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ASYMPTOTICS OF SOLUTIONS OF NONLINEAR
ABEL-VOLTERRA ¢-INTEGRAL EQUATIONS NEAR ZERO

ZEINAB.S.I. MANSOUR AND NUHA A. MUATAZ

ABSTRACT. This paper is devoted to studying the nonlinear Abel-Volterra ¢-

integral equations of the form

m M) [*

" () = (gt/z;q)a-19(t) dgt + f(x) (0 <z <a<o0)
Lg(e) Jo

with @ > 0 and m € R (m # 0,—1,-2,...). The asymptotic behavior of ¢(z)

as x — 0 is obtained, provided that the functions A(z) and f(z) have special

power asymptotic near zero. The solution ¢(z) in closed form is given in some

cases.

1. INTRODUCTION

In [8], Mansour proved the existence and uniqueness of positive continuous so-
lutions of the nonlinear Fredholm g-integral equations

b(z) = )\(x)/ (g7 Qar B dyt (0 <z <1) (1)
0
and
1
o(x) = f(z) + )\(17)/0 (qt/x;q)a19"(t)dgt (0 <z <1) (2)

where both of A and f are positive continuous functions on [0,1] and 0 < |p| <
1. Replace p, and ¢ by -, and ¢™ on (1) and (2), respectively, where m ¢
{0,—1,—-2,...}. This yields the Fredholm ¢-integral equations

6™ (x) = Az) / (at/2: a10(t) dgt (0 <z < 1) 3)
and

o™ () = f(z) + Ma) / (@12 )ard(t) dgt (0 <z < 1) (4)
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In this paper, we investigate the asymptotics of solutions of (3) and (4) when f
and A have the following power asymptotic near zero

Az) ~ zP™ Z AezF, (5)
k=—1
with A_; # 0 and
fla) ~ 2P N frath, (6)
k=—n

2. PRELIMINARIES AND ¢-NOTATIONS

Let g be a positive number which is less than 1, N be the set of all positive
integers, and Ny be the set of all nonnegative integers. In the following, we follow
the notations and notions of g-hypergeometric functions, the g-gamma function
I',(x), Jackson g-exponential functions ey (x), and the g-shifted factorial as in [3, 4].
By a g-geometric set A we mean a set that satisfies if x € A then gx € A. Let f be
a function defined on a g-geometric set A. The g—difference operator is defined by

Dyf(z) == fo) = flaz) -, £0. (7)

T —qx

Jackson [5] introduced an integral denoted by

/ab f(x)dgz

as a right inverse of the g-derivative. It is defined by

b b a
/af(t)dqt ::/O f(t)dqt—/o F(t)dyt, a,b e C, (8)

where

/ ft)dgt :==(1—¢q) Z zq" f(zq"), = € C, 9)
0 n=0
provided that the series at the right-hand side of (9) converges at x = a and b. A
g-analogue of the Riemann-Liouville fractional integral operator is introduced in [1]

by Al-Salam through

I $0) = s [ atfasa), ) di (10)
a ¢ {-1,-2,...}. Using (9), we obtain
« o aN~ @5 Dk
I fz) :=2%(1—-9q) : flzg™), (11)
! kZ:O (Gor

which is valid for all @. The g-translation operator is introduced by Ismail in [4]
and is defined on monomials by

"= a"(—y/z;q)n, (12)

and it is extended to polynomials as a linear operator.

evx
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3. ASYMPTOTIC SOLUTIONS NEAR ZERO

The following theorem is proved in [7]. Therefore we introduce it without a
proof.

Theorem 3.1. Letp € Z,a € R and {(pk}zo:p be a sequence of real numbers. If
the function p(x) has the asymptotic relation

x) ~ Z orpz?* (z = 0), (13)
then for m € R with m # 0,—1,—-2, ...... , there holds the asymptotic
¢ () ~ 2P Dy gt (z = 0) (14)
k=0

where the coefficients ®, ., are expressed in terms of the coefficients ¢y, :

m m
(I)p,O = (0)<Pp )
m\ .
Q,1 = <1>90p 1<Pp+1,
m m— m—
Qpo = <1>‘Pp 1‘/’11-1-2 + <2>S0p 290;2;4-1:
o m\ (2 o MY m-3 3
p3 = Pp ‘PerS + 9 1 Yp Pp+1Ppt2 T 3 Yp Pp+1o (15)
m—1 m m—2 2 2
@, < )wp Pp+a + <2><pp [%H + (1> @p+1<pp+3}
m\ (3\ ,._ m\ o,
+<3> (1> o302 Ppra + <4><pp Y001

In [7], Kilbas and Saigo proved that if in Theorem 3.1 m € {2,3,...}, then

etc.

0
p,k: - Z Z ZO'Zl'ZQ ¢ ¢p+1 ¢p+,]

i0=01,i2,...,i;
where the summation is taken over all non-negative integers i1, ig,...,%; such that
0<i; <ip <. <5 <k,
o+t +...+ij=m, i1 +2+...+ji; =k
Theorem 3.2. Let p € Z and o € R be such that ap > —1. If

x) ~ Z(pﬂ;o‘j (z — 0), (16)
then

N ]a Ja+1) 50



34 ZEINAB.S.I. MANSOUR AND NUHA MUATAZ JFCA-2015/6(1)

Proof. First we consider (4), where A(z) and f(z) have the asymptotics (5) and
(6), respectively. We will seek an asymptotic solution ¢(x) of (4) in the form (16).
From (11)

a

I$¢(z) =a*(1—¢ O‘Zq’“ o(zq").
k=0

7

Hence, applying (13) we have

I86(z) ~ 2°(1—q)° Z’“ i ng ©I gk

7

= a(1-9" Zsojwj" Zq““j*”—f L

4 )k

OL_]+()£+1)

1_q Z@J ag+1)

where we applied the ¢g-binomial theorem in the last step, cf. [3, xvii]. Consequently,
Jja+1)
I ~ T eV v )
o= Z i’ Jja+a+1)

and the theorem follows.
O

In view of the asymptotic (5) and the general properties of asymptotic expan-
sions, see [9, Chapter 1], we have

Az)za—t [* )
F,I(oz)/o (qt/x;q)a-10(t) dgt

I+k—1 .
I'y(ai +1)
~ pOPM q o ) ak
T E < E —(ai ot 1) kz1<,01>$ (z — 0).

k=—n \i=l-n—1

Then, taking into account Theorem 3.1 and Lemma 6, we obtain

)
xa(l—n—l)m § (I)lfnfl,kxak ~
k=0

%) I+k—1 . %)
o 3 (0 AN o) e e 3 fak (@ 0).
Dy(ai+a+1)"" "7

k=—n \i=l-n—1 k=—n
(17)

Theorem 3.3. Let o« >0, p, m € R (m #0,—1,-2,.....) be such that ap > —1.
Assume that as well as l,n,r := (l—-n—p—1)m € Z such thatl—n—1 > —1/a and
r > —n. Let Nx) and f(z) have the asymptotics (5) and (6) and the coefficients
i satisfy

—Akﬂ;l% +f=0 (18)

(k=-n,—n+1,..,r—1),
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and

I+k—1 (i + 1)

__tN 07 i . 1
T, az+a+1))\kzl<;9z+fk (19)

(bl—n—l,k—r =
i=l—-n—1

(k=rr+1,...).

Then (4) is asymptotically solvable in E}I(O,a) for some a > 0 and its asymptotic
solution near zero has the form (13).

Proof. Suppose r = (l—n—p—1)m € Z for m € R, (m # 0,—1, -2, .....) such that
r > —n. Then (17) is equivalent to

ar+pm)Zq)l 1k55 k o popm Z I+k—1 az+]—) AT o 2ok
" =\ L F az+a+1) o

4 gopm Z kaozk

k=—n

(20)

Make the substation p = k47 on the left hand side of the last relation and then
replace u by k, this gives

ame(I)l 1k T kwxapm Z I+k—1 O{Z+ ) Ak s ak
e I'q( az—i—a—i—l) s

k=—n \i=l-n—1

4 gopm Z fkl'ak

k=—n
(21)

Hence, it follows from (21) that the coefficients ¢, satisfy (18) and (19). Then
(4) is asymptotically solvable and its asymptotic solution near zero is given by
(13). O

Theorem 3.4. Let > 0,m > 0 and let p,l,n € Z be such thatn=1—-p—1<0
and (p—1+1)/m € Z and setr = p+(p—1+1)/m > —1/a. Let \(x) and f(x) have
the asymptotics (5) and (6), respectively. Moreover, let the coefficients ¢y satisfy
the relations

Qryi—p—1 = [ (22)
(k=p—Il+1,p—14+2,...,7r=1),
and
I+k—1
q(ad+1)
D, = Ak—i—19i 23
tl—p—1 = Fm_'_a_i_l)kzup-i-fk (23)

(k:rfl+1,rfl+2,....).

Then (4) is asymptotically solvable in L](0,a) and its asymptotic solution near zero
has the form

Z orr® (z — 0). (24)
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Proof. We assume
Z oz (z — 0),

and we shall prove that the coefﬁc1entb ¢k are given by (22), (23). Applying the
same arguments as in Theorem 3.3, we came to the asymptotic relation

20T i S xak ~ P i lJrszl Fq<ai +71> Ab: . xak
mk Fy(ai+a+1) hois19i

k=0 k=—n i=r

- (25)
+xapm Z kaak
k=p—Il—1
Since m(r — p) € N, the left hand side of (25) can be written as
porm Z P, kxak — xozpm+a(r—p)m Z P, kxak
k=0
= gopm Z P, k$(x(k+(r—p)m) )

k=0

Make the substation = k + (r — p)m on the last series and then replace u by k,
this gives

S Z o ok g 3 ZMA I g
rk—(r—p)m OZZ+CV+].) —i—1%¥i

k=(r—p)m k=—n =r

+$o¢pm Z kaak
k=p—i+1
(26)
Equating the coefficients of ¥ on (26) gives (22) and (23). Then (4) is asymptot-
ically solvable in ,Cé (0,a) for some a > 0 and its asymptotic solution is in the form
(24). O

Corollary 3.5. Let a >0, m > 0 and let | be a positive integer such thatl/m € Z
and set r = —=1+41/m. Let

m) ~ pm Z)\kxak7 f(m) ~ pm kaxak (37 N O),
k=l k=l

with \; #£ 0, fi #0. Then (4) is asymptotically solvable and its asymptotic solution
near zero has form (24).

Proof. The proof follows from Theorem 3.4 by substituting with p = —1, n = [ and

fe=0(k=—-1,-14+1,....,—l+7r) in equations (5) and (6). Hence, the coefficients
p satisfy
ki = fr (27)
(k=—l,—l+1,...,—l+7),
and Lok
Q1 = (i +-1) Ne—i—1i + fi (28)

Iy( az+a+1)
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(k=r—1l4+1r—1+4+2,...).

Then (4) is asymptotically solvable in £}(0,a) for some a > 0 and its asymptotic
solution near zero has the form (24). O

Theorem 3.6. Let a > 0,m < 1(m # 0,—1,—2,.....) and let p,l,n € Z be such
thatn =1—p—1<0and (p—14+1)/(1—m) € Z and letr = p—(p—1+1)/(1—m) >
—1/a. Let Mx)and f(x) have asymptotics (5) and (6) and the coefficients oy, satisfy

I+k—1 .
Ly(ai+1)
Dy pr1r1= — N1 2
hetl-r—1 22: T (ci+a+1) 717 (29)

(k=7 =141 =142 p—1),
and

I+k—1
(i + 1)

T, az_i_a_’_l))\k—i—ﬂpi‘i‘fk (30)

rk+l r—1 —

(k:pfl+1,p—z+2, ....... ).
Then (4) is asymptotically solvable and its asymptotic solution near zero has the

form (24).

Proof. Applying Theorem (3.4) we have

%) I+k—1 .
Z Z F glai+1)
E Pk gy~ 2 ( (vi+a+1) Akil(pi) -

k=r—I1+1 k=—n i=r
_|_xapm E kaak
k=p—I+1

Then the coefficients ¢y, satisfy (29) and (30). Then (4) is asymptotically solvable
and its asymptotic solution near zero has the form (24) (]

4. ASYMPTOTIC OF THE SOLUTION IN SOME SPECIAL CASES

In this section we give asymptotic solutions of (4) when A(z) and f(z) have the
special case:

Mz) = 2@V and f(x xPm Z frak

k=—n
Hence (4) takes the form

a(pm—1) x
o) = et [t/ mga o) dyt -2 S fu @)

k=—n
where 0 <z <a<oo, A\#0and N > —n.

Theorem 4.1. Let o > 0,p, m e R(m #0,-1,-2,...) and letl, n, l —n—p—
1)m € Z be such thatl —m —1>—1/a and (I —n—p—1)m > —n.
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(1) Whenr=(I—n—p—1)m > N and the coefficients ¢y, satisfy

or=0k=N+IN+I1+1,..,7r+1-2), (32)
. —fk_l+1rq(04k + o+ 1)
ok AT, (ak + 1) (33)

(k=-n+l-1,—n+1,....N+1-1),

and
Alg(ak +1)

T (ak+a+1)7"

(k=r+1l-1,r+1...).
Then (31) is asymptotically solvable in L}(0,a) for some a > 0 and its
asymptotic solution near zero has the form

Q1 ki1 = (34)

I+N-1 oo
Ly(ak +a+1) & &
pla)~ > Lo et Y gt (35)
k=l-n—1 Alq(ak +1) k=r+4l-1
(2) When —n < r < N and the coefficients @y, satisfy
Al (ak +1
Qi1 kg1 = #S@k — fr—ip1 (36)

Fy(ak+a+1)
(k=r+l-1r+l,..,N+1-1),

Alg(ak +1)
T (ak+a+1)""
(k=N+I,N+I1+1,....).
Then (31) is asymptotically solvable in L}(0,a) for some a > 0 and its
asymptotic solution near zero has the form

Q1 ki1 = (37)

r4+1—2 >
Iy(ak+a+1) & &

~J . _ @ @ . 8
Y@~ D NrkrD ottt D e (38)

k=l—n—1 k=r+i—1

(3) When r = —n and the coefficients @y, satisfy
Al (ok 4+ 1)

Bp oy piran = O g 39
l—n—1k—l+1+ Fq(ak+a+1)¢k Sr—i41 (39)

(k=-n+l—-1,-n+1l,..N+1-1),

Alg(ak +1)
T (ak+a+1)"
(k=N+I,N+1+1,...).
Then (31) is asymptotically solvable in Eé (0,a) and its asymptotic solution
near zero has the form (13).

Proof. From (5) and (6) we obtain A_; = A\, \; =0 for j >, and f =0 for k > N.
Hence, conditions (32)-(34) imply that the conditions (18) and (19) of Theorem 3.3
are satisfied. Hence ¢ has the asymptotic (13) where the coefficients are given by
(32)- (34). That is ¢ has the asymptotic (35). This proves (1) of the Theorem.
The proofs of the points (2) and (3) are similar to the proof of (1) and so they are
omitted. (]

D1 k—ltien = (40)



JFCA-2015/6(1) ABEL-VOLTERRA ¢-INTEGRAL EQUATIONS 39

Corollary 4.2. Under the assumptions (32)- (34) of Theorem 4.1(1), the solution
() of (31) has the asymptotic
I+N-1

B Iy(ak+a+1) ok
¢() _k:§_1 N (o 1) et
+ <pr+l,1x°‘(7"+l_1) + O(xa(“l)) (x — 0), (41)

where

_ Tyla(r+0+1) Lylal—n)+ D fn \"
Proi=1 = Ag(a(r+1-1)+1) % ()\Fq(a(l -n—1)+ 1)> ' (42)

Furthermore, if N > —n, we have

I+N—-1
Iy(ak+a+1) &
P(x) = e fi 12
k:gq AT, (ak + 1)
+ @11z o 2D 4 02 (2 0), (43)

where @411 is given by (42) and
- mlg(a(r+1+1)+1) [ To(a(l —n)+1)f_, mt
P T T (alr + ) + 1) \MWTg(a(l—n—1) +1)
Folal—=—n+1)+1)f_
ALy (a(l —n)+1) '
Proof. Substitute with k =r +1 — 1 in (34). This gives
B Lyla(r+1)+1)
Pl T N (a(r +1-1) + 1)
Lylar+D)+1) .
A (a(r +1— 1)+ 1) bt

(44)

l—n—1,0

Then put k = —n in (18) we get
TFy(a(l—n)+1
Orny = gl =n)+1) fo
Ng(a(l=n—1)+1)
Then we are done. Similarly if N > —n. O

Corollary 4.3. Under the assumptions of Theorem 4.1(2), the solution ¢(x) of (31)
has the asymptotic

r4+l—2
Iy(ak+a+1) &
¢(z) = e fi 1 12®
kzgfl AL, (ak + 1)
+ cer_lxa(TH_l) + O(xa(r+l)) (x — 0), (45)

where

_ Ty(a(r+1)+1) Ty(a(l—n) + 1) fn \"
Pr4i—1 = )\Fq(a(r+ I 1) n 1) X {fr + ()\I‘q(a(l -_n— 1) + 1)> } . (46)

Furthermore, if N >r > —n+ 1, we have
r+l—2

B Fylak+a+1) ok
o) = k:;ﬂ Alg(ak +1) fectaz
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+ @rpr1z®T T 4, 2D 4 O (22T (2 0), (47)
where @411 is given by(46) and

mly(a(r+1+1)+1) Cyla(l—n)+1)fn \™ "

prot = Al g(a(r+1)+1) x (/\Fq(a(l —n—1)+ 1))

Fylal—n+1)+1)f_pnt1
ALy (a(l —n)+1)
Proof. Substitute with k =r +1 — 1 in (37). This gives
B Foyla(r+1)+1)

Prot-t = My(a(r+1-1)—-1)

Lola(r+0)+1) .
M (al(r+1-1)+ 1)%_"_1

Ly(a(r+1) +1) Lyla(l=n)+1)f-n \"
Ag(a(r+1-1)+1) {fr + ()\Fq(a(l -n—1)+ 1)) } '

(48)

(I)lfnfl,()

Similarly if N >r > —-n+1 O

Corollary 4.4. Under the assumptions of Theorem 4.1(3), the solution ¢(x) of (31)
has the asymptotic

¢(z) = Az 1 O(2*0=) (z — 0), (49)
where £ = A is a solution of the equation
_ALg(a(l—n—-1)+1)

¢ T al=ny+1) & TIm=0 (50)
Furthermore, if N > —n+ 1 and
Ag(a(l—n)+1) £ AT
Fyla(l—n—-1)+1) ’
we have
o(x) = AgeU=n=1) 4 pgot—n) 4 O(mo‘(l_”+1)) (x — 0), (51)
where

-1

)\FQ(a(l — TL) + 1) o mAmfl f— +1.

Fy(a(l—n—-1)+1)
Proof. Substitute with k =1 —mn — 1 in (39). This gives
A (a(l—n—1)+1)
Fy(a(l—n)+1)
Mgl —n—1)+1)
Fy(a(l—n)+1)
Then ¢;_,—1 = A is a solution of equation (50). Now we prove (51) if N > —n+1
and

B=—

(I)lfnfl,O = Pl—-n—1 — f*na

o1 — Olon_1+ fon=0.

ALy (a(l—n)+1)
Fyla(l—n—-1)+1)
put k =1 —nin (39). We obtain
Alg(a(l —n) + 1)
Fg(a(l—n+1)+1

#mA™

‘I)l—n—l,l = )‘Pl—n - f—n-i—la
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AL (a(l—n)+1)
Fy(a(l—n+1)+1
where we used (15). Since A = ¢;_,—1 and B = ¢;_,,, then we have

Ay (a(l —n) + 1) -t

B= [Fq(a(l—n— 1) +1) —mATTH o

me" o, = Pt = font1s

In the remaining of this section we derive an exact solution of the equation

\popm—1)

om(@) = Foma [tz o0 dt b (2

(0<z<a<o0).

From Corollary 4.4, the solution ¢(z) of (52) has the asymptotic (49) near zero,
where £ = A is a solution of the equation

A (a(l—n—1)+1)
Iy(a(l—n)+1)

Theorem 4.5. Leta >0, 8> —1(8#0), andl € R withl # —a andl # —a—f.
For a,b € R (a # 0) let the equation

glH+a)/B _ AL(B+1)

gm_ £+b:0

—b=0, 53
Ly(B+a+ n° (53)
be solvable and let £ = c be its solution. Then the nonlinear integral equation
Azt v
PrUFN/B () = AT a1 / (qt/2;qQ)a—1 G(t) dgt + b +PT! (54)
Iy(a) 0

0<zr<a<o)

is solvable and its solution is given by

o(z) = ca. (55)

Proof. We apply Corollary 4.4 with m = 1—1—0‘Tér77 v = a(pm—1), and a(pm—n) =
a+ B+ 7. Then the solution is given by ¢(x) = cx® + O(z%+®). But a direct
substitution verifies that ¢(x) = cz® is a solution of

_A(l-n—-a+1)

m —-b=0.
¢ Lyn—14+1) ¢
O
Now we consider the homogeneous equation associated with (54) which is
1+(l4a) /B Azt ac1 [©
¢ (z) = ()" (qt/z;q)a—1 ¢(t) dgt (0 <z <a <o0).  (56)
q 0

According to Theorems 3.1 and (?7?) we obtain the following result

Theorem 4.6. Let the conditions of Theorem 4.5 are satisfied and let € = ¢ be the
unique solution of (53).
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(i) If -1 < (I+«a)/B < 0, then (55) is the unique solution of (56) in the space
C[0,a] for some a > 0. If in additionally, A\,b, and C are positive numbers,
then this solution belongs to CT|0,d].

(i) If (a«+1)/8 > 0, a,b, and c are positive numbers, then (55) is the unique
solution of (56) in CT[0,1].

Remark 4.7. In [6, PP. 441-442] Karapetyants et al. studied the existence of posi-
tive solutions of the algebraic equation
&M —d¢—b=0, (57)

with m > 0, m # 1 and a, b € R — {0}. They investigated the positive solvability
of (57) by using the properties of the function

[ =¢"—dg—b.
Set )
d m—1
Cp = (m> 5 FE = f(Co). (58)

The authors of [6] obtained the following result which we state without proof.

Theorem 4.8. Let m > 0, m # 1 and a, b € R — {0}. Let E and co be as in (58).
Equation (57)
(i) does not have positive solutions if either d < 0,b <0 ord>0,b<0, m >
LE>00rd>0,b6>0,0<m<1, E<O;
(ii) has a unique positive solution
il &=c¢,>0ifd<0,b>0;
1.2 E=c1>cog>0if eitherd>0,0<0,0<m<1 or
d>0,b>0,m=1;
i3 E=coy>04if E=0c1 > co >0 if either and either d >0, b <0, m >
lord>0,0>0,0<m<1
(iil) has two positive solutions & = ¢y and & = c3, 0 < ¢ca < ¢o < cs, if either
d>0,b<0,m>1,E<0ord>0,b>0,0<m<1, F>0.

5. ASYMPTOTIC SOLUTION OF LINEAR EQUATION IN GENERAL CASE

In this section we investigate the special case m =1 of (4) when 0 < a < 1. In
other words, we give the asymptotic solution of the equation

2oL /O ()2 Qe 6(8) dt + () (59)

0<z<o00,0<a<l).
In [2, P.214], the authors studied (4) for all & > 0 when A(z) = X for all = € (0, a],
and f € Eé [0, a] where a is a positive number satisfying the inequality
[Ala®(1 —¢)* < 1.
They proved that the g-integral equation (59) under the previous conditions has a
unique solution

b(x) = f(z) + Az / (at/73 D16~ e 0 (M ) £ (1) dat,

in the space £}[0,a] where ¢ is the ¢-translation operator defined in (12).
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Theorem 5.1. Let f(x) and \(x) have the asymptotics as x — 0

x) ~ Z frazk, (60)
k=—1
and
k=—1

Assume that
Fy(ak+a+1)

A1 # Ly(ak+1)
Then the unique power asymptotic solution ¢(x) of (59) near zero in the space of
all continuous functions is given by the form ¢(x) ~ > po | orx®*, where @y, is
given by

(k=-1,0,1,....). (62)

©i + fr (63)

|y Fy(ak+1) -t glad + 1) Ap_i—1
k= T (ak+a+1)""" F (vi+a+1)

(k=-1,0,1,2,......).
Proof. Using (23) we obtain

az—l—l

T e k=-1,0,1,..).
F az—i—a—i—l) him1pit fi )

—1,k+1 —

Substitute with p = —1 in (16) yields

x) ~ Z cpjx"‘j, (64)
j=—1
and from (14) with p= -1 and m =1
¢ Z(I)_kaak = Z (D_Lj_'_ll'aj. (65)
k=0 j=—1

Compared to coefficients of 27 in (64) and (65) we obtain

Poyj=¢; (G=-1,01,..).

So, we have the following formulas for the coefficients oy

Oﬂ+1 )\k i1
= ; k=-1,0,1,...
Pk = F O[Z+Oé+ ) l+fk ( y Uy Ly )7
equivalently
L (ak+1) i+ )N
lfq— - = i k=-1,0,1,...).
Fy(ak+a+1) 1} k= F (vi+a+1) it I )

(66)
Hence if (62) satisfied, asymptotic solution ¢(z) of equation (59) is given by the
form (64) where ¢y, given by (63). O
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Theorem 5.2. Let f(x) and A(z) have the asymptotics (60) and (61), respectively
as © — 0. Assume that there exists a number j € {—1,0,1,....} such that

Lyl +a+1)

A7 f—
S WEVERY

(67)
If the coefficients fr (k = —1,0,1,...., ) in the asymptotic expansion (60) satisfy
the relation

i—1 ,

! Fq(()é] + 1)Aj7i71
Fy(oi+a+1)

i=—

then the unique power asymptotic solution ¢(x) of equation (59) is given by

o0
z) ~ex | ppatt, (69)
where ¢ is an arbitrary constant. If the condition (68) is not satisfied, then equation
(59) does not have any asymptotic solution of the form (64).

Proof. Using Theorem 5.1 and suppose (62) is not valid. This means there exists
a number j € {—1,0,1,....} such that (67) holds. In this case the coefficients
fe (k= —1,0,1,...., ) in the asymptotic expansion (60) satisfy the relation (68),
where @, (i = —1,0,1,...,j — 1) are expressed via f; (i = —1,0,1,..., 7 — 1) by means
of (63). For example, when j = —1,0, 1, the relations (67) and (68) have the form

)\_1 = f_1 =0 for ]: -1

Ly(1-a)

Ar=Ty(a+1) Ap-1+ fo=0 for j=0
T,(2a+1)
Lg(a+1)
Thus if condition (68) is satisfied, then the asymptotic solution of (59) has the form
(69), where c is an arbitrary constant and ¢y, (k # j) are given by (63). If condition

(68) is not satisfied, equation (59) does not have any asymptotic solution of the
form (64) O

A= Lola+1DAp_1+Xopo+ f1 =0 for j=1

Theorem 5.3. Let
z)~ Y frak, (70)
kf

and A(z) has the asymptotic (61),as x — 0, and let condition (62) be satisfied.
Then the unique power asymptotic solution ¢(x) of equation (59) is given by the
form

x) ~ Z(pkx“k, (71)
k=0

where @i, (k € Ng) are given by

T (ak+1 & T (k4 DAy
H))Al} X[Z al -

= |1- witful. (72
vk Iy(ak+a+1 —~ Dylaita+l) I (72)
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Proof. If A(x) has the asymptotic (60), then (66) takes the form
(1-Te(1—a)A_1)p_1 =0,

k—1
1— I‘q(ak + ].) \ 1:| L= Z Fq(()ék + 1))\]6,2',1

Fy(ak+a+1) Iy(ovi+a+1)

wi+ fr (k=0,1,...). (73)
i=—1
When condition (62) holds, ¢_; = 0 and hence the asymptotic solution (64) of
equation (59) has the form (71), where ¢y (kK =0,1,2,...) are given by (72). O

Theorem 5.4. Assume that the functions f(x) and \(z) have the asymptotics
(70) and (61), respectively, as x — 0. If \_1 = 1, then the unique power asymptotic
solution ¢(x) of equation (59) in the space L}[0,a] for some a > 0 is given by

¢(x) ~cx™ + Z orr®, (74)
k=0

where ¢ is an arbitrary constant and ¢y (k € No) are found from (72). Assume
there exists a number j € {—1,0,1,....} such that
(1-Tq(l—a)la)p-1=0 (j=-1)
and
j—1 .
Lglaj+1)Aj—ia
Fy(avi+a+1)

i+ fi=0 (5€Ny). (75)
i=—1
If the coefficients fi. (k = 0,1,....,7) in the asymptotic expansion (70) satisfy the

relation
kz_:l Dy(ak +1)Ag—i—1

P Fy(ei+a+1)

then the unique power asymptotic solution ¢(z) of equation (59) is given by

o0
(x) ~ cx® + Z orx®r, (77)
o
where ¢ is an arbitrary constant.

Proof. If condition (62) is not valid, then there exists a number j € {-1,0,1,....}
such that (67) holds. Then (68) has the form (75). When A_; = 1, the asymptotic
solution ¢(z) of equation (59) has the form (74), where cis an arbitrary constant and
vk (k=0,1,2,...) are found from (72). If A\_; # 1 and (75) holds, then p_; =0
and coefficients fi (k = 0,1,....,7) in the asymptotic expansion (70) satisfy the
relation (76), where ¢; (i =0,1,2,...,5 — 1) are expressed via f; (i =0,1,.....5 — 1)
by formulas (72). In this case the the asymptotic solution ¢(x) of equation (59)
has the form (77), where ¢ is an arbitrary constant. O

Theorem 5.5. Let the functions f(x) and A(x) have asymptotic of the forms (70)
and (61), respectively. Then the unique power asymptotic solution ¢(x) of equation
(59) with any « > 0 is given by (71), where i (k =0,1,....) are found from

il )\kflfi].—‘q(ozi + ].)
2 T,(ai+D+1)

90—1:07 500:.]003 Pk = ()02+fk (78)

Proof. This proof according to Theorem 5.4. (]
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Now, we use Theorem 5.5 to give asymptotics of ¢(z) as z — 0 when f(z) has
the asymptotic (70).

Corollary 5.6. The asymptotic solution of the linear Volterra g-integral equation

Axafl

P(z) = m

Aﬂmmmmq¢uMJ+f@nx>m

s given by

n

> AN (ak + 1) | 27,
k=0

n

— A
Y= 2 e

Proof. We apply Theorem 5.5 with A(z) = A. That is in (61)

A = 0for all k # 0 and Ay = 1.

Hence, the coefficients ¢y, of the solution (71) satisfy the first order difference equa-
tion
A
PR T (ak+ 1)

Set 1, = @A "FTy(ak + 1) (k > 1). Then ¢, satisfies the difference equation
Y — Y1 = fk)\_qu(ozk: +1).
Hence ¢, = > p_ A "Iy(ak + 1). Consequently,

k-1 =fr (k€N), ¢o= fo.

A" n B
Pn = ) Z fk)\ qu(Oék‘ + 1)7
k=0

Fylan+1) &
which proves the Corollary. O

Ezample 5.7. Equation (59) with A\(z) = Az®(m~1
)\xamfl
Lg(a)

0<z<oo,0<a<l, m=1,2,..; A#0) and f(z) has the asymptotic (60). In
this case f(z) has the form

o(x) = Aﬂmmmh4¢mdw+f@> (79)

f(x) = fo12™ + fo(x?),

fo(z) =72, frz" is an entire function in 2. Hence,

Am—1=XA A =0 (k=-1,0,1,..;k#m—1), (80)
in (61) and therefore the relation (78) takes the form
or=fr (k=-1,0,1,....,m—2), (81)
I, (ok + 1)X

T Talk —mr 1) 1] the (B=m—1m,..).

Thus we obtain for k = —1,0,1,....m —2;n =1,2,..., that
Lyla(nm + k) + 1]
Jdamm+k—m+1)+

Prmtk = T 1 AP(n—1)ymtk + fam+k-
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The asymptotic of solution ¢(z) of equation (79)

m—2 oo

. alim+ K)+1)
Nk;u;) ;)\ ’ le_{ Fyla(im—m+ K +1)+1)
xa(nm+k)

Ly(a(nm+k)+1)
FEzample 5.8. The equation

Agam—1 ¥ d
o) = [ at/maaa 604yt + 2 +be a1 -0)  (32)
Ly(a) Jo
O<z(1l—g)<l;0<a<lim=1,2,...).
Hence,
b
1=d, fr=——=(k=0,1,2,...).
f 1 fk: Fq(k“r 1) ( )
Consequently, equation (82) has the asymptotic solution, as z — 0,
.T ~ dz A" H Zm )+ ]xa(nzn—l)

q(aim +1)

i=

I ( (Zm + K) + 1) ma(nﬂn-‘rk)
Fy(a(im+K+1)+1) '

6. Exact solutions of linear equations

In the section we show that in some cases the asymptotic solution ¢(z) of the
linear equation (59) with certain conditions on A(x) and f(x) gives the exact so-
lution. This result is a g-analogue of the result introduced by Saigo and Kilbas
n [10]. Consider (59) with A(z) = Az~* and

f(x) = fiz™ + fo(x)

where fo(z) :== Y0, frz" is an analytic function of 2 in a disk around zero, say
|| < R . In this case we have the integral equation

A v o
o ), e 60 g+ ) (33)

<z < RO<a<l,A#0),

¢(r) =

That is
A1=A =0 (k’ENQ)
in (61) and therefore the relation in (66) can be simplified to
1 Fy(ak+1)
Fy(ak+a+1)
Condition (62) takes the form

(ak+a+1)
Iy(ak+1)

)\:| or=fr (k=-1,0,1,..). (84)

A # (k=-1,0,1,....). (85)
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Let (85) hold. Then from (84) we obtain
L(ak+1) 17"
=|1- =L\ k=-1,0,1,...
P [ T (ak +at 1) } fi ( ,0,1,..),
and the asymptotic solution (64) has the form

= Fq(ak + 1) - «

Since
Dy(ak+1) 17 1
{“WMA] M=M= (R 00),

the power series on the left hand side of (86) is an analytic function in 2 for
|z*| < R and the asymptotic solution give an exact solution. If (85) does not hold
and there exists a number j € {—1,0,1,...} such that

Py(aj+a+1)

A= , 87
Ly(aj +1) (87)

the condition of the asymptotic solvability (68) takes the simple form
fj = 07 (88)

and the asymptotic solution of equation (83) has the form
S T (ak+ D) (aj+a+1)]7" . .
o) et 3 [ Lokt ot Dl,(ej +1)) (59
ki

Similarly, the power series on the right hand side of (89) represents an analytic
function in z® for |2%| < R and it is the exact solution in this case.

In the following examples we get exact solutions of (83) for certain choices of
the function fo(z®).

Example 6.1. The equation

o) = s [t/ o 60 dt -+ b (90)

zly(

Do(al +at1)

0 0 1, A
O<z<oo, 0<a<l, A# T, (al +1)

)

and [ € {—1,0,1,.....} has the solution

FQ(al+ 1) ! «
P(z) = [1 - IWMA] bt

It is worth noting that the homogeneous equation

Lyal +1) z .
T al+a+1) /O (gt/7;q)a—1 ¢(t) dyt

#e) = zlg(a)

<z <o0,0<ac<l,

for | =—1,0,1,..... has the solution ¢(x) = cz® with ¢ is an arbitrary constant.
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FEzample 6.2. The equation
A

o) = o [ @m0 o0+ 2 e -0) (@)

0<z*(1l-—¢g)<1l,0<a<l),
eq(z%(1—q)) = 152, =% has the solution

j=0T ( j+1)°
B d J (ak+1) I
¢(x)_1—rq(1—a +bz[1_ ozk+a+1))\ T,(k+1)
If (85) holds, the equation
1 ¥ o
) = Sty @m0 o) dat +beya” (1 0)
0<z*(1—¢g)<1,0<a<l),
and
_ Tylaj+a+1) [* _ d ooy xM
o) = 20D [t o 60 44 S0 a1 ) -

0<zx<oo, 0<a<l, j€{0,1,2,...}) have solution

- Dyok+1)  ]7' oo
¢(z) = cx +bz{1_ ak—l—a—i—l)rq(l_o‘)} Fo(k+1)°

and
dTl(aj + 1)z=
Fy(aj+1) —Ty(1 —a)ly(aj +a+1)

N bZ{l— J(ak+1)T, (aj+q+1)]_l ok 7
(ak +a+1)(aj +1) Lok +1)

o(x) =cx™™ +

k#£j

respectively, where c is an arbitrary constant.
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