Journal of Fractional Calculus and Applications

Vol. 4(3S)(5th. Symposium of Fractional Calculus and Applications group)

Aug. 12, 2013, No. 3, pp. 1-9.

ISSN: 2090-5858.

http://www.fcaj.webs.com/

INCLUSION PROPERTIES FOR CERTAIN k-UNIFORMLY SUBCLASSES OF p-VALENT FUNCTIONS DEFINED BY CERTAIN INTEGRAL OPERATOR

T. M. SEOUDY

ABSTRACT. We introduce several k-uniformly subclasses of p-valent functions defined by certain integral operator and investigate various inclusion relationships for these subclasses. Some interesting applications involving certain classes of integral operators are also considered.

1. Introduction

Let \mathcal{A}_p denote the class of functions of the form:

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n (p \in \mathbb{N} = \{1, 2, 3, ...\})$$
 (1)

which are analytic in the open unit disk $\mathbb{U}=\{z\in\mathbb{C}:|z|<1\}$. If f and g are analytic in \mathbb{U} , we say that f is subordinate to g, written $f\prec g$ or $f(z)\prec g(z)$, if there exists a Schwarz function ω , analytic in \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1$ ($z\in\mathbb{U}$), such that $f(z)=g(\omega(z))$ ($z\in\mathbb{U}$). In particular, if the function g is univalent in \mathbb{U} the above subordination is equivalent to f(0)=g(0) and $f(\mathbb{U})\subset g(\mathbb{U})$ (see [9] and [10]).

For $0 \leq \gamma, \eta < p, k \geq 0$ and $z \in \mathbb{U}$, we define $US_p^*(k; \gamma)$, $UC_p(k; \gamma)$, $UK_p(k; \gamma, \eta)$ and $UK_p^*(k; \gamma, \eta)$ the k-uniformly subclasses of \mathcal{A}_p consisting of all analytic functions which are, respectively, p-valent starlike of order γ , p-valent convex of order γ , p-valent close-to-convex of order γ , and type η and p-valent quasi-convex of order γ , and type η as follows:

$$US_p^*(k;\gamma) = \left\{ f \in \mathcal{A}_p : \Re\left(\frac{zf'(z)}{f(z)} - \gamma\right) > k \left| \frac{zf'(z)}{f(z)} - p \right| \right\},\tag{2}$$

$$UC_{p}\left(k;\gamma\right) = \left\{f \in \mathcal{A}_{p}: \Re\left(1 + \frac{zf^{''}(z)}{f^{'}(z)} - \gamma\right) > k \left|1 + \frac{zf^{''}(z)}{f^{'}(z)} - p\right|\right\}, \quad (3)$$

 $^{2000\ \}textit{Mathematics Subject Classification}.\ \textit{Primary } 30\text{C}45.\ \textit{Secondary } 30\text{D}30,\ 33\text{D}20.$

Key words and phrases. Analytic functions, k—uniformly starlike functions, k—uniformly convex functions, k—uniformly close-to-convex functions, k—uniformly quasi-convex functions, integral operator, Hadamard product, subordination.

T. M. SEOUDY 2 JFCA-2013/4(3S)

$$UK_{p}\left(k;\gamma,\eta\right) = \left\{f \in \mathcal{A}_{p}: \exists \ g \in US_{p}^{*}\left(k;\eta\right), \Re\left(\frac{zf'(z)}{g\left(z\right)} - \gamma\right) > k \left|\frac{zf'(z)}{g\left(z\right)} - p\right|\right\},\tag{4}$$

$$UK_{p}^{*}\left(k;\gamma,\eta\right) = \left\{f \in \mathcal{A}_{p}: \exists \ g \in UC_{p}\left(k;\eta\right), \Re\left(\frac{\left(zf'(z)\right)'}{g'\left(z\right)} - \gamma\right) > k \left|\frac{\left(zf'(z)\right)'}{g'\left(z\right)} - p\right|\right\}.\tag{5}$$

These subclasses were introduced and studied by Al-Kharsani [1]. We note that

(i) $US_1^*(k;\gamma) = US^*(k;\gamma)$ and $UC_1(k;\gamma) = UC(k;\gamma) (0 \le \gamma < 1)$ (see [7] and [14]);

(ii)
$$US_n^*(0; \gamma) = S_n^*(\gamma) \ (0 \le \gamma < p)$$
 (see [12] and [13]);

- (ii) $US_p^*(0; \gamma) = S_p^*(\gamma) \ (0 \le \gamma < p) \ (\text{see [12] and [13]});$ (iii) $UC_p(0; \gamma) = C_p(\gamma) \ (0 \le \gamma < p) \ (\text{see [12]});$ (iv) $UK_p(0; \gamma, \eta) = K_p(\gamma, \eta) \ (0 \le \gamma, \eta < p) \ (\text{see [2]});$ (v) $UK_p^*(0; \gamma, \eta) = K_p^*(\gamma, \eta) \ (0 \le \gamma, \eta < p) \ (\text{see [11]}).$

Corresponding to a conic domain $\Omega_{p,k,\gamma}$ defined by

$$\Omega_{p,k,\gamma} = \left\{ u + iv : u > k\sqrt{(u-p)^2 + v^2} + \gamma \right\},$$
(6)

we define the function $q_{p,k,\gamma}(z)$ which maps \mathbb{U} onto the conic domain $\Omega_{p,k,\gamma}$ such that $1 \in \Omega_{p,k,\gamma}$ as the following:

$$q_{k,\gamma}(z) = \begin{cases} \frac{p + (p - 2\gamma)z}{1 - z} & (k = 0), \\ \frac{p - \gamma}{1 - k^2} \cos\left\{\frac{2}{\pi}\left(\cos^{-1}k\right)i\log\frac{1 + \sqrt{z}}{1 - \sqrt{z}}\right\} - \frac{k^2p - \gamma}{1 - k^2} & (0 < k < 1), \\ p + \frac{2(p - \gamma)}{\pi^2}\left(\log\frac{1 + \sqrt{z}}{1 - \sqrt{z}}\right)^2 & (k = 1), \\ \frac{p - \gamma}{k^2 - 1}\sin\left\{\frac{\pi}{2\zeta(k)}\int_0^{\frac{u(z)}{\sqrt{k}}} \frac{dt}{\sqrt{1 - t^2\sqrt{1 - k^2t^2}}}\right\} + \frac{k^2p - \gamma}{k^2 - 1} & (k > 1). \end{cases}$$

$$(7)$$

where $u(z) = \frac{z - \sqrt{x}}{1 - \sqrt{x}z}$, $x \in (0, 1)$ and $\zeta(k)$ is such that $k = \cosh \frac{\pi \zeta'(z)}{4\zeta(z)}$. By virture of the properties of the conic domain $\Omega_{p,k,\gamma}$, we have

$$\Re\left\{q_{p,k,\gamma}\left(z\right)\right\} > \frac{kp+\gamma}{k+1}.\tag{8}$$

Making use of the principal of subordination between analytic functions and the definition of $q_{p,k,\gamma}(z)$, we may rewrite the subclasses $US_p^*(k;\gamma)$, $UC_p(k;\gamma)$, $UK_{p}(k;\gamma,\beta)$ and $UK_{p}^{*}(k;\gamma,\beta)$ as the following:

$$US_{p}^{*}\left(k;\gamma\right) = \left\{ f \in \mathcal{A}_{p} : \frac{zf'(z)}{f\left(z\right)} \prec q_{p,k,\gamma}\left(z\right) \right\},\tag{9}$$

$$UC_{p}\left(k;\gamma\right) = \left\{f \in \mathcal{A}_{p}: 1 + \frac{zf^{''}(z)}{f^{'}(z)} \prec q_{p,k,\gamma}\left(z\right)\right\},\tag{10}$$

JFCA-2013/4(3S) INCLUSION PROPERTIES FOR CERTAIN k-UNIFORMLY SUBCLASSES 3

$$UK_{p}\left(k;\gamma,\eta\right) = \left\{ f \in \mathcal{A}_{p} : \exists \ g \in US_{p}^{*}\left(k;\eta\right), \frac{zf'(z)}{g\left(z\right)} \prec q_{p,k,\gamma}\left(z\right) \right\}, \tag{11}$$

$$UK_{p}^{*}\left(k;\gamma,\eta\right) = \left\{ f \in \mathcal{A}_{p} : \exists \ g \in UC_{p}\left(k;\eta\right), \frac{\left(zf'(z)\right)'}{g'(z)} \prec q_{p,k,\gamma}\left(z\right) \right\}. \tag{12}$$

Motivated essentially by Jung et al. [8], Shams et al. [15] introduced the integral operator $I_p^{\alpha}: \mathcal{A}_p \to \mathcal{A}_p$ as follows (see also Aouf et al. [3]):

$$I_{p}^{\alpha}f(z) = \begin{cases} \frac{(p+1)^{\alpha}}{z\Gamma(\alpha)} \int_{0}^{z} \left(\log\frac{z}{t}\right)^{\alpha-1} f(t) dt & (\alpha > 0; p \in \mathbb{N}), \\ f(z) & (\alpha = 0; p \in \mathbb{N}). \end{cases}$$
(13)

For $f \in \mathcal{A}_p$ given by (1), then from (13), we deduce that

$$I_p^{\alpha} f(z) = z^p + \sum_{n=p+1}^{\infty} \left(\frac{p+1}{n+1} \right)^{\alpha} a_n z^n, \quad (\alpha \ge 0; p \in \mathbb{N}).$$
 (14)

Using the above relation, it is easy to verify the identity:

$$z \left(I_p^{\alpha+1} f(z) \right)' = (p+1) I_p^{\alpha} f(z) - I_p^{\alpha+1} f(z). \tag{15}$$

We note that the one-parameter family of integral operator $I_1^{\alpha} = I^{\alpha}$ was defined by Jung et al. [8].

Next, using the operator I_p^{α} , we introduce the following k-uniformly subclasses of p-valent functions for $\alpha \geq 0, p \in \mathbb{N}, k \geq 0$ and $0 \leq \gamma, \eta < p$:

$$US_{p}^{*}\left(\alpha;k;\gamma\right)=\left\{ f\in\mathcal{A}_{p}:I_{p}^{\alpha}f\left(z\right)\in US_{p}^{*}\left(k;\gamma\right)\left(z\in\mathbb{U}\right)\right\} ,\tag{16}$$

$$UC_{p}\left(\alpha;k;\gamma\right) = \left\{ f \in \mathcal{A}_{p} : I_{p}^{\alpha}f\left(z\right) \in UC_{p}\left(k;\gamma\right)\left(z \in \mathbb{U}\right) \right\},\tag{17}$$

$$UK_{p}\left(\alpha;k;\gamma,\eta\right) = \left\{ f \in \mathcal{A}_{p} : I_{p}^{\alpha}f\left(z\right) \in UK_{p}\left(k;\gamma,\eta\right)\left(z \in \mathbb{U}\right) \right\},\tag{18}$$

$$UK_{p}^{*}\left(\alpha;k;\gamma,\eta\right)=\left\{ f\in\mathcal{A}_{p}:I_{p}^{\alpha}f\left(z\right)\in UK_{p}^{*}\left(k;\gamma,\eta\right)\left(z\in\mathbb{U}\right)\right\} .\tag{19}$$

We also note that

$$f \in US_p^* (\alpha; k; \gamma) \Leftrightarrow \frac{zf'}{p} \in UC_p (\alpha; k; \gamma),$$
 (20)

and

$$f \in UK_p\left(\alpha; k; \gamma, \eta\right) \Leftrightarrow \frac{zf'}{p} \in UK_p^*\left(\alpha; k; \gamma, \eta\right).$$
 (21)

In this paper, we investgate several inclusion properties of the classes $US_p^*(\alpha; k; \gamma)$, $UC_p(\alpha; k; \gamma)$, $UK_p(\alpha; k; \gamma, \eta)$, and $UK_p^*(\alpha; k; \gamma, \eta)$ associated with the operator I_p^{α} . Some applications involving integral operators are also considered.

4 T. M. SEOUDY JFCA-2013/4(3S)

2. Inclusion properties involving the operator I_n^{α}

In order to prove the main results, we shall need The following lemmas.

Lemma 1 [6] Let h(z) be convex univalent in \mathbb{U} with $\Re \{\eta h(z) + \gamma\} > 0(\eta, \gamma \in \mathbb{C})$. If p(z) is analytic in \mathbb{U} with p(0) = h(0), then

$$p(z) + \frac{zp'(z)}{\eta p(z) + \gamma} \prec h(z)$$
(22)

implies

$$p(z) \prec h(z). \tag{23}$$

Lemma 2 [9] Let h(z) be convex univalent in \mathbb{U} and let w be analytic in \mathbb{U} with $\Re\{w(z)\} \geq 0$. If p(z) is analytic in \mathbb{U} and p(0) = h(0), then

$$p(z) + w(z)zp'(z) \prec h(z) \tag{24}$$

implies

$$p(z) \prec h(z). \tag{25}$$

Theorem 1 Let $k \geq 0$ and $0 \leq \gamma < p$. Then,

$$US_p^* (\alpha; k; \gamma) \subset US_p^* (\alpha + 1; k; \gamma). \tag{26}$$

Proof. Let $f \in US_p^*(\alpha; k; \gamma)$ and set

$$p(z) = \frac{z \left(I_p^{\alpha+1} f(z)\right)'}{I_p^{\alpha+1} f(z)} \quad (z \in \mathbb{U}),$$

$$(27)$$

where the function p(z) is analytic in \mathbb{U} with p(0) = p. Using (15), (26) and (27), we have

$$\frac{z\left(I_{p}^{\alpha}f\left(z\right)\right)'}{I_{n}^{\alpha}f\left(z\right)} = p\left(z\right) + \frac{zp'\left(z\right)}{p\left(z\right) + 1} \prec q_{p,k,\gamma}\left(z\right). \tag{28}$$

Since $k \geq 0$ and $0 \leq \gamma < p$, we see that

$$\Re\left\{q_{p,k,\gamma}\left(z\right)+1\right\}>0\quad\left(z\in\mathbb{U}\right).\tag{29}$$

Applying Lemma 1 to (28), it follows that $p(z) \prec q_{p,k,\gamma}(z)$, that is, $f \in US_p^*(\alpha + 1; k; \gamma)$. Therefore, we complete the proof of Theorem 1.

Theorem 2 Let $k \geq 0$ and $0 \leq \gamma < p$. Then,

$$UC_{p}(\alpha; k; \gamma) \subset UC_{p}(\alpha + 1; k; \gamma).$$
 (30)

Proof. Applying (21) and Theorem 1, we observe that

$$\begin{split} f \in UC_{p}\left(\alpha; k; \gamma\right) &\iff \frac{zf^{'}}{p} \in US_{p}^{*}\left(\alpha; k; \gamma\right) \\ &\implies \frac{zf^{'}}{p} \in US_{p}^{*}\left(\alpha + 1; k; \gamma\right) \quad \text{(by Theorem 1),} \\ &\iff f \in UC_{p}\left(\alpha + 1; k; \gamma\right), \end{split}$$

which evidently proves Theorem 2.

Next, by using Lemma 2, we obtain the following inclusion relation for the class $UK_p(\alpha; k; \gamma, \eta)$.

Theorem 3 Let $k \geq 0$ and $0 \leq \gamma, \eta < p$. Then,

$$UK_n(\alpha; k; \gamma, \eta) \subset UK_n(\alpha + 1; k; \gamma, \eta)$$
. (31)

Proof. Let $f \in UK_p(\alpha; k; \gamma, \eta)$. Then, from the definition of $UK_p(\alpha; k; \gamma, \eta)$, there exists a function $r(z) \in US_p^*(k; \eta)$ such that

$$\frac{z\left(I_{p}^{\alpha}f\left(z\right)\right)'}{r\left(z\right)} \prec q_{p,k,\gamma}\left(z\right). \tag{32}$$

Choose the function g such that $I_{p}^{\alpha}g\left(z\right)=r\left(z\right)$. Then, $g\in US_{p}^{*}\left(\alpha;k;\eta\right)$ and

$$\frac{z\left(I_{p}^{\alpha}f\left(z\right)\right)'}{I_{p}^{\alpha}g\left(z\right)} \prec q_{p,k,\gamma}\left(z\right). \tag{33}$$

Now let

$$p(z) = \frac{z \left(I_p^{\alpha+1} f(z)\right)'}{I_p^{\alpha+1} g(z)} \quad (z \in \mathbb{U}),$$
(34)

where p(z) is analytic in \mathbb{U} with p(0) = p. Since $g \in US_p^*(\alpha; k; \eta)$, by Theorem 1, we know that $g \in US_p^*(\alpha + 1; k; \eta)$. Let

$$t\left(z\right) = \frac{z\left(I_{p}^{\alpha+1}g\left(z\right)\right)'}{I_{p}^{\alpha+1}g\left(z\right)} \quad \left(z \in \mathbb{U}\right),\tag{35}$$

where t(z) is analytic in \mathbb{U} with $\Re\{t(z)\} > \frac{kp+\eta}{k+1}$. Also, from (34), we note that

$$I_{p}^{\alpha+1}zf^{'}\left(z\right)=I_{p}^{\alpha+1}g\left(z\right)\ p\left(z\right). \tag{36}$$

Differentiating both sides of (36) with respect to z, we obtain

$$\frac{z\left(I_{p}^{\alpha+1}zf^{'}(z)\right)^{'}}{I_{p}^{\alpha+1}g(z)} = \frac{z\left(I_{p}^{\alpha+1}g(z)\right)^{'}}{I_{p}^{\alpha+1}g(z)}p(z) + zp^{'}(z)$$

$$= t(z)p(z) + zp^{'}(z). \tag{37}$$

Now using the identity (15) and (35), we obtain

$$\frac{z\left(I_{p}^{\alpha}f\left(z\right)\right)'}{I_{p}^{\alpha}g\left(z\right)} = \frac{I_{p}^{\alpha}zf'\left(z\right)}{I_{p}^{\alpha}g\left(z\right)} = \frac{z\left(I_{p}^{\alpha+1}zf'\left(z\right)\right)' + I_{p}^{\alpha+1}zf'\left(z\right)}{z\left(I_{p}^{\alpha+1}g(z)\right)' + I_{p}^{\alpha+1}g(z)}$$

$$= \frac{\frac{z\left(I_{p}^{\alpha+1}zf'\left(z\right)\right)'}{I_{p}^{\alpha+1}g\left(z\right)} + \frac{z\left(I_{p}^{\alpha+1}f\left(z\right)\right)'}{I_{p}^{\alpha+1}g\left(z\right)}}{\frac{z\left(I_{p}^{\alpha+1}g\left(z\right)\right)'}{I_{p}^{\alpha+1}g\left(z\right)}} + 1$$

$$= \frac{t\left(z\right)p\left(z\right) + zp'\left(z\right) + p\left(z\right)}{t\left(z\right) + 1}$$

$$= p\left(z\right) + \frac{zp'\left(z\right)}{t\left(z\right) + 1}.$$
(38)

Since $k \geq 0, 0 \leq \eta < p$ and $\Re \left\{ t\left(z\right) \right\} > \frac{kp + \eta}{k+1}$, we see that

$$\Re\left\{t\left(z\right)+1\right\}>0\quad\left(z\in\mathbb{U}\right).$$

6 T. M. SEOUDY JFCA-2013/4(3S)

Hence, applying Lemma 2, we can show that $p(z) \prec q_{p,k,\gamma}(z)$ so that $f \in UK_p(\alpha; k; \gamma, \eta)$. Therefore, we complete the proof of Theorem 3.

Theorem 4 Let $k \ge 0$ and $0 \le \gamma$, $\eta < p$. Then,

$$UK_p^*(\alpha; k; \gamma, \eta) \subset UK_p^*(\alpha + 1; k; \gamma, \eta).$$
 (2.18)

Proof. Just as we derived Theorem 2 as consequence of Theorem 1 by using the equivalence (21), we can also prove Theorem 4 by using Theorem 3 and the equivalence (??).

3. Inclusion properties involving the integral operator $F_{c,p}$

In this section, we present several integral-preserving properties of the p-valent function classes introduced here. We consider the generalized Libera integral operator $F_{c,p}(f)$ (see [5] and [4]) defined by

$$F_{c,p}(f)(z) = \frac{c+p}{z^c} \int t^{c-1} f(z) dt \ (c > -p).$$
 (39)

Theorem 5 Let $kp + \gamma + c(k+1) \ge 0$. If $f \in US_p^*(\alpha; k; \gamma)$, then $F_{c,p}(f) \in US_p^*(\alpha; k; \gamma)$.

Proof. Let $f \in US_p^*(\alpha; k; \gamma)$ and set

$$p(z) = \frac{z \left(I_p^{\alpha} F_{c,p}(f)(z)\right)'}{I_p^{\alpha} F_{c,p}(f)(z)} \quad (z \in \mathbb{U}),$$

$$(40)$$

where p(z) is analytic in U with p(0) = p. From (39), we have

$$z\left(I_{p}^{\alpha}F_{c,p}\left(f\right)\left(z\right)\right)' = \left(c+p\right)I_{p}^{\alpha}f\left(z\right) - cI_{p}^{\alpha}F_{c,p}\left(f\right)\left(z\right). \tag{41}$$

Then, by using (40) and (41), we obtain

$$(c+p)\frac{I_{p}^{\alpha}f(z)}{I_{p}^{\alpha}F_{c,p}(f)(z)} = p(z) + c. \tag{42}$$

Taking the logarithmic differentiation on both sides of (42) and multiplying by z, we have

$$\frac{z\left(I_{p}^{\alpha}f\left(z\right)\right)'}{I_{p}^{\alpha}f\left(z\right)} = p\left(z\right) + \frac{zp'\left(z\right)}{p\left(z\right) + c} \prec q_{k,\gamma}\left(z\right). \tag{43}$$

Hence, by virtue of Lemma 1, we conclude that $p(z) \prec q_{k,\gamma}(z)$ in \mathbb{U} , which implies that $F_{c,p}(f) \in US_p^*(\alpha; k; \gamma)$.

Next, we derive an inclusion property involving $F_{c,p}(f)$, which is given by the following.

Theorem 6 Let $kp + \gamma + c(k+1) \ge 0$. If $f \in UC_p(\alpha; k; \gamma)$, then $F_{c,p}(f) \in UC_p(\alpha; k; \gamma)$.

Proof. By applying Theorem 5, it follows that

$$f \in UC_{p}(\alpha; k; \gamma) \iff \frac{zf^{'}}{p} \in US_{p}^{*}(\alpha; k; \gamma)$$

$$\implies F_{c,p}\left(\frac{zf^{'}}{p}\right) \in US_{p}^{*}(\alpha; k; \gamma)$$

$$\iff \frac{z\left(F_{c,p}(f)\right)^{'}}{p} \in US_{p}^{*}(\alpha; k; \gamma)$$

$$\iff F_{c,p}(f) \in UC_{p}(\alpha; k; \gamma),$$

which proves Theorem 6.

Theorem 7 Let $kp + \eta + c(k+1) \ge 0$. If $f \in UK_p(\alpha; k; \gamma, \eta)$, then $F_{c,p}(f) \in UK_p(\alpha; k; \gamma, \eta)$.

Proof. Let $f \in UK_p(\alpha; k; \gamma, \eta)$. Then, in view of the definition of the class $UK_p(\alpha; k; \gamma, \eta)$, there exists a function $g \in US_p^*(\alpha; k; \eta)$ such that

$$\frac{z\left(I_{p}^{\alpha}f\left(z\right)\right)'}{I_{p}^{\alpha}g\left(z\right)} \prec q_{k,\gamma}\left(z\right). \tag{44}$$

Thus, we set

$$p(z) = \frac{z \left(I_p^{\alpha} F_{c,p}(f)(z)\right)'}{I_p^{\alpha} F_{c,p}(g)(z)} \quad (z \in \mathbb{U}),$$

$$(45)$$

where p(z) is analytic in \mathbb{U} with p(0) = p. Since $g \in US_p^*(\alpha; k; \gamma)$, we see from Theorem 5 that $F_{c,p}(f) \in US_p^*(\alpha; k; \gamma)$. Let

$$t(z) = \frac{z \left(I_p^{\alpha} F_{c,p}(g)(z)\right)'}{I_p^{\alpha} F_{c,p}(g)(z)} \quad (z \in \mathbb{U}),$$

$$(46)$$

where t(z) is analytic in \mathbb{U} with $\Re\{t(z)\} > \frac{kp+\eta}{k+1}$. Also, from (45), we note that

$$I_{p}^{\alpha}zF_{c,p}^{'}(f)(z) = I_{p}^{\alpha}F_{c,p}(g)(z) \cdot p(z).$$
 (47)

Differentiating both sides of (47) with respect to z, we obtain

$$\frac{z\left(I_{p}^{\alpha}zF_{c,p}'(f)(z)\right)'}{I_{p}^{\alpha}F_{c,p}(g)(z)} = \frac{z\left(I_{p}^{\alpha}F_{c,p}(g)(z)\right)'}{I_{p}^{\alpha}F_{c,p}(g)(z)}p(z) + zp'(z)
= t(z)p(z) + zp'(z).$$
(48)

8 T. M. SEOUDY JFCA-2013/4(3S)

Now using the identity (41) and (48), we obtain

$$\frac{z(I_{p}^{\alpha}f(z))'}{I_{p}^{\alpha}g(z)} = \frac{z(I_{p}^{\alpha}zF'_{c,p}(f)(z))' + cI_{p}^{\alpha}zF'_{c,p}(f)(z)}{z(I_{p}^{\alpha}F_{c,p}(g)(z))' + cI_{p}^{\alpha}F_{c,p}(g)(z)}$$

$$= \frac{\frac{z(I_{p}^{\alpha}zF'_{c,p}(g)(z))' + cI_{p}^{\alpha}F_{c,p}(g)(z)}{I_{p}^{\alpha}F_{c,p}(g)(z)'} + c\frac{z(I_{p}^{\alpha}F_{c,p}(f)(z))'}{I_{p}^{\alpha}F_{c,p}(g)(z)}$$

$$= \frac{z(I_{p}^{\alpha}zF'_{c,p}(g)(z))' + c\frac{z(I_{p}^{\alpha}F_{c,p}(g)(z))'}{I_{p}^{\alpha}F_{c,p}(g)(z)} + c$$

$$= \frac{t(z)p(z) + zp'(z) + cp(z)}{t(z) + c}$$

$$= p(z) + \frac{zp'(z)}{t(z) + c}.$$
(49)

Since $kp + \eta + c(k+1) \ge 0$ and $\Re\{t(z)\} > \frac{kp + \eta}{k+1}$, we see that $\Re\{t(z) + c\} > 0 \quad (z \in \mathbb{U})$. (50)

Hence, applying Lemma 2 to (49), we can show that $p(z) \prec q_{p,k,\gamma}(z)$ so that $f \in UK_p(\alpha; k; \gamma, \eta)$.

Theorem 8 Let $kp + \eta + c(k+1) \ge 0$. If $f \in UK_p^*(\alpha; k; \gamma, \eta)$, then $F_{c,p}(f) \in UK_p^*(\alpha; k; \gamma, \eta)$

Proof. Just as we derived Theorem 6 as consequence of Theorem 5, we easily deduce the integral-preserving property asserted by Theorem 8 by using Theorem 7. \Box

Acknowledgement. I would like to express my deepest gratitude and thankfulness to Professor Dr. M. K. Aouf for his valuable guidance, his generous encouragement, deep interest and kind cooperation to me.

References

- H.A.Al-Kharsani, Multiplier transformations and k-uniformly p-valent starlike functions, General Math., 17 (2009), no.1, 13-22.
- [2] M. K. Aouf, On a class of p-valent close-to-convex functions, Internat. J. Math. Math. Sci., 11 (1988), no. 2, 259–266.
- [3] M. K. Aouf, T. Bulboaca and A. O. Mostafa, Subordination properties of subclasses of pvalent functions involving certain integral operator, Publ. Math. Debrecen 37/3 -4(2008), 401-416.
- [4] N. E. Cho, O. S. Kwon and H.M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470–483.
- [5] J. H. Choi, M. Saigo, H.M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432–445.
- [6] P. Eenigenburg, S. S. Miller, P. T. Mocanu, and M. O. Reade, On a Briot-Bouquet differential subordination, in General Inequalities, 3 (Oberwolfach, 1981), vol. 64 of Internationale Schriftenreihe zur Numerischen Mathematik, 339–348, Birkhäuser, Basel, Switzerland, 1983.
- [7] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155(1991), 364{370.
- [8] T. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176(1993), 138-147.
- [9] S. S.Miller and P. T.Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), no. 2, 157–172.

- [10] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
- [11] K. I. Noor, On quasi-convex functions and related topics, Internat. J. Math. Math. Sci., 10 (1987), 241-258.
- [12] S. Owa, On new classes of p-valent function with negative coefficients, Simon Stevin, 59(1985), no. 4, 385-402.
- [13] D. A. Patil and N. K. Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S), 27 (1983), 145-160.
- [14] F. Ronning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Sklodowska 47 (1993), no. 13, 123-134.
- [15] S. Shams, S. R. Kulkarni and Jay M. Jahangir, Subordination properties for p-valent functions defined by integral operators, Internat. J. Math. Math. Sci., Vol. 2006, Art. ID 94572, 1-3.
- T. M. Seoudy, Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

 $E ext{-}mail\ address: tms00@fayoum.edu.eg}$