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ON THE STOCHASTIC FRACTIONAL CALCULUS OPERATORS

A. M. A. EL-SAYED

Abstract. The mean square fractional-order integral operator and the mean
square fractional-order differential operators, in the Caputo and Riemann-
Liouville senses, for the second order stochastic processes have been studied
in [1]-[3].

In this work we define the Caputo-via Riemann-Liouville fractional-order op-
erator for the second order stochastic processes and study some equivalent
properties for these fractional-order operators and some equivalent Cauchy
type problems. Also we define the mild solution of the problems of the non-

linear fractional-order stochastic differential equations and give some of its
properties and applications.

1. Introduction

Let I = [a, b]. Let ( Ω, F, P ) be a fixed probability space, where Ω is a
sample space, F is a σ-algebra and P is a probability measure.
Let X(t;ω) = { X(t), t ∈ I, ω ∈ Ω } be a second order stochastic process, i.e.,
E(X2(t)) < ∞, t ∈ I.
Let C = C(I, L2(Ω)) be the space of all second order stochastic processes which
is mean square (m.s) continuous on I. This space is a Banach space endowed with
the norm

||X||C = max
t

∥X(t)∥2, where ∥X(t)∥2 = (E(X2(t)))
1
2 .

Definition 1. A function f : [0, T ] × L2(Ω) → L2(Ω) is said to satisfy the mean
square Lipschitz condition if

∥f(t,X(t))− f(t, Y (t))∥2 ≤ k∥X(t)− Y (t)∥2, (1)

where k is a positive constant.

Let ℜ(I, L2(Ω)) be the class of all second order stochastic processes which is
mean square Riemann integrable on I∫ b

a

E X2(t) dt < ∞.
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The norm of X ∈ ℜ(I, L2(Ω)) is given by

|| X ||ℜ = |
∫ b

a

E X2(t) dt |1/2.

2. Fractional-order stochastic integral

2.1. Mean square continuous processes. Now we give the definition and some
properties of the mean square fractional-order stochastic integral defined on C =
C(I, L2(Ω)) ([2]).
Definition 2. Let X ∈ C(I, L2(Ω)) and β ∈ (0, 1). The stochastic fractional-
order integral IβaX(t) is defined by

IβaX(t) =

∫ t

a

(t− s)β−1

Γ(β)
X(s)ds, X ∈ C(I, L2(Ω)). (2)

For the existence of the integral (2) we have the following theorem ([2]).
Theorem 1. Let α, β ∈ (0, 1). If X ∈ C(I, L2(Ω)), then IβaX(t) exists in m.s.
sense as a second order m.s. continuous second order process IβaX ∈ C(I, L2(Ω))
with the following properties

(c1) Iβa : C(I, L2(Ω)) → C(I, L2(Ω))
(c2) Iαa I

β
aX(t) = Iβa I

α
a X(t) = Iα+β

a X(t)
(c3) Iβa X(t)|t=a = 0

(c4) L.i.mβ→1 Iβa X(t) = Ia X(t) =
∫ t

a
X(s) ds

(c5) X ∈ C1(I, L2(Ω)), ⇒

L.i.mβ→0 Iβa X(t) = X(t).

2.2. Mean square integrable processes. Now we give the definition and some
properties of the mean square fractional-order stochastic integral defined on ℜ(I, L2(Ω))
([3]).
Definition 3. Let X ∈ ℜ(I, L2(Ω)) and β ∈ (0, 1). The stochastic fractional-
order integral IβaX(t) is defined by

IβaX(t) =

∫ t

a

(t− s)β−1

Γ(β)
X(s)ds, X ∈ ℜ(I, L2(Ω)). (3)

For the existence of this integral we have the following theorem ([3]).
Theorem 2. Let α, β ∈ (0, 1). If X ∈ ℜ(I, L2(Ω)), then IβaX(t) exists
in m.s. sense as a second order Riemann integrable second order process IβaX ∈
ℜ(I, L2(Ω)) with the following properties

(r1) Iβa : ℜ(I, L2(Ω)) → ℜ(I, L2(Ω))
(r2) Iαa I

β
aX(t) = Iα+β

a X(t)
(r3) L.i.mβ→1 Iβa X(t) = Ia X(t).

3. Derivative of the fractional-order integral

Consider firstly the stochastic integral equation

X(t) = Xo +

∫ t

a

F (s)ds, t ∈ I, (4)

then we have ( see [4]-[6])

(a) If F ∈ ℜ(I, L2(Ω)), then X ∈ C(I, L2(Ω))
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(b) If F ∈ C(I, L2(Ω)), then X ∈ C1(I, L2(Ω)).

But for the fractional-order (of order α ∈ (0, 1)) stochastic integral equation

X(t) = Xo +

∫ t

a

(t− s)α−1

Γ(α)
F (s)ds, t ∈ I (5)

it is proved that (see [1]-[3])

(c) If F ∈ ℜ(I, L2(Ω)), then X ∈ ℜ(I, L2(Ω))
(b) If F ∈ C(I, L2(Ω)), then X ∈ C(I, L2(Ω)).

Now we can prove the following two theorems.
Theorem 3. The necessarily condition for the existence of the derivative d

dt X(t)

of the solution of the integral equation (5) is that F ∈ C1(I, L2(Ω)). Moreover

d

dt
X(t) = F (a)

(t− a)α−1

Γ(α)
+ Iαa

d

dt
F (t) ∈ ℜ(I, L2(Ω)). (6)

Proof. Write equation (5) in the form

X(t) = Xo +

∫ t

a

sα−1

Γ(α)
F (t− s)ds, t ∈ I. (7)

Differentiating (7) and applying the properties of stochastic derivative ([4]-[6]) we
obtain the results.
Theorem 4. Let α ∈ (0, 1). If X ∈ C1(I, L2(Ω)), then

d

dt
Iαa X(t) = X(a)

(t− a)α−1

Γ(α)
+ Iαa

d

dt
X(t) (8)

and
d

dt
Iαa { X(t) − X(a) } = Iαa

d

dt
X(t). (9)

Proof. Write Iαa X(t) in the form

Iαa X(t) =

∫ t

a

sα−1

Γ(α)
X(t− s)ds, t ∈ I. (10)

Differentiating (10) and applying the properties of stochastic derivative ([4]-[6]) we
obtain the results.

Corollary 1. Let α ∈ (0, 1) and X ∈ C1(I, L2(Ω)). If X(a) = 0, then

d

dt
Iα X(t) = Iαa

d

dt
(t).

4. Abel’s integral equations I

Let β ∈ (0, 1] and t ∈ [a, b]. Consider the stochastic Abel’s integral equations
of first kind

1

Γ(β)

∫ t

a

X(s)

(t− s)1−β
ds = Y (t) (11)

which can be written as

Iβa X(t) = Y (t).
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Theorem 5. If Y (t) ∈ ℜ(I, L2(Ω)) and (the mean square derivative) d
dt I

1−β
a Y (t) ∈

ℜ(I, L2(Ω)), then the stochastic Abel’s integral equation (11) has the (second order
process) solution

Xβ(t) =
d

dt
I1−β
a Y (t) ∈ ℜ(I, L2(Ω)). (12)

Theorem 6. If Y (t) ∈ C1(I, L2(Ω)) (is m.s. differentiable with m.s. continuous
derivative), then the stochastic Abel’s integral equation (11) has the (second order
process) solution

Xβ(t) = Y (a)
(t− a)−β

Γ(1− β)
+ I1−β

a D Y (t) ∈ ℜ(I, L2(Ω)), (13)

from which we obtain
L.i.mβ→0 Xβ(t) = Y (t).

5. Abel’s integral equations II

Consider the stochastic Abel’s integral equations of second kind

X(t) +
λ

Γ(β)

∫ t

a

X(s)

(t− s)1−β
ds = Y (t) (14)

which can be written as

X(t) + λ Iβa X(t) = Y (t). (15)

Theorem 7. Let Y (t) ∈ ℜ(I, L2(Ω)). If |λ| < Γ(1+β)
(b−a)β

, then the stochastic Abel’s

integral equation (14) has the second order process solution

Xβ(t) =
∞∑
0

(−λ)nInβa Y (t) ∈ ℜ(I, L2(Ω)). (16)

Theorem 8. Let Y (t) ∈ C1(I, L2(Ω)). If |λ| < Γ(1+β)
(b−a)β

, then the stochastic Abel’s

integral equation (14) has the second order process solution

Xβ(t) =
∞∑
0

(−λ)nInβa Y (t) ∈ C(I, L2(Ω)). (17)

From the convergence of the series in equality (17) we can get

L.i.mβ→0 Xβ(t) =
1

1 + λ
Y (t).

which is the solution of (15), as β → 0.

6. Fractional-order stochastic derivative

Definition 4. Let X(t) ∈ C1(I, L2(Ω)) ( be a second order stochastic pro-
cess which is m.s. differentiable with m.s. continuous derivative). We define the
fractional-order derivative, Caputo sense, of X(t) of order α ∈ (0, 1] by the second
order process ([2]),

Dα
aX(t) = I1−α

a DX(t) ∈ C(I, L2(Ω)). (18)

For the properties of the fractional order stochastic derivative, we have the following
theorems ([2]).
Theorem 9. Let X(t) ∈ C1(I, L2(Ω)), and α ∈ (0, 1], then

(1) L.i.mα→1 Dα
a X(t) = d

dt X(t)



JFCA-2015/6(1) ON THE STOCHASTIC FRACTIONAL CALCULUS OPERATORS 105

(2) L.i.mα→0 Dα
a X(t) = X(t)−X(a)

(3) Iαa D
α
aX(t) = X(t)−X(a)

(4) Dα
a I

α
a X(t) = X(t).

Theorem 10. Let α, β ∈ (0, 1], α+ β ∈ (0, 1]. Let X(t) ∈ C2(I, L2(Ω)), then

Dα
aD

β
aX(t) = Dα+β

a X(t), t ∈ [a, b].

Theorem 11. Let α, β ∈ (0, 1], α+ β ∈ (1, 2]. Let X(t) ∈ C2(I, L2(Ω)).
If DX(t)|t=a = 0, then

Dα
aD

β
aX(t) = Dα+β

a X(t), t ∈ [a, b].

Theorem 12. Let α, β ∈ (0, 1], β ≥ α. If X(t) ∈ C1(I, L2(Ω)), then

Dα
a I

β
aX(t) = Iβ−α

a X(t), t ∈ [a, b] ⊂ T.

Theorem 13. Let α, β ∈ (0, 1]. Let X(t) ∈ C1(I, L2(Ω)), then

β ≤ α ⇒ IβaD
α
aX(t) = Dα−β

a X(t).

7. Differential equations of fractional order

Consider the following initial value problems.
(I) Firstly, let f ∈ C([0, T ], L2(Ω)). Then the initial value problem{

d
dtX(t) = f(t), t ∈ (0, T ]

X(0) = Xo,
(19)

has the unique solution

X(t) = Xo +

∫ t

0

f(s) ds ∈ C1([0, T ], L2(Ω)).

(II) Let f ∈ C([0, T ], L2(Ω)) and α ∈ (0, 1). Integrating the initial-value problem{
DαX(t) = f(t), t ∈ (0, T ]

X(0) = Xo,
(20)

we obtain the corresponding integral equation

X(t) = X(0) +

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds ∈ C([0, T ], L2(Ω)). (21)

Now, if f ∈ C([0, T ], L2(Ω)), then the derivative X ′(t) does not exist. Conse-
quently the fractional-order derivative DαX(t) of the solution of (21) does not
exist.
Then there is no equivalence between the initial value problem (20) and its corre-
sponding integral equation (21).
The problem (20) can not be solved.

(III) Let f ∈ C1([0, T ], L2(Ω)) and α ∈ (0, 1]. Integrating the initial-value
problem (20)

d

dt
X(t) = f(0)

tα−1

Γ(α)
+

∫ t

0

sα−1

Γ(α)

d

dt
f(t− s) ds ∈ L1([0, T ], L2(Ω))

and
DαX(t) = f(t),
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then the integral equation (21) and the initial-value problem (20) are equivalent
and (21) is the unique solution of (20).

8. Nonlinear differential equation

Let f : [0, T ]× L(Ω) → L2(Ω) be m.s continuous. Let α ∈ (0, 1). Integrating
the initial-value problem{

DαX(t) = f(t,X(t)), t ∈ (0, T ]
X(0) = Xo,

(22)

we obtain the corresponding integral equation

X(t) = X(0) +

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds ∈ C([0, T ], L2(Ω)). (23)

But the derivative X ′(t) does not exist. Consequently the derivative DαX(t)
does not exist and there is no equivalence between the initial-value problem (22)
and the integral equation (23). So, the problem (22) can not be solved in this case.

8.1. Mild Solution. Now we give the the definition of mild solution of the initial
value problem of fractional order differential equations
Definition 5. By a mild solution of the initial value problem (22) ( or (18)) we
mean an exact solution of the corresponding integral equation (23) ( or (19)).

For the existence of the mild solution of the initial value problem (22) we can
prove the following theorem.
Theorem 14. Let f : [0, T ]×L(Ω) → L2(Ω) be m.s continuous and satisfies the
Lipschitz condition (1). If

T ≤ (
Γ(1 + α)

γ
)

1
α ,

then there exists a unique mild solution X ∈ C(I, L2(Ω)) of the initial value
problem (22). Proof. Define the operator

F X(t) = X(0) +

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds,

then we can prove that F : C(I, L2(Ω)) → C(I, L2(Ω)) and is contraction.
Then applying the Banach fixed point theorem we obtain the results.

9. Differeintegral operators

Let X(t) ∈ C([0, T ], L2(Ω)). Then we define the differeintegral operator (R-L
type fractional derivative) of X(t) of order α ∈ (0, 1) by the second order process,

RDα X(t) =
d

dt
I1−α
a X(t). (24)

For the existence of the operator (24) we have the following theorem.
Theorem 15. If the second order stochastic process I1−α X(t) is mean square
differentiable with mean square derivative d

dt I1−α
a X(t) ∈ ℜ(I, L2(Ω)) , then the

m.s Riemann-Liouville fractional derivative (24) exists.
For the properties of the differeintegral operator we have the following theorem
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[1]-[3].
Theorem 16. Let α, β ∈ (0, 1) . Let X(t) be a second order m.s continuous
stochastic process such that RDα

aX(t) exists, then

(1) RDα
a I

α
a X(t) = X(t) = Iαa

RDα
aX(t).

(2) RDα
a I

β
aX(t) = Iβ−α

a X(t), β > α.
(3) RDα

a I
β
aX(t) = RDα−β

a X(t), α > β.
(4) Iβa

RDα
aX(t) = Iβ−α

a X(t), β > α.
(5) Iβa

RDα
aX(t) = RDα−β

a X(t), α > β.
(6) If α+ β ∈ (0, 1), then

RDα
a

RDβ
aX(t) = RDα+β

a X(t).

Remark 1

From the relation (6) we can deduce that if X(t) ∈ C1(I, L2(Ω)) and X(0) = 0,
then the fractional-order differeintegral operator RDα X(t) = d

dt I1−α
a X(t) and

the fractional-order differential operator (Caputo sense) Dα X(t) = I1−α
a

d
dt X(t)

are equivalent.

9.1. Differeintegral equations. Let f : [0, T ]×L2(Ω) → L2(Ω) be m.s. contin-
uous. Consider now the following problems.{

RDαX(t) = f(t,X(t)), t ∈ (0, T ]
X(0) = 0,

(25)

{
RDαX(t) = f(t,X(t)), t ∈ (0, T ]

I1−αX(t)|t=0 = 0
(26)

and {
RDαX(t) = f(t,X(t)), t ∈ (0, T ]

t1−αX(t)|t=0 = 0.
(27)

For these three Cauchy type problems we can prove the following equivalent and
existence theorems.
Theorem 17. Let f : [0, T ] × L2(Ω) → L2(Ω) be m.s. continuous. Then the
three Cauchy type problems (25)-(27) are equivalent and they equivalent to the
stochastic fractional-order integral equation

X(t) = Iαa f(t,X(t)). (28)

Theorem 18. Let f : [0, T ] × L2(Ω) → L2(Ω) satisfies the Lipschitz condition
(1). If

T ≤ (
Γ(1 + α)

γ
)

1
α .

Then three Cauchy type problems (25)-(27) has a unique solution

X ∈ C([0, T ], L2(Ω)).

This solution is the solution of the integral equation

X(t) = Iα f(t,X(t))
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10. Caputo derivative via Riemann-Liouville

Now we give the definition of the Caputo fractional-order derivative, for the
second order stochastic process X(t), via the Riemann-Liouville one.
Definition 6. The Caputo fractional-order derivative, of the second order process
X(t) , via the Riemann-Liouville one is defined by

C−(R−L)Dα
a X(t) = I1−α

a

d

dt
(X(t)−X(a)). (29)

For the existence of the operator (29) we have the following theorem
Theorem 19. The necessarily condition for the existence of the Caputo fractional-
order derivative, for the second order stochastic process X(t), via the Riemann-
Liouville one is that second order stochastic process I1−α

a X(t) is mean square
differentiable with mean square derivative d

dt I1−α
a X(t) ∈ ℜ(I, L2(Ω)).

Consider now the Cauchy problem{
C−(R−L)Dα X(t) = f(t,X(t)), t ∈ (0, T ]

X(0) = Xo.
(30)

Theorem 20. Let f : [0, T ] × L(Ω) → L2(Ω) be m.s continuous. Then the
problem (30) is equivalent to the integral equation

X(t) = Xo + Iα f(t,X(t)). (31)

Proof. Integrating the equation

d

dt
I1−α (X(t)−X(0)) = f(t,X(t))

we obtain

I1−α (X(t)−X(0)) = I1−α (X(t)−X(0))|t=0 + I f(t,X(t)) = I f(t,X(t)),

operating with Iα we obtain

I (X(t)−X(0)) = I1+α f(t,X(t)),

differentiating we get the result.
Theorem 21. Let f : [0, T ]× L(Ω) → L2(Ω) be m.s continuous and satisfies the
Lipschitz condition (1). If

T ≤ (
Γ(1 + α)

γ
)

1
α ,

then there exists a unique solution X ∈ C(I, L2(Ω)) of the initial value problem
(30). Proof. Define the operator

F X(t) = X(0) +

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds,

then we can prove that F : C(I, L2(Ω)) → C(I, L2(Ω)) is contraction.
Then applying the Banach fixed point theorem we obtain the results.

Now we can deduce the following theorem.
Theorem 22. Any solution of the problem (30) is a mild solution of the problem
(22).
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Remark 2

It must be noticed that in all the fractional calculus differential operators Caputo,
Riemann-Liouville and Caputo via Riemann-Liouville the fpllowing two relations
not holds.
1- The derivative of two multiplied functions

dα

dtα
f(t)g(t) ̸= g(t)

dα

dtα
f(t) + f(t)

dα

dtα
g(t)

2- The chain rule
dα

dtα
f(g(t)) ̸= dα

dgα
f(g) .

dα

dtα
g(t)

or
dα

dtα
f(g(t)) ̸= dα

dgα
f(g) .

d

dt
g(t)
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