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ON THE STOCHASTIC FRACTIONAL CALCULUS OPERATORS

A. M. A. EL-SAYED

ABSTRACT. The mean square fractional-order integral operator and the mean
square fractional-order differential operators, in the Caputo and Riemann-
Liouville senses, for the second order stochastic processes have been studied
in [1]-[3].

In this work we define the Caputo-via Riemann-Liouville fractional-order op-
erator for the second order stochastic processes and study some equivalent
properties for these fractional-order operators and some equivalent Cauchy
type problems. Also we define the mild solution of the problems of the non-
linear fractional-order stochastic differential equations and give some of its
properties and applications.

1. INTRODUCTION

Let I = Ja,b]. Let (Q, F, P ) be a fixed probability space, where  is a
sample space, F' is a o-algebra and P is a probability measure.
Let X(t;w) = { X(t), tel, we Q} beasecond order stochastic process, i.e.,
E(X?3(t)) < oo, t €I
Let C = C(I,L2(2)) be the space of all second order stochastic processes which
is mean square (m.s) continuous on I. This space is a Banach space endowed with
the norm

X[l = max [[X(@)ll2, where [|X(t)]2 = (B(X*(1)))%.

Definition 1. A function f : [0,T] x L2(2) — L2(2) is said to satisfy the mean
square Lipschitz condition if

1F (8 X (@) = (&Y ()]l2 < KIIX(E) = Y (D)2, (1)

where k is a positive constant.

Let R(I,L2(£2)) be the class of all second order stochastic processes which is
mean square Riemann integrable on [

b
/ E X%(t) dt < .
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The norm of X € R(I, Lo(f2)) is given by
b
X0 = | [ B3 de

2. FRACTIONAL-ORDER STOCHASTIC INTEGRAL

2.1. Mean square continuous processes. Now we give the definition and some
properties of the mean square fractional-order stochastic integral defined on C =
C(I, Lo(22)) ([2)).

Definition 2. Let X € C(I,L2(f2)) and B € (0,1). The stochastic fractional-
order integral I X (t) is defined by

¢ (t— s)ﬁfl
For the existence of the integral (2) we have the following theorem ([2]).
Theorem 1. Let o, € (0,1). If X € O(I, Ly(f)), then I?X(t) exists in m.s.
sense as a second order m.s. continuous second order process I7X € CO(I, Ly(Q))
with the following properties

(c1) 1) : C(I, Ly()) — C(I, La())

(c2) f"‘fﬁX( ) = IDIgX(t) = I7HPX ()
() 1¢ X(0)li=a = 0 t
(c4) Lzm/g%l IPX(t) = I, X(t) = [ X(s)ds
(cb) X € CY(I,L2(Q)), =

Limg_o IP X(t) = X(t).

2.2. Mean square integrable processes. Now we give the definition and some
properties of the mean square fractional-order stochastic integral defined on R(I, Lo(£2))
([3])-

Definition 3. Let X € R(I,L2(2)) and S € (0,1). The stochastic fractional-
order integral I° X (¢) is defined by

IBX(8) = bt —s)8-1
ix(0) = [ X (eds X e R(LLy(). 3)
For the existence of this integral we have the following theorem ([3]).

Theorem 2. Let «, 8 € (0,1). If X € R(I,L2(Q)), then I’PX(t) exists
in m.s. sense as a second order Riemann integrable second order process I’ X €
R(1, LQ(Q)) with the following properties

(r1) 15 : R(I, L2()) — R(I, L2(2))
(r2) IO‘IBX( ) = IgHPX(t)
(13) Limpg_y IP X(t) = I, X(t).

3. DERIVATIVE OF THE FRACTIONAL-ORDER INTEGRAL

Consider firstly the stochastic integral equation
t

X)) = X, + / F(s)ds, t eI, (4)

a

then we have ( see [4]-[6])
(a) If FeR(,L2Q)), then X € C(I,L2(N))
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(b) If FeC(,Lo(Q)), then X € CY(I, Ly(Q)).

But for the fractional-order (of order o € (0,1)) stochastic integral equation

X(t) = X, + /t (Ut

) (o) F(s)ds, tel (5)

it is proved that (see [1]-[3])

(¢) If FeR(I,Ly(Q), then X € R(I, Lo(Q))
(b) If FeC(I,Lo(R)), then X € C(I, Lo(Q)).

Now we can prove the following two theorems.

Theorem 3. The necessarily condition for the existence of the derivative % X(t)

of the solution of the integral equation (5) is that F € C*(I, L»(f)). Moreover
d (t—a)> ! d

X0 = F@) 5oy + 1 g F@) € R L(@). (6)

Proof. Write equation (5) in the form

a—1

X(t) = X, + /t S F(t—s)ds, tel. M)

I'(a)
Differentiating (7) and applying the properties of stochastic derivative ([4]-[6]) we
obtain the results.

Theorem 4. Let a € (0,1). If X € C*(I,L2(Q)), then

—a a—1
41 x() = X(a)(trw)[) P74 x (8)
and
SIX(®) - X)) = I 5 X0, Q
Proof. Write I¢ X(¢) in the form
I X(t) = /t ;CZ;;X(t—s)d&tEI. (10)

Differentiating (10) and applying the properties of stochastic derivative ([4]-[6]) we
obtain the results.

Corollary 1. Let a € (0,1) and X € C'(I, L,

d d
— I* X = I&— (t).
S 10X = o ()

—~

). If X(a) = 0, then

4. ABEL’S INTEGRAL EQUATIONS I

Let 8 € (0,1] and t € [a,b]. Consider the stochastic Abel’s integral equations
of first kind

1 /a ; i{Sf_ﬁ ds = Y (1) (11)

which can be written as
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Theorem 5. If Y (t) € R(I, L2(?)) and (the mean square derivative) < I1 =7 Y (t)
R(I, L2(£2)), then the stochastic Abel’s integral equation (11) has the (second order

process) solution

d
Xplt) = S IP V() € R Lo(®) (12)
Theorem 6. If Y (t) € C'(I,L2(Q)) (is m.s. differentiable with m.s. continuous
derivative), then the stochastic Abel’s integral equation (11) has the (second order

process) solution

)b
Xs(t) = Y(a) (lf(l—)ﬂ) + 1P DY(t) € R(I, Lo(Q)), (13)

from which we obtain
L.img_g Xﬁ(t) = Y(b).

5. ABEL’S INTEGRAL EQUATIONS II

Consider the stochastic Abel’s integral equations of second kind

A b X(s)
X(t ds = Y(t 14
O+ ), Gt~ Y -
which can be written as
X(t) + MNP X(t) = Y(1). (15)
Theorem 7. Let Y (t) € R(I, L2()). If [N < féiz)ﬂlg), then the stochastic Abel’s

integral equation (14) has the second order process solution

o0

Xs(t) = SN"IP V() € R(L Lo(2). (16)
0
Theorem 8. Let Y (t) € C'(I, L2(Q)). If || < lglfit)ﬁ,g), then the stochastic Abel’s
integral equation (14) has the second order process solution
Xp(t) = i(—k)"fé‘ﬁ Y(t) € C(I, La()). (17)
0
From the convergence of the series in equality (17) we can get
Limpo Xs(t) = HLA Y (t).

which is the solution of (15), as 8 — 0.

6. FRACTIONAL-ORDER STOCHASTIC DERIVATIVE

Definition 4. Let X(t) € C*(I,L2(2)) ( be a second order stochastic pro-
cess which is m.s. differentiable with m.s. continuous derivative). We define the
fractional-order derivative, Caputo sense, of X (¢) of order « € (0, 1] by the second
order process ([2]),

DX (t) = I'™*DX(t) € C(I,Lx(Q)). (18)

For the properties of the fractional order stochastic derivative, we have the following
theorems ([2]).
Theorem 9. Let X(t) € C1(I,L2(9)), and a € (0,1], then

(1) Lima DY X(t) = £ X(t)
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(2) Limaso D X(t) = X(t) — X(a)
(3) I3 Dg X (t) = X(t) — X(a)
(4) DI X (t) = X ().
Theorem 10. Let o, 3 € (0,1], a+ B € (0,1]. Let X(t) € C%(I, L2(f2)), then

DeDBX (t) = DAYPX(t),t € [a,b].
Theorem 11. Let o, 8 € (0,1], a+ B € (1,2]. Let X(¢) € C*(I, L2(Q)).
If DX(t)|t=¢ = 0, then

DeDBX(t) = DAPX (1), t € [a,b].
Theorem 12. Let o, 3 € (0,1], 8> a. If X(t) € CH(I, Ly(Q2)), then
DeIBX(t) = I8~ X(t),t € [a,b] C T.
Theorem 13. Let , 3 € (0,1]. Let X(t) € C'(I, L2(£2)), then
B<a=IDIX(t) = DO PX(t).

7. DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

Consider the following initial value problems.
(T) Firstly, let f € C([0,T], L2(€2)). Then the initial value problem

4X(t) = f(t), te(0,T

has the unique solution

X(t) = X, + /O £(s) ds € CH[0,T], La()).

(II) Let f € C([0,T],L2(2)) and « € (0,1). Integrating the initial-value problem

DOX() = f(t), t€(0,T
{ T (20)

we obtain the corresponding integral equation

t a—1
(t—s)
X(t) = X(0) + / —
0= x0+ [ LS55
Now, if f € C([0,T], L2(2)), then the derivative X'(¢t) does not exist. Conse-
quently the fractional-order derivative DX (t) of the solution of (21) does not
exist.
Then there is no equivalence between the initial value problem (20) and its corre-
sponding integral equation (21).
The problem (20) can not be solved.

f(s)ds € C([0,T], Lo(2)). (21)

(III) Let f € CY([0,7],L2(2)) and « € (0,1]. Integrating the initial-value
problem (20)

GXO = 10 f + [ s s € 10T 1a(9)

and
DX(t) = [f(b),



106 A. M. A. EL-SAYED JFCA-2015/6(1)

then the integral equation (21) and the initial-value problem (20) are equivalent
and (21) is the unique solution of (20).

8. NONLINEAR DIFFERENTIAL EQUATION

Let f:[0,T] x L) — L2(Q2) be m.s continuous. Let o € (0,1). Integrating
the initial-value problem

DX (t) = f(t,X(t)), te€ (0,T
{ X0 = X | (22)

we obtain the corresponding integral equation

t ~1
(t—s)*
X(t) = X(0) + / —
0= xo+ [ 5k
But the derivative X’(¢) does not exist. Consequently the derivative D*X (t)
does not exist and there is no equivalence between the initial-value problem (22)
and the integral equation (23). So, the problem (22) can not be solved in this case.

f(s,z(s))ds € C([0,T], L2()). (23)

8.1. Mild Solution. Now we give the the definition of mild solution of the initial
value problem of fractional order differential equations

Definition 5. By a mild solution of the initial value problem (22) ( or (18)) we
mean an exact solution of the corresponding integral equation (23) ( or (19)).

For the existence of the mild solution of the initial value problem (22) we can
prove the following theorem.
Theorem 14. Let f:[0,7]x L) — L2(€2) be m.s continuous and satisfies the
Lipschitz condition (1). If
< (HLE
Y
then there exists a unique mild solution X € C(I,Ly(€2)) of the initial value
problem (22). Proof. Define the operator
FX(t) = X(0) + /t E=9)" 7 b n(s))ds
a 0 I'(a) ’ ’
then we can prove that F: C(I,L2(Q)) = C(I,L2(2)) and is contraction.
Then applying the Banach fixed point theorem we obtain the results.

9. DIFFEREINTEGRAL OPERATORS

Let X(t) € C([0,T],L2(2)). Then we define the differeintegral operator (R-L
type fractional derivative) of X (t) of order o € (0,1) by the second order process,

d
DY X() = - LX), (24)
For the existence of the operator (24) we have the following theorem.
Theorem 15. If the second order stochastic process I'~® X(t) is mean square
differentiable with mean square derivative <& I1=“X(t) € R(I, L2()) , then the
m.s Riemann-Liouville fractional derivative (24) exists.

For the properties of the differeintegral operator we have the following theorem



JFCA-2015/6(1) ON THE STOCHASTIC FRACTIONAL CALCULUS OPERATORS 107

[1]-3]-
Theorem 16. Let «,5 € (0,1) . Let X(¢f) be a second order m.s continuous
stochastic process such that #D X (t) exists, then
(1) "DRIFX(t) = X(t) = I3 "D X(t).
(2) RDSIIX(H) = IF°X(0), B> a.
(3) "DQIJX(t) = "Dy X(t), a > B.
(4) I "DRX(t) =17 °X(t), B> a.
(5) Ij "D3X(t) = "DIPX(t), a> B.
(6) If o+ € (0,1), then

Epe BEDSx(t) = BDoTPX(¢).

REMARK 1

From the relation (6) we can deduce that if X (¢) € C'(I, L2(2)) and X(0) = 0,
then the fractional-order differeintegral operator #D* X () = 4 I}=°X(t) and
the fractional-order differential operator (Caputo sense) D® X () = I!=* 4 X(t)
are equivalent.

9.1. Differeintegral equations. Let f:[0,7T] x Ly(2) = L2(€2) be m.s. contin-
uous. Consider now the following problems.

DeX(t) = f(t,X(t)), t € (0,T]
{ X(0) = o, (%)
iDX(t) = f(t,X(t), t €(0,T]
{ DX (D)o = 0 (26)
and
RpeX(t f te(0,T
{ e C“X(t()| A e @7

For these three Cauchy type problems we can prove the following equivalent and
existence theorems.

Theorem 17. Let f :[0,7] x L2(Q2) — L2(€2) be m.s. continuous. Then the
three Cauchy type problems (25)-(27) are equivalent and they equivalent to the
stochastic fractional-order integral equation

X(t) = Ig f(t, X(1)). (28)

Theorem 18. Let f:[0,7] x La(2) — Lo(2) satisfies the Lipschitz condition
(1). It

v
Then three Cauchy type problems (25)-(27) has a unique solution

X e C([Oa T]a LQ(Q))
This solution is the solution of the integral equation

X(t) = I f(t, X(1))
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10. CAPUTO DERIVATIVE VIA RIEMANN-LIOUVILLE

Now we give the definition of the Caputo fractional-order derivative, for the
second order stochastic process X (t), via the Riemann-Liouville one.
Definition 6. The Caputo fractional-order derivative, of the second order process
X(t) , via the Riemann-Liouville one is defined by

C-(R=L)pe X(¢) = I'=* = (X(t) — X(a)). (29)

dt

For the existence of the operator (29) we have the following theorem

Theorem 19. The necessarily condition for the existence of the Caputo fractional-
order derivative, for the second order stochastic process X(t), via the Riemann-
Liouville one is that second order stochastic process I!™% X(t) is mean square
differentiable with mean square derivative 4 I'=“X(t) € R(I, L2(2)).

Consider now the Cauchy problem
{ C—(R-L) po () —
X(0)
Theorem 20. Let f : [0,7] x L) — LQ(Q) be m.s continuous. Then the
problem (30) is equivalent to the integral equation

X(t) = X, + I% f(t.X(1)). (31)

SLX (). 1€ 0.1 (30)

Proof. Integrating the equation

%IH (X(t) = X(0) = f(t,X(t))

we obtain
'™ (X(1) = X(0) = '™ (X(t) = X(0)le=0 + I f(t,X(t) = I f(t,X(1)),
operating with I* we obtain

I(X(t) - X(0) = ' f(t,X(1)),

differentiating we get the result.

Theorem 21. Let f:[0,7] x L) — L2(Q2) be m.s continuous and satisfies the

Lipschitz condition (1). If

I'l+a) )
’}/ )

then there exists a unique solution X € C(I, Ly(€2)) of the initial value problem

(30). Proof. Define the operator

Q=

T<(

FX(@) = X(0) + /O E=)" ris w(s))ds,

then we can prove that F: C(I,La(Q2)) = C(I, L2(f2)) is contraction.
Then applying the Banach fixed point theorem we obtain the results.

Now we can deduce the following theorem.
Theorem 22. Any solution of the problem (30) is a mild solution of the problem
(22).
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REMARK 2

It must be noticed that in all the fractional calculus differential operators Caputo,
Riemann-Liouville and Caputo via Riemann-Liouville the fpllowing two relations
not holds.

1- The derivative of two multiplied functions

e d° d*
Sl Wg() # g(t) 2o f(O) + () 259()

2- The chain rule s de de
aW®) 7 95 H9) - gza®)

or
de d® d
Gl # o fl) - o)
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