VIA
FRACTIONAL INTEGRALS

M. MATLOKA

ABSTRACT. In this paper, we establish some Hadamard type inequalities in-
volving Riemann-Liouville fractional integrals for mappings whose second deriva-
tives are h-convex.

1. INTRODUCTION

If f: I — R is a convex function on the interval I, then for any a,b € I with
a < b we have the following inequality

f<a+b>§ ! /abfu)dxsf(“”f(b) 1)

2 b—a 2

This remarkable results is well known in the literature as the Hermite-Hadamard
inequality.

In 1978, Breckner in [I] introduced an s-convex function as a generalization of
a convex function. Such a function is defined in the following way: a function
f:]0,00) = R is said to be s-convex in the second sense if

[tz + (1 =t)y) <t*f(z) + (1 -1)°f(y) (2)

hold for all z,y € [0,00] , ¢ € [0,1] and for fixed s € [0, 1].
Dragomir and Fitzpatrick [3] proved the following variant of Hermite-Hadamard
inequality for s-convex functions:

a b a
2o (U50) < 52 [ fo < 020 ®)

In 2007, Varosanec in [9] introduced a large class of non-negative functions,
the so-called h-convex functions. This class contains several well-known classes
of functions such as non-negative convex functions. This class is defined in the
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following way: a non-negative function f : I — R,() # I C R is an interval, is
called h-convex if

[tz + (1 —t)y) <h(t)f(z) +h(1 - 1)f(y) (4)

holds for all z,y € I , ¢t € (0,1), where h : J — R is non-negative function, h # 0
and J is an interval, (0,1) C J.

In 2008, Sarikaya, Saglam and Yildirim [7] proved that for h-convex function the
following variant of the Hermite-Hadamard inequality is fulfilled:

1 a+b 1t !
< d(z) < b)] - h(t)dt 5
s (550) <5 [ @i < v+ o1 [noa @
For recent results, refinement, generalizations and new Hermite-Hadamard type
inequalities see [2] [ [5] [6].

In 2013, Sarikaya, Set, Yaldiz and Basak [8] establish the following Hermite-
Hadamard inequalities for Riemann-Liouville fractional integral

f (“ ;L b) < ;((baja;i [T F(b) + J2 f(a)] < M7 ©)

where f is convex function and the symbols J&, f and J{* f denote the left-sided
and right-sided Riemann-Liouville fractional integral of the order a > 0 that are
defined by

I 1) = e / Swo 0 fWde (a<a), (7)
b
IR f(a) = ﬁ / (-2 fdt (z <), (8)

respectively. Here T'(+) is the gamma function.
The aim of this paper is to establish Hermite-Hadamard inequalities for Riemann-
Liouville fractional integral for mappings whose second derivatives are h-convex.

2. MAIN RESULTS

To prove our main results, we consider the following lemma.
Lemma 1 Let f : I — R be a differentiable mapping in the interior I° where
a,b e I with a < b. If f* € L[a,b] (the space of integrable functions), then the
following equality holds:

(a+1DT(a+1) [J(aa;b)f(a) + J(”‘a;byf(b)} -2 (b ; a)a (a+1)f (a ;r b)

a+2
- (b;“> Ult@“f” (ta;rb +(1 —t)a) dt
0

+ /01(1 — )t (tb+ (1-1)% ; b) dt} 9)
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Proof. By integration by parts and by the change of the variables, we have

/1t“+1f” (ta;—b—&-(l—t)a)dt —f <a+b)
0

—M/Ot“f (ta+b+(1—t)a>dt: 2 f/<a;rb>

b—a b—a
_ ﬁtl()a_—;)lQ)f<a—2&—b) +4(o;(fjl—);)/0 . 1f( a+b a El_t)“> "
< () A () s ) [ e
=52 (50) e (3) TR o

(10)
Similarly, by integration by parts and by the change of the variables, we have

1 « " aer 2 ’ a+b

/0(1—t) Ty (tb+(1—t) 5 >dt b—af< 5 >
20a+1) [! o a+b =2 s (a+bd
+7/0(1—t)f <tb+(1—t) : )dt—b af< : )

b—a —

_‘é(aJr)lg <a+b> da O‘*; /01 — e 1f<tb+(1—t) ;rb>dt

-2 s (a+b\ 4 +1 +b 20 2a(a+1 o
— f <a2 >_(l()a 5 <a2 )—i— 7aaa+2)/a7+b(b—u) Lf(u)du

o () () e

(11)

From and , we get @ This completes the proof.
Theorem 1. Let f: I C [0,00) — R be a differentiable mapping on I° such that

f" e Lla,b], where a,b € I, with a < b. If |f| is h-convex on [a,b], then the
following inequality holds:

(a+1)(a+1) [J(aa;b)f(a) + J(“a;byf(b)} -2 <b_2a>a (a+1)f (a ;r b) ’

b—a at2 nwfa+b
(7)) k(%)

/ )t + (f (@)

0

Lo [ a —t>a+1h<t>dt] (12)
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Proof. From Lemma 1, using the h-convexity of ||, we have

(a+1)0(a+1) [J(O‘a;b)f(a) + J(O‘a;byf(b)} -2 (b_f)a (a+1)f (a —2|- b>’

< <l’2a>a+2 Uolt““ f (ta;rb Jr(lt)a)‘dt
+/01(1t)a+1 7 <tb+(1t)a;rb)‘dt}
<:(bga)a+2[élw*l(hu>f”(“jb)]+wwl—tnfkan)dt
-+A11—0M4(mwu%w«+M1—wp”(”;bﬂd@
) )
ﬂfwn+u%w047r%w*moaﬂ (13)

this proves inequality and thus the proof is completed.
Corrolary 1. If in Theorem 1 we take h(t) = ¢ then the inequality reduces to
the following inequality for the convex function:

1
/ t* T h(t)dt+

0

(a+1)D(a+1) [J(aa;h)_f(a) +J€‘a2+b)+f(b)} -2 (ba)a (a+1)f <a+b>’

2 2
b —Qa o2 " a —|— b 2 " " 2
< —_— b . (14
(55°) [ (55| s @i on?st]
Corrolary 2. If in Theorem 1 we take h(t) = t° then the inequality reduces
to the following inequality for the s-convex function:

(a+1T(a+1) [Jé’agb)f(a) +J€;;b)+f(b)} ) (b;a>a (a+1)f (a’;-b>’
. (b;)“” [f” (a—2|—b>

” 12 F(S + 1)F(Oé)
b)) == .
U @+ 1 O
(15)
Theorem 2. Let f: I C [0,00) — R be a differentiable mapping on I° such that
f" € Lla,b], where a,b € I with a < b. If | f”|9 is h-convex on [a, b] and ¢ > 1 with
+ = =1 then the following inequality holds:

2
a+s+2

1
q

(a+1)l(a+1) [J?a;h)_f(a) + J&"a;bﬁf(b)} 9 (bza)a (a+1)f (“ . b) ’
) ) (o)
k#(a;b)q+u%@w)q+(f”<“§b)q+v%mq)ﬂ (16)

1
P

d
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Proof. From Lemma 1 and the Hélder inequality, we have

(a+ D)T(a+1) [Jgagb)f(a) +J(O‘u2+b)+f(b)} i (b;a>a(a+1)f (“;bﬂ
< (b;a>a+2 Uolt““ s (ta;b —l—(l—t)a)’dt
+/01(1 — )t | (tb+ (1 —t)a;bﬂdt}
) (250
+ (/01(1 —t)“”*pdt); (/01
Because |f"|? is h-convex, we have
/01 1 <ta;rb+(1t)a)
TES

a N7
dt)

f (tb+(1—t)a;rb> th>q].

q
dt

q 1 1
/0 h(t)dt + |f (a)\q/o h(1 — t)dt

(e

i@ [ (o

and

/

f’ <tb+(1—t)a;b)

<

Using the fact

! 1
/ tOPP = —————
0 ap+p+1

and

1
ap+p+1

1
/ (1 —t)*P*Pdt =
0

and using the last two inequalities we obtain . This completes the proof of the
theorem.
Corrolary 3. If in Theorem 2 we take h(t) = ¢ then the inequality reduces to
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the following inequality for the convex function:

Corrolary 4. If in Theorem 2 we take h(t) = t° then the inequality reduces
to the following inequality for the s-convex function:

(a+1)T(a+1) [J(“ oy (@) + Jfuay e S0 >] 2<b_a)a(a+1)f (a;bﬂ
§<b;a>a+2<“”l+lp+1)p< : )
irar) (| (4

LI )] (18)

Theorem 3. Let f: I € [0,00) — R be a differentiable mapping on I° such that
e L[a,b], where a,b € T with a <b. If \f/lq, ¢ > 1 is h-convex on [a, b], then the
following inequality holds:

(Oz-i-l)F(Oz—Fl)[J?a;_b)f()_|_J(a+b+f ] 2<b ) a+1)f(a—2|—b>‘

2
(05 ) ()
+|f”(a)|q/O t*+h1 dt>
(i

o Lo rwonsl (3] rnon) | o
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Proof. From Lemma 1 and the power mean inequality, we have that the following
inequality holds:

(ot DT 1) [T - @)+ T 1) —2 (250 (@t ir (450
a+1
< <b_2a> Uolt““ ! (ta;b-l—(l—t)a)’dt
1 @ " a+b
+/O (1—t)*tt|f <tb+(1—t)2)‘dt]
a+l -4 q 3
< (bga> (/lto‘“dt) (/115““ £ <ta;rb+(1—t)a) dt)
0 0
1-1 q :
+(/01(1—t)“+1dt> (/01(1—t)“+1 7 (tb—&—(l—t)a;b) dt> ]
By the h-convexity of |f |7, we have
/lt“+1 7 (ta+b+(1—t)a>
o 2
nwfa+b
<|r (%£2)
7 (tb+(1t)a;rb>
()
1
=1 b)) — 1)+ h(t)d
£ @ [ =t +

Using the fact that

q

dt

q 1 1
/ ta+1h(t)dt+|f”(a)|q/ (1 — t)dt
0 0

and

/01(1 — )l

1
<17 o) / (1— ) Uty +

q
dt

' /1(1 — )2 h(1 — t)dt
0

” a+b I ! a+1
f<2)/0t h(t)dt

1 1 1
/ta“dt:/ (1—t)*tat =
0 0 Oé+2

and the last two inequalities in we obtain . This completes the proof.
Corrolary 5. If in Theorem 3 we take h(t) = ¢ then the inequality reduces to
the following inequality for the convex function:

(@ +1)l(a +1) [J(%;b)-f(a) + Jf‘a;hyf(b)] -2 <b 3 a)a e (a;b)‘
(5) 7 (GR) (sl (5

= : If”(a)Iq)é
*(ais a <;b> 1|f”(b)|q>;]- (20)

(a+1)(a+2)
(a+1)(a+2)
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Corrolary 6. If in Theorem 3 we take h(t) = t* then the inequality reduces
to the following inequality for the s-convex function:

(a+1)T(a+1) [Jf‘a;b)f(a) +JE‘a;b)+f(b)] -2 (b;a)a(a+ nf (a+b>‘

2
a+1 1-1
(%) () Gl (%)
2 o+ 2 a+s+2 2

[(a+2)T(s+1) I (a)|q> i

q

Q

I'(a+s+3)
1 v fatb\[T Ta+2T(s+1) o\
+<a+s+2 f ( 2 ) F(a+s+3) |/ (b)|q> - (21)
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