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EXISTENCE OF A MILD SOLUTION FOR AN IMPULSIVE

NEUTRAL FRACTIONAL INTEGRO-DIFFERENTIAL

EQUATION WITH NONLOCAL CONDITIONS

ALKA CHADHA, DWIJENDRA N PANDEY

Abstract. In the present work, we consider an impulsive neutral fractional
integro-differential equation with nonlocal condition in arbitrary Banach space
X. The existence of mild solution is obtained by using solution operator and

Hausdorff measure of noncompactness. To illustrate the theory, we provide an
example at the end of the manuscript.

1. Introduction

In recent few decades, fractional calculus has received more and more attention
of researchers because of its wide applicability in engineering, physics, quantum
mechanics, signal processing, electro-magnetic, fractal theory, economics, electro-
chemistry and more fields. The properties of memory and heredity of materials
can be described by the fractional derivative which is a major advantage of the
fractional derivative compared with integer order derivatives. The fractional differ-
ential equation is an important tool for describing the nonlinear oscillation of the
earthquake. For a study of fractional calculus, we refer to the books by Kibbas et
al.[1], Podlubny [2] and Miller and Ross [3] and references given therein. Neutral
fractional differential equations arise in many areas of applied mathematics. The
system of rigid heat conduction with finite wave spaces can be modeled in the form
of the integro-differential equation of neutral type with delay. For the initial study
of the neutral functional differential equations with finite delay, we refer to book
by Hale [4] and references given therein.

On the other hand, many real world processes and phenomena which are sub-
jected during their development to short-term external influences can be modeled
as impulsive differential equation. Their duration is negligible compared with the
total duration of the entire process and phenomena. Such processes are investigated
in various areas of sciences such as biology, physics, control theory, population dy-
namics, medicine and so on. For the general theory of such differential equations,
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we refer to the monographs [5], [6] and papers [7]-[19] and references given therein.
The existence of the solution for abstract Cauchy differential equation with nonlocal
conditions in a Banach space has been considered first by Byszewski [20]. Since it
is shown that nonlocal condition is more realistic than the classical initial condition
in dealing with many physical problems. Concerning the developments in the study
of nonlocal problems we refer to [20]-[31] and references given therein.

In [8], authors have introduced a new concept of the mild solution for impul-
sive fractional differential equation and established the existence of solutions of
the impulsive Cauchy fractional differential equation in a Banach space with the
different assumptions about initial conditions. In [7], authors have extended the
results of [8] and studied the existence of the mild solution for impulsive fractional
integro-differential equation (1) with infinite delay with the assumption that non-
linear function G satisfies a Lipschitz type condition. The existence of the mild
solution for impulsive fractional integro-differential inclusions with nonlocal condi-
tions has been discussed by authors [10] with the help of a fixed-point theorem for
discontinuous multi-valued operators due to Dhage and compact semigroup. In [17],
authors have studied the controllability of impulsive fractional evolution inclusions
and obtained the sufficient conditions for the existence of the mild solution by using
a fixed point theorem of multivalued and resolvent operator. The existence of the
solution for impulsive fractional differential equation with nonlocal conditions has
been investigated by authors [12] with the help of fixed point theorem of Sadoviskii.

The purpose of this work is to establish the existence of mild solution for impul-
sive fractional differential equation with nonlocal conditions of the form:

cDq
t [u(t) +H(t, ut)] = A[u(t) +H(t, ut)]] + J1−q

t G(t, ut,Bu(t)),
t ∈ I = [0, T ], t ̸= tk, 0 < T < ∞, (1)

∆u(tk) = Ik(u(t
−
k )), k = 1, · · · ,m, (2)

u(t) = ϕ(t) + g(u), t ∈ [−τ, 0], (3)

where q ∈ (0, 1) and A : D(A) ⊂ X → X is a closed and bounded linear
operator on Banach space (X, ∥ · ∥) with dense domain D(A) . We assume
that A is the infinitesimal generator of a solution operator {Sq(t)}t≥0 . Here
Ik : X → X, 0 = t0 < t1 < · · · < tm < tm+1 = T , ∆u|t=tk = u(t+k ) − u(t−k ) and

u(t+k ) = limh→0+ u(tk + h) and u(t−k ) = limh→0− u(tk + h) denote the right and
left limits of u(t) at t = tk , respectively. The function B : C([0, T ];X) →
C([0, T ];X) is given by Bu(t) =

∫ t

0
B(t, s)u(s)ds and {B(t, s) : 0 ≤ s ≤ t ≤ T}

is a set of bounded linear operator on X with B(·, s)u ∈ C([s, T ];X) and
B(t, ·)u ∈ C([0, t];X) for all t, s ∈ [0, T ] and for u ∈ X , the function
ut : [−τ, 0] → X , ut(s) = u(t+ s), s ∈ [−τ, 0] , H : [0, T ]× C([−τ, 0];X) → X ,
G : [0, T ] × C([−τ, 0];X) × X → X , g : C([−τ, 0];X) → C([−τ, 0];X) are
appropriate functions and ϕ : [−τ, 0] → X is a given continuous function.

In the present work, we study the solvability of equations (1) and establish the
existence result of the equation (1)-(3) by using Hausdorff measure of noncompact-
ness β which is an untreated topics in the literature to the best of our knowledge.
We divide this paper into three sections as follows: In section Preliminaries, we
recall some basic definition, Lemmas and Theorems. We shall prove the existence
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of a mild solution for system (1)-(3) in section Existence of mild solution. In the
last section, we shall discuss an example to illustrate the application of the abstract
results.

2. Preliminaries and Assumptions

In this section, we will provide some basic definition of fractional calculus, resol-
vent operators, solution operator, theorems and lemmas.
Throughout this work, we assume that (X, ∥ ·∥) is a Banach space and −A is the
infinitesimal generator of a solution operator Sq(t), t ≥ 0 , on Banach space X .
Let C([0, T ];X) , where 0 < T < ∞ be the Banach space of all continuous func-
tions from [0, T ] into X equipped with the norm ∥ u(t)∥C = supt∈[0,T ] ∥ u(t)∥X
and Cm([0, T ];X) , denotes the space of all functions u which are m -times
continuous differentiable functions from [0, T ] into X , is a Banach space with
the norm ∥ u∥Cm = supt∈(a,b)

∑m
k=0 ∥ uk(t)∥X and Lp((0, T );X) denotes the

Banach space of all Bochner-measurable functions from (0, T ) into X with the
norm ∥ u∥Lp = (

∫
(0,T )

∥ u(s)∥pXds)1/p .

Assume that 0 ∈ ρ(A) i.e. A is invertible. Then it can be possible to define the
positive fractional power Aα for 0 < α ≤ 1 as a closed linear operator with do-
main D(Aα) ⊂ X . It is easy to see that D(Aα) which is dense in X is a Banach
space endowed with the norm ∥ x∥ = ∥ Aαx∥ , for x ∈ D(Aα) . Henceforth, we
use Xα as notation of D(Aα) . Also, we have Xκ ↪→ Xα for 0 < α < κ and the
embedding is continuous. Then for each α > 0 , we define X−α = (Xα)

∗ , which
is the dual space of Xα , is a Banach space with the norm ∥ x∥−α = ∥ A−αx∥ .
Definition 1 The Riemann-Liouville fractional integral for the function F of
order q > 0 is defined by

Jq
t F (t) =

1

Γ(q)

∫ t

0

(t− s)q−1F (s)ds, (4)

where F ∈ L1((0, T );X).
Definition 2 The Riemann-Liouville fractional derivative of the function F with
order q is given by

Dq
tF (t) = Dm

t Jm−q
t F (t), (5)

where Dm
t = dm

dtm , F ∈ L1((0, T );X), Jm−q
t ∈ Wm,1((0, T );X).

Definition 3 The Caputo fractional derivative of the function F is given by

CDq
tF (t) =

1

Γ(m− q)

∫ t

0

(t− s)m−q−1Fm(t)dt, m− 1 < q < m. (6)

where F ∈ L1((0, T );X) ∩ Cm−1((0, T );X) and the following holds

Jq
t (

CDq
tF (t)) = F (t)−

m−1∑
k=0

tk

k!
F k(0). (7)

Definition 4 [15] An operator A which is closed and linear, is called sectorial
operator if there exist constants ω ∈ R , θ ∈ [π/2, π] , M > 0 such that the
following two conditions are satisfied:

(1) ρ(A) ⊂
∑

(θ, ω) = {λ ∈ C : λ ̸= ω, |arg(λ− ω)| < θ},
(2) ∥ R(λ,A)∥L(X) ≤ M

|λ−ω| , ω ∈
∑

(θ, ω),
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where ρ(A) is the resolvent set of A .
For more details we refer to [40]. Now, we turn to following fractional order Cauchy
problem

cDq
tu(t) = Au(t), t > 0; u(0) = x, uk(0) = 0, k = 1, · · · ,m− 1, (8)

where q > 0 and m = ⌈q⌉ .
Definition 5 [40] A family {Sq(t)}t≥0 is said to be a solution operator (resolvent
operator) for equation (8) if Sq(t) satisfies the following conditions:
(1) Sq(t) is strongly continuous for t ≥ 0 and Sq(0) = I ;
(2) Sq(t)D(A) ⊂ D(A) and ASq(t)x = Sq(t)Ax ∀ x ∈ D(A) , t ≥ 0 ;
(3) Sq(t)x is a solution of following integral equation

u(t) = x+
1

Γ(q)

∫ t

0

(t− s)q−1Au(s)ds, t ≥ 0. (9)

Following [40], the problem (8) is well-posed if and only if it admits a solution
operator. Also, the solution operator Sq(t) of (8) is defined as (see [40])

λq−1(λqI −A)−1x =

∫ ∞

0

e−λtSq(t)xdt, Re λ > ω, x ∈ X, (10)

where ω ≥ 0 and {λq : Reλ > ω} ⊂ ρ(A) .
Definition 6 [40] The solution operator is called exponentially bounded if there
exist constants δ ≥ 0 and M ≥ 1 such that ∥ Sq(t)∥ ≤ Meδt, t ≥ 0 .
An operator A is said to belong to Cq(X;M, δ) , or Cq(M, δ) if the problem
(8) has a solution operator Sq(t) satisfying ∥Sq(t)∥ ≤ Meδt, 0 ≤ t . Denote
Cq(δ) =

∪
{Cq(M, δ); M ≥ 1} , or Cq =

∪
{Cq(δ; δ ≥ 0)} (Bazhlekova, [40]).

To define the mild solution for impulsive differential equation (1)-(3), we suggest
the following space PC([0, T ];X) which contains all the continuous functions
u : [0, T ] → X such that u(t) is continuous at t = ti and u(t−i ) , u(t+i ) exist for
all i = 1, 2, · · · ,m . We can verify that the space PC([0, T ];X) is a Banach space
endowed with norm ∥u∥PC = supt∈[0,T ]{u(t)} . For a function u ∈ PC([0, T ];X) ,

define the function ũi ∈ C([ti, ti+1], X) (i = 1, · · · ,m) such that

ũi(t) =

{
u(t), for t ∈ (ti, ti+1],

u(t+i ), for t = ti.
(11)

For set F ⊂ PC([0, T ];X) and i ∈ {0, 1, · · · ,m} , we have F̃i = {ũi : u ∈ F}
and we have following Accoli-Arzelà type criteria.
Lemma 1 [26] A set F ⊂ PC([0, T ];X) is relatively compact in PC([0, T ];X) if

and only if each set F̃i is relatively compact in C([ti, ti+1], X) .
We now discuss following facts about the measure of noncompactness and condens-
ing map.
Definition 7 [36] The Hausdorff measure of noncompactness β of the set B in
Banach space X is the greatest lower bound of those ϵ > 0 for which the set B
has in the space X a finite ϵ - net i.e.

β(B) = inf{ϵ > 0 : B has a finite ϵ− net in X}, (12)

for each bounded subset B in a Banach space X .
Next, we recall the some basic properties about the Hausdorff measure of noncom-
pactness β .
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Lemma 2 [36] Let X be a real Banach space and E, F be bounded subset of
X . Then, we have the following results:

(1) β(E) = 0 iff E is relatively compact ;
(2) β(E) = β(convE) = β(E) , where conv(E) and E denotes the convex

hull and closure of E respectively;
(3) If E ⊂ F , then β(E) ≤ β(F ) ;
(4) β(E + F ) ≤ β(E) + β(F ) , where E + F = {x+ y : x ∈ E, y ∈ F} ;
(5) β(E ∪ F ) ≤ max{β(E), β(F )} ;
(6) β(κE) ≤ |κ|β(E) for any κ ∈ R ;
(7) If the map Q : D(Q) ⊂ X → Y is Lipschitz continuous with a Lipschitz

constant µ . Then βY (QE) ≤ µβ(E) for every bounded set E ⊂ D(Q) ,
where Y is a Banach space.

For more study on the measure of noncompactness, we refer to books [33], [36],
[35].
Definition 8 [36] A continuous map Q : D ⊆ X → X is called a βX -contraction
if there exists a constant 0 < κ < 1 such that βX(Q(F )) ≤ κβX(F ) , for any
bounded closed subset F ⊆ D .
Lemma 3 (Darbo-Sadovskii)[36] Let D ⊂ X be closed, bounded and convex.
Assume that the continuous map Q : D → D is a β - contraction. Then, there
exists at least one fixed point of the map Q in D .
In this paper, we consider that β denotes the Hausdorff’s measure of noncompact-
ness in X , βC denotes the Hausdorff’s measure of noncompactness in C([0, T ];X)
and βPC denotes the Hausdorff’s measure of noncompactness in PC([0, T ];X) .
Lemma 4 [36] If F ⊆ C([0, T ];X) is bounded, then β(F (t)) ≤ β(F ) for all
t ∈ [0, T ] , where F (t) = {x(t);x ∈ F} ⊆ X . Furthermore, if F is equicontinuous
on [0, T ] , then β(F (t)) is continuous on [0, T ] and βC(F ) = sup{β(F (τ)), τ ∈
[0, T ]} .
Lemma 5 [36] If F ⊂ C([0, T ];X) is bounded and equicontinuous. Then β(F (t))
is continuous and

β(

∫ t

0

F (τ)dτ) ≤
∫ t

0

β(F (τ))dτ, (13)

for all t ∈ [0, T ] , where
∫ t

0
F (τ)dτ = {

∫ t

0
x(τ)dτ, x ∈ F} .

Lemma 6 [38] If F ⊆ PC([0, T ];X) is bounded, then β(F (t)) ≤ βPC(F ) for all
t ∈ [0, T ] . Furthermore, suppose the following conditions are satisfied;

(1) F is equicontinuous on J0 = [0, t1] and each Ji = (ti, ti+1] , i = 1, · · · , N,
(2) F is equicontinuous at t = t+i , i = 1, · · · , N.

Then sup
t∈[0,T ]

β(F (t)) = βPC(F ) .

(3) If F ⊂ PC([0, T ];X) is bounded and piecewise equicontinuous, then
β(F (t)) is piecewise continuous for t ∈ [0, T ] and

β(

∫ t

0

F (τ)dτ) ≤
∫ t

0

β(F (τ))dτ, (14)

for all t ∈ [0, T ] , where
∫ t

0
F (τ)dτ = {

∫ t

0
x(τ)dτ, x ∈ F} .

Definition 9 A piece-wise continuous function u : [−τ, T ] → X is said to be a
mild solution for the system (1)-(3) if u(·) satisfies the following fractional integral
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equation

u(t) =



ϕ(t) + gu(t), t ∈ [−τ, 0],

Sq(t)[ϕ(0) + gu(0) +H(0, ϕ+ g(u))]−H(t, ut)

+
∫ t

0
Sq(t− s)G(s, us,Bu(s))ds, t ∈ [0, t1],

Sq(t)[ϕ(0) + gu(0) +H(0, ϕ+ g(u))]−H(t, ut) + Sq(t− t1)I1(u(t
−
1 ))

+Sq(t− t1)[H(t1, ut1 + I1(ut−1
))−H(t1, ut1)]

+
∫ t

0
Sq(t− s)G(s, us,Bu(s))ds, t ∈ (t1, t2],

...
...

...

Sq(t)[ϕ(0) + gu(0) +H(0, ϕ+ g(u))]−H(t, ut) +
∑m

i=1 Sq(t− ti)Ii(u(t
−
i ))

+
∑m

i=1 Sq(t− ti)[H(ti, uti + Ii(ut−i
))−H(ti, uti)]

+
∫ t

0
Sq(t− s)G(s, us,Bu(s))ds, t ∈ (tm, T ],

(15)

To establish the our required result, we made following assumptions :

(A0) The solution operator {Sq(t)}t≥0 is analytic i.e. the map t 7→ Sq(t) is
continuous from [0, T ] to L(X) endowed with the uniform operator norm
∥ · ∥L(X) .
Without loss of generality, we may have that there exist a positive constant
M such that ∥ Sq(t)∥ ≤ M , for t ≥ 0 .

(A1) The function G : [0, T ] × C([−τ, 0];X) × X → X satisfies the following
Carathèodary condition i.e.,

(a) The function G(·, u, v) : [0, T ] → X is strongly measurable for
every u ∈ C([−τ, 0];X) and v ∈ X .

(b) The function G(t, ·, ·) : C([−τ, 0];X)×X → X is continuous for
each t ∈ [0, T ] .

(c) There exist constant functions mi(·) ∈ L1([0, b],R+) (i = 1, 2)
such that

∥ G(t, x, y)∥ ≤ m1(t)∥ x∥[−τ,0] +m2(t)∥ y∥, (16)

for almost all t ∈ [0, T ] and (x, y) ∈ C([−τ, 0];X)×X .
(A2) There exist functions ηi ∈ L1([0, T ];R+) (i = 1, 2, ) such that

β(G(t,D1, D2)) ≤ η1(t) sup
θ∈[−τ,0]

β(D1(θ)) + η2(t)β(D2), a.e. t ∈ [0, T ], (17)

for any bounded sets D1 ⊂ C([−τ, 0];X) and D2 ⊂ X .
(A3) There exists a positive constant 0 < α < 1 such that the nonlinear function

H : [0, T ]× C([−τ, 0];X) → X satisfies the following condition

∥ AαH(t, u)−AαH(t, v)∥ ≤ LH∥ u− v∥[−τ,0], u, v ∈ C([−τ, 0];X), ∀ t ∈ [0, T ],
(18)

i.e., H is Lipschitz continuous function and LH > 0 is a constant. Also
H satisfies the following conditions

∥ AαH(t, u)∥ ≤ c1(∥ u∥[−τ,0]) + c2, u ∈ C([−τ, 0];X), t ∈ [0, T ], (19)

where c1, c2 are positive constants.
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(A4) The function g : C([−τ, 0];X) → C([−τ, 0];X) is Lipschitz continuous in
the following sense: there exists a constant Lg > 0 such that

∥ g(u)− g(v)∥[−τ,0] ≤ Lg∥ u− v∥[0,T ], (20)

for all u, v ∈ C([−τ, 0];X) and g is uniformly bounded i.e., there exists
a constant N > 0 such that

∥ g(u)∥[−τ,0] ≤ N, (21)

for any u ∈ C([−τ, 0];X) .
(A5) The function Ik : X → X, (k = 1, · · · ,m) are continuous functions and

there is a constant LI > 0 such that

∥ Ik(u)− Ik(v)∥ ≤ LI∥ u− v∥, (22)

and

∥ Ik(u)∥ ≤ L, (23)

for all u, v ∈ X . Where L > 0 is constant.
(A6)

[MLg(1 + LH∥ A−α∥) + LH∥ A−α∥) +mMLH(2 + LI) +MLI ]

+M(∥ η1∥L1 +B∗∥ η2∥L1) < 1, (24)

where B∗ = supt∈[0,T ]

∫ t

0
∥ B(t, s)∥ds .

3. Existence Results

In this section, we discuss the existence of a mild solution for the system (1)-(3).
Theorem 1 Assume that the assumptions (A0)− (A6) are satisfied, then there
exists a mild solution for system (1)-(3).
Proof We define the operator Q : PC([−τ, T ];X) → PC([−τ, T ];X) as

Qu(t) =



ϕ(t) + gu(t), t ∈ [−τ, 0],

Sq(t)[ϕ(0) + gu(0) +H(0, ϕ+ g(u))]−H(t, ut)

+
∫ t

0
Sq(t− s)G(s, us,Bu(s))ds, t ∈ [0, t1],

Sq(t)[ϕ(0) + gu(0) +H(0, ϕ+ g(u))]−H(t, ut) + Sq(t− t1)I1(u(t
−
1 ))

+Sq(t− t1)[H(t1, ut1 + I1(ut−1
))−H(t1, ut1)]

+
∫ t

0
Sq(t− s)G(s, us,Bu(s))ds, t ∈ (t1, t2],

...
...

...

Sq(t)[ϕ(0) + gu(0) +H(0, ϕ+ g(u))]−H(t, ut) +

m∑
i=1

Sq(t− ti)Ii(u(t
−
i ))

+
m∑
i=1

Sq(t− ti)[H(ti, uti + Ii(ut−i
))−H(ti, uti)]

+
∫ t

0
Sq(t− s)G(s, us,Bu(s))ds, t ∈ (tm, T ],

(25)

It is easy to verify that Q is well defined. Firstly we show that Q is continuous
on PC([−τ, T ];X) . It is obvious that Q is continuous on [−τ, 0] by the
continuity of ϕ and g . For proving the continuity, let {un}∞n=1 be a sequence
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in PC([−τ, T ];X) such that limn→∞ un(t) = u(t) in PC([−τ, T ];X) . Since G
and H are continuous, therefore we get

G(t, (un)t,Bun(t)) → G(t, ut,Bu(t)), (26)

H(t, (un)t) → H(t, ut), (27)

as n → ∞ . For t ∈ [0, t1] , we have

∥ Qun(t)−Qu(t)∥ ≤ ∥ Sq(t)[(gun)(0)− (gu)(0)]∥+ ∥ H(t, (un)t)−H(t, ut)∥

+

∫ t

0

Sq(t− s)∥ G(s, (un)s,Bun(s))−G(s, us,Bu(s))∥ds,

by Lebesgue’s dominate convergence theorem and the usual technique involving the
hypothesis (A1) , (A3) and (A4) , it implies that Q is continuous. Similarly
for t ∈ (tm, T ] ,
∥ Qun(t)−Qu(t)∥

≤ ∥ Sq(t)[gun(0)− gu(0)]∥+ ∥ H(t, (un)t)−H(t, ut)∥

+

m∑
i=1

∥ Sq(t− ti)[Ii(un(ti))− Ii(u(ti))]∥

+
m∑
i=1

∥ Sq(t− ti)[H(ti, (un)ti + Ii((un)t−i
))−H(ti, uti + Ii(ut−i

))]∥

+
m∑
i=1

∥ Sq(t− ti)[H(ti, un(ti))−H(ti, u(ti))]∥

+

∫ t

0

∥ Sq(t)[G(s, (un)s,Bun(s))−G(s, us,Bu(s))]∥ds, (28)

By the assumption (A1), (A3), (A4)− (A5) and Lebesgue’s dominate convergence
theorem, we have that Q is continuous on (tm, T ] . Hence, Q is continuous on
[−τ, T ] .

Secondly we show that Q(BR) ⊂ BR , where BR = BR(PC([−τ, T ];X)) =
{u ∈ PC([−τ, T ];X) : ∥ u∥ ≤ R} ⊂ PC([−τ, T ];X) is a closed and convex ball
with center at the origin and radius R and R is a positive integer to be defined
later. For u ∈ BR and t ∈ [−τ, 0] , we obtain

∥ Qu(t)∥ ≤ ∥ ϕ(t)∥[−τ,0] + ∥ gu(t)∥[−τ,0],

≤ ∥ ϕ∥[−τ,0] +N,= R−1 (29)
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For t ∈ [0, t1] , we get
∥ Qu(t)∥

≤ ∥ Sq(t)[ϕ(0) + gu(0)]∥+ ∥ Sq(t)(H(0, ϕ+ g(u)))∥+ ∥ H(t, ut)∥

+

∫ t

0

∥ Sq(t− s)G(s, us,Bu(s))∥ds,

≤ M∥ ϕ(0) + gu(0)∥+M∥ A−α∥[c1(∥ϕ∥[−τ,0] +N) + c2] + ∥ A−α∥(c1R+ c2)

+MR

∫ t

0

(m1(s) +m2(s))ds,

≤ M∥ ϕ(0) + gu(0)∥+M∥ A−α∥[c1(∥ϕ∥[−τ,0] +N) + c2] + ∥ A−α∥(c1R+ c2)

+MR[∥ m1∥L1 + ∥ m2∥L1 ] = R0, (30)

For t ∈ (t1, t2] ,
∥ Qu(t)∥

≤ ∥ Sq(t)[ϕ(0) + gu(0)]∥+ ∥ Sq(t)(H(0, ϕ+ g(u)))∥+ ∥ H(t, ut)∥
+∥Sq(t− t1)I1(u(t

−
1 ))∥+ ∥ Sq(t− t1)[H(t1, ut1 + I1(ut−1

))−H(t1, ut1)]∥

+

∫ t

0

∥ Sq(t− s)G(s, us,Bu(s))∥ds,

≤ M∥ ϕ(0) + gu(0)∥+M∥ A−α∥[c1(∥ϕ∥[−τ,0] +N) + c2] + ∥ A−α∥(c1R+ c2)

+ML(1 + LH∥ A−α∥) +MR

∫ t

0

(m1(s) +m2(s))ds,

≤ M∥ ϕ(0) + gu(0)∥+M∥ A−α∥[c1(∥ϕ∥[−τ,0] +N) + c2] + ∥ A−α∥(c1R+ c2)

+ML(1 + LH∥ A−α∥) +MR[∥ m1∥L1 + ∥ m2∥L1 ] = R1, (31)

For t ∈ (tm, T ] , we get
∥ Qu(t)∥

≤ ∥ Sq(t)[ϕ(0) + gu(0)]∥+ ∥ Sq(t)(H(0, ϕ+ g(u)))∥+ ∥ H(t, ut)∥
+∥Sq(t− t1)I1(u(t

−
1 ))∥+ ∥ Sq(t− t1)[H(t1, ut1 + I1(ut−1

))−H(t1, ut1)]∥

+

∫ t

0

∥ Sq(t− s)G(s, us,Bu(s))∥ds,

≤ M∥ ϕ(0) + gu(0)∥+M∥ A−α∥[c1(∥ϕ∥[−τ,0] +N) + c2] + ∥ A−α∥(c1R+ c2)

+ML(1 + LH∥ A−α∥) +MR

∫ t

0

(m1(s) +m2(s))ds,

≤ M∥ ϕ(0) + gu(0)∥+M∥ A−α∥[c1(∥ϕ∥[−τ,0] +N) + c2] + ∥ A−α∥(c1R+ c2)

+mML(1 + LH∥ A−α∥) +MR[∥ m1∥L1 + ∥ m2∥L1 ] = Rm, (32)

choose R = max{R−1, R0, R1, · · · , Rm} such that Q(BR) ⊂ BR . Now, we
show that Q(BR) is equicontinuous on J0 = [0, t1], Ji = (ti, ti+1] and also
equicontinuous at t = t+i , i = 1, · · · ,m . To this end, take u ∈ Br and h > 0
such that 0 ≤ t < t+ h ≤ t1 and have that
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∥ Qu(t+ h)−Qu(t)∥ ≤ ∥ [Sq(t+ h)− Sq(t)](ϕ(0) + gu(0) +H(0, ϕ+ g(u)))∥
+∥ H(t+ h, ut+h)−H(t, ut)∥

+

∫ t+h

t

∥ Sq(t+ h− s)G(s, us,Bu(s))∥ds,

+

∫ t

0

∥ [Sq(t+ h− s)− Sq(t− s)]G(s, us,Bu(s))∥ds,

Since Sq(t) is strongly continuous, the continuity of t 7→ ∥ Sq(t)∥ allows us to
deduce that

lim
h→0

∥ Sq(t+ h− s)− Sq(t− s)∥ = 0, (33)

Thus, by the assumption (A3) and above inequality, we obtain that

∥ Qu(t+ h)−Qu(t)∥ → 0.

For tm < t < t+ h ≤ T ,
∥ Qu(t+ h)−Qu(t)∥

≤ ∥ [Sq(t+ h)− Sq(t)](ϕ(0) + gu(0) +H(0, ϕ+ g(u)))∥
+∥ H(t+ h, ut+h)−H(t, ut)∥

+
m∑
i=1

∥ [Sq(t+ h− ti)− Sq(t− ti)]Ii(u(t
−
i ))∥

+
m∑
i=1

∥ [Sq(t+ h− ti)− Sq(t− ti)][H(ti, uti + Ii(ut−i
))−H(ti, uti)]∥

+

∫ t

0

∥ [Sq(t+ h− s)− Sq(t− s)]G(s, us,Bu(s))∥ds

+

∫ t+h

t

∥ Sq(t+ h− s)G(s, us,Bu(s))∥ds, (34)

by the strongly continuity and assumption (A3) , we obtain that ∥ Qu(t + h) −
Qu(t)∥ → 0 as h → 0 which implies that Q(BR) is equicontinuous on (tm, T ] .
Therefore Q is equicontinuous on [0, T ] . Since g is equicontinuous on [−τ, 0] .
Hence Q is equicontinuous on [−τ, T ] .
Next, we show that Q is β -contraction. We introduce the decomposition of
Q =

∑2
i=1 Qi such that

Q1u(t) =



ϕ(t) + gu(t), t ∈ [−τ, 0],

Sq(t)[ϕ(0) + gu(0) +H(0, ϕ+ g(u))]−H(t, ut) t ∈ [0, t1],

Sq(t)[ϕ(0) + gu(0) +H(0, ϕ+ g(u))]

−H(t, ut) +
∑k

i=1 Sq(t− ti)Ii(u(t
−
i ))

+
∑k

i=1 Sq(t− ti)[H(ti, uti + Ii(ut−i
))−H(ti, uti)], t ∈ (tk, tk+1],

(35)

Q2u(t) =

{
0, t ∈ [−τ, 0],∫ t

0
Sq(t− s)G(s, us,Bu(s))ds, t ∈ [0, T ], t ̸= tk, k = 1, · · · ,m.

(36)
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Firstly, we show that Q1 is Lipschitzian with Lipschitz constant K . For t ∈
[−τ, 0] and u, v ∈ BR and by the assumptions (A4) , we obtain

∥ Q1u(t)−Q1v(t)∥ ≤ ∥ g(u)(t)− g(v)(t)∥,
≤ ∥ g(u)− g(v)∥[−τ,0],

≤ Lg∥ u− v∥[−τ,T ], (37)

For t ∈ [0, t1], we get

∥ Q1u(t)−Q1v(t)∥

≤ M∥ [gu(0)− gv(0)]∥+M∥ H(0, ϕ+ g(u))−H(0, ϕ+ h(v))∥
+∥ H(t, ut)−H(t, vt)∥,

≤ MLg∥ u− v∥+MLHLg∥ A−α∥∥ u− v∥[−τ,T ] + LH∥ A−α∥∥ u− v∥[−τ,T ],

≤ [MLg(1 + LH∥ A−α∥) + LH∥ A−α∥]∥ u− v∥[−τ,T ], (38)

For t ∈ (t1, t2] , we have
∥ Q1u(t)−Q1v(t)∥

≤ M∥ [gu(0)− gv(0)]∥+M∥ H(0, ϕ+ g(u))−H(0, ϕ+ g(v))∥
+M∥I1(u(t−1 ))− I1(v(t

−
1 ))∥+M [∥ H(t1, ut1 + I1(ut−1

))−H(t1, vt1 + I1(vt−1
))∥

+∥H(t1, ut1)−H(t1, vt1)∥] + ∥ H(t, ut)−H(t, vt)∥,
≤ MLg(1 + LH∥ A−α∥) + LH∥ A−α∥∥ u− v∥[−τ,T ] +MLI∥ u− v∥[−τ,T ]

+MLH(2 + LI)∥ u− v∥[−τ,T ],

≤ [MLg(1 + LH∥ A−α∥) + LH∥ A−α∥+MLI +MLH(2 + LI)]∥ u− v∥[−τ,T ],(39)

and for t ∈ (tm, T ] , we get
∥ Q1u(t)−Q1v(t)∥

≤ [MLg(1 + LH∥ A−α∥) + LH∥ A−α∥) +mMLH(2 + LI) +mMLI ]

×∥ u− v∥[−τ,T ], (40)

Thus for all t ∈ [−τ, T ] , we conclude that
∥ Q1u(t)−Q1v(t)∥

≤ [MLg(1 + LH∥ A−α∥) + LH∥ A−α∥) +mMLH(2 + LI) +mMLI ]

×∥ u− v∥[−τ,T ], (41)

It follows that

∥ Q1u(t)−Q1v(t)∥ ≤ K∥ u− v∥[−τ,T ], (42)

where K = [MLg(1 + LH∥ A−α∥) + LH∥ A−α∥) +mMLH(2 + LI) +mMLI ] .
On the other hand, since Sq(t) , for t ≥ 0 is an equicontinuous solution operator
which is generated by −A . By Lemma 2, 4, 6 and (A1)(c) , we obtain that for
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any bounded set W ⊂ PC([−τ, T ];X) ,

βPC(Q2W ) = sup
t∈[0,T ]

β(Q2W (t)),

≤ sup
t∈[0,T ]

β(

∫ t

0

Sq(t− s)G(s,Ws,BW (s))ds),

≤ sup
t∈[0,T ]

∫ t

0

β(Sq(t− s)G(s,Ws,BW (s)))ds,

≤ M sup
t∈[0,T ]

∫ t

0

[η1(s)( sup
θ∈[−τ,T ]

β(W (s+ θ))) + η2(s)B
∗β(W (s))]ds,

≤ MβPC(W )

∫ t

0

[η1(s) +B∗η2(s)]ds,

≤ M(∥ η1∥L1 +B∗∥ η2∥L1)βPC(W ) (43)

where W (t) = {u(t) : u ∈ W} ⊂ PC and Wt = {ut : u ∈ W} ⊂ PC([−τ, 0] : X)
and for t ∈ [−τ, 0] , we have βPC(Q2W ) = 0 .
Thus, from Lemma 2 we get that for any bounded set W ⊂ PC([−τ, T ];X) .

βPC(QW ) ≤ βPC(Q1W ) + βPC(Q2W ),

≤ [K +M(∥ η1∥L1 +B∗∥ η2∥L1)]βPC(W ). (44)

From the assumption (A6) , we have that [MLg(1 + LH∥ A−α∥) + LH∥ A−α∥) +
mMLH(2+LI)+MLI +M(∥ η1∥L1 +B∗∥ η2∥L1)] < 1 . Hence, it implies that Q
is a contraction i.e., there exists a fixed point u ∈ X by Darbo-Sadovskii’s fixed
point theorem. The fixed point of the map Q is a mild solution for the system
(1)-(3). This complete the proof of the theorem.
If we replace the conditions (A1)(c) and (A2) of Theorem 3.1 by

(A1)(c’) There is an integrable function mG : [0, T ] → R+ and a continuous nonde-
creasing function Ω : [0,∞) → [0,∞) such that

∥ G(t, u, v)∥ ≤ mG(t)Ω(∥ u∥[−τ,0] + ∥ v∥), (45)

for all t ∈ [0, T ] and (u, v) ∈ C([−τ, 0];X)×X.
(A2’) There exist integrable functions η1, η2 : [0, T ] → [0,∞) such that for any

bounded subset D1 ⊂ C([−τ, 0];X), D2 ⊂ X

β(Sq(t)G(t,D1, D2)) ≤ η1(t)( sup
θ∈[−τ,0]

β(D1(θ))) + η2(t)β(D2)). (46)

Then, we can have the following result:
Theorem 2 Suppose that the assumptions (A0), (A1), (A2′), (A3) − (A5) are
satisfied and

[MLg(1 + LH∥ A−α∥) + LH∥ A−α∥) +mMLH(2 + LI)

+MLI + ∥ η1∥L1 +B∗∥ η2∥L1)] < 1. (47)

Then, nonlocal impulsive fractional integro-differential equation has at least one
mild solution.
Theorem 3 If assumptions (A0)−(A1)[(a), (b), (c′)], (A2′), (A3)−(A5) holds and

[MLg(1 + LH∥ A−α∥) + LH∥ A−α∥) +mMLH(2 + LI) +MLI

+∥η1∥L1 +B∗∥η2∥L1 ] < 1, (48)
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and

∥ A−α∥c1 +M lim inf
k→∞

Ω((1 +B∗)r)

r

∫ T

0

mG(s)ds < 1. (49)

Then, there exists a mild solution for system (1)-(3).

4. Application

In this section, we consider the following fractional integro-differential equation
to illustrate the application of the theory

Dq
t [u(t, x) + e−t

∫ 0

−r

a1(θ)

1 + |u(t+ θ, x)|
dθ]

=
∂2

∂x2
[u(t, x) + e−t

∫ 0

−r

a1(θ)

1 + |u(t+ θ, x)|
dθ]

+J1−q
t [

∫ 0

−r

a2(θ)t
2/3 sin(

|u(t+ θ, x)|
t

)

+

∫ t

0

B(t, s)sl sin |u(s, x)|ds], x ∈ [0, 1], t ∈ [0, 1], t ̸= tn, (50)

u(t, 0) = e−t

∫ 0

−r

a1(θ)

1 + |u(t+ θ, 0)|
dθ, (51)

u(t, 1) = e−t

∫ 0

−r

a1(θ)

1 + |u(t+ θ, 1)|
dθ, (52)

u(θ, x) = u0(θ, x) +
eµθ

l2
× |u(θ, x)|

1 + |u(θ, x)|
, −r ≤ θ ≤ 0, (53)

∆u(ti, x) =

∫ 1

0

pi(x, y)dy cos
2 u(ti, x)ds, x ∈ [0, 1], 1 ≤ i ≤ n, (54)

where cDq
t denotes the Caputo’s fractional derivative of order q , 0 < q < 1 ,

l ∈ N, r > 0, 0 < t1 < t2 < · · · , < tn < T are prefixed numbers and ϕ ∈
C([−r, 0];X) , u0 : [−r, 0] → [0, 1] is continuous functions and a1, a2 : [−r, 0] →
R , pi(x, y) ∈ L2([0, 1]× [0, 1];R) satisfy the following conditions

(i) a1 is a continuous function such that∫ 0

−r

|a1(θ)|dθ < 1, (55)

(ii) a2 is a continuous function such that∫ 0

−r

|a2(θ)|dθ < ∞. (56)

(iii) For i = 1, · · · , n, the function pi(x, y), y ∈ [0, 1] is measurable function
such that

(

∫ 1

0

(

∫ t

0

pi(x, y)dy)
2dx)1/2 ≤ Np. (57)

Consider X = L2([0, 1];R) . We define an operator A : D(A) ⊂ X → X by
Av = v′′ with the domain D(A) = H2([0, 1]) ∩H1

0 ([0, 1]) . Then, −A generates
an analytic semigroup of bounded linear operators {T (t)}t≥0 on X . By the
subordination principle of solution operator [Thm, 3.1 in [40]], we get that −A
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generates a solution operator {Sq(t)}t≥0 . Since Sq(t) is strongly continuous on
[0,∞) , therefore from the uniformly bounded theorem, we have that there exists
a constant M > 0 such that ∥ Sq(t)∥ ≤ M for t ∈ [0, T ] .
Then we can reformulate the equation (50) as the equation (1). If we set, for
x ∈ [0, 1] and φ ∈ C([−r, 0];X)

w(t)(x) = u(t, x),

ϕ(θ)(x) = u0(θ, x), θ ∈ [−r, 0],

g(t, φ)(x) = e−t

∫ 0

−r

a1(θ)

1 + |φ(θ)x|
dθ,

h(φ(θ))(x) =
eµθ

l2
· |φ(θ)(x)|
1 + φ(θ)(x)

, (58)

B = B(t− s),

f(t, φ,Bw(t))(x) =

∫ 0

−r

a2(θ)t
2/3 · sin( |φ(θ)(x)|

t
)dθ +

∫ t

0

B(t, s)sl sin |w(s)x)|ds.

Further, for t ∈ (0, 1] , we have that

∥ f(t, φ,Bw(t))∥ ≤ t−3/2∥ φ∥[−r,0]

∫ 0

−r

|a2(θ)|dθ +B∗tl∥ w(t)∥,

≤ m1(t)∥ φ∥[−r,0] +m2(t)∥ w(t)∥, (59)

where m1(t) = t−3/2
∫ 0

−r
|a2(θ)|dθ and m2(t) = B∗ tl, B∗ = supt∈[0,T ]

∫ t

0
∥B(t, s)∥ds .

Next, for w1, w2 ∈ X and φ1, φ2 ∈ C([−r, 0];X) , we obtain

∥ f(t, φ1,Bw1(t))(x) − f(t, φ2,Bw2(t))(x)∥

≤ t−3/2

∫ 0

−r

|a2(θ)|∥ φ1(θ)(x)− φ(θ)(x)∥dθ

+B∗tl∥ w1(t)− w2(t)∥, (60)

Thus, for any bounded sets D1 ⊂ C([−r, 0];X) , D2 ⊂ X , we get

β(f(t,D1, D2)) ≤ t−3/2

∫ 0

−r

|a2(θ)|β(D1(θ))dθ +B∗tlβ(D1),

≤ t−3/2 sup
θ∈[−r,0]

β(D1(θ))

∫ 0

−r

|a2(θ)|dθ +B∗tlβ(D1),

≤ η1(t)( sup
θ∈[−r,0]

β(D1(θ))) + η2(t)β(D2), (61)

where η1, η2 are defined as η1(t) = t−3/2
∫ 0

−r
|a2(θ)|dθ, η2(t) = B∗tl .

Now, we can see that for φ1, φ2 ∈ C([−r, 0];X), θ ∈ [−r, 0] ,

∥ h(φ1)(x)− φ2(x)∥ ≤ eµθ

l2
· ∥ φ1 − φ2∥ ≤ ∥ φ1 − φ2∥

l2
, (62)

we take Lh = 1/l2 and ∥ h(φ)(x)∥ ≤ 1/l2 = N , for φ ∈ C([−r, 0];X) . Similarly
we can see that g satisfies the assumption (A3) . Applying Theorem 3 , we get
that system (50) has a mild solution.
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