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SOME SANDWICH RESULTS FOR HIGHER-ORDER
DERIVATIVES OF MULTIVALENT FUNCTIONS INVOLVING A
GENERALIZED DIFFERENTIAL OPERATOR

M. K. AOUF, R. M. EL-ASHWAH, AHMED M. ABD-ELTAWAB

ABSTRACT. In this paper, we obtain some applications of first order differ-
ential subordination, superordination and sandwich results for higher-order
derivatives of p—valent functions involving a generalized differential operator.
Some of our results improve and generalize previously known results.

1. INTRODUCTION

Let H (U) be the class of analytic functions in the open unit disk U = {z € C :
|z| < 1} and let H{a, p] be the subclass of H (U) consisting of functions of the form:

f(z) =a+apzf +ap 2P (a€C;peN={1,2,..1}).

For simplicity H[a] = H|[a,1]. Also, let A (p) be the subclass of H (U) consisting
of functions of the form:

f)=2"+ > wz* (peN), (1)
k=p+1
which are p—valent in U. We write A (1) = A.

If f, g € H(U), we say that f is subordinate to g or g is superordinate to f,
written f(z) < g (z) if there exists a Schwarz function w, which (by definition)
is analytic in U with w(0) = 0 and |w(z)| < 1 for all z € U, such that f(z) =
g(w(z)), z € U. Furthermore, if the function g is univalent in U, then we have the
following equivalence, (cf., e.g., [10], [17] and [18]):

f(2) < g(2) & f(0) = g(0) and f(U) C g(U).

Let ¢ : C2 x U — C and h be univalent function in U. If 8 is analytic function
in U and satisfies the first order differential subordination:

6 (8(),28 (2):2) <h (), (2)
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then S is a solution of the differential subordination (2). The univalent function ¢ is
called a dominant of the solutions of the differential subordination (2) if 5 (z) < ¢ (2)
for all 8 satisfying (2). A univalent dominant ¢ that satisfies § < ¢ for all dominants
of (2) is called the best dominant. If 5 and ¢ are univalent functions in U and if
satisfies first order differential superordination:

h(z) <6 (B(:),28 (2):2), 3)

then B is a solution of the differential superordination (3). An analytic function
q is called a subordinant of the solutions of the differential superordination (3)
if g(2) < B(z) for all B satisfying (3). A univalent subordinant ¢ that satisfies
q(z) < q(2) for all subordinants of (3) is called the best subordinant.

Using the results of Miller and Mocanu [18], Bulboaca [9] considered certain
classes of first order differential superordinations as well as superordination-preserving
integral operators [10]. Ali et al. [1], have used the results of Bulboaca [9] to obtain
sufficient conditions for normalized analytic functions f € A to satisfy:

/')
A6

where ¢; and g2 are given univalent functions in U with ¢;(0) = ¢2(0) = 1. Also,
Tuneski [23] obtained a sufficient condition for starlikeness of f € A in terms of the

< q2(2),

. f(2)f(2) : : .
quantity TN Recently, Shanmugam et al. [22] obtained sufficient conditions
for the normalized analytic function f € A to satisfy

f(z)
q1(z) < 70 =< q2(2)
and
22 f'(2)

A TC E
For functions f € A (p) given by (1) and g € A (p) given by

g =+ S bt (peN), @)
k=p+1

the Hadamard product (or convolution) of f and g is given by
(f*9) (2) = 2P 470 arbr2® = (g% f) (). (®)

Upon differentiating both sides of (5) j—times with respect to z, we have

(Fx9V (&) =6ma) 2>+ D 0(ksg) arbpz"7, (6)
k=p+1
where |
S = oy (P> Jip €N €No=NU{0}). (™)

For functions f,g € A(p), we define the linear operator DY , (f * g)(j) A(p) —
A(p) by:
DY, ()7 (2) = () (2).
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Dy, (fx9)P(2) = Dayp(fx9) (2)

j A i
= (1—A)(f*g)”(2)+p7 2((F+99) (2)

= 0(pj) 2 + Z ( = p))5(k‘;j)akbkzkj7

k=p+1 p= ‘7
D3, (f+9)” () = D(Dp(fxg)? <z>)
(k- )
= 0(p;j)2" 7 + Z (p JEA( p)) 6 (ks ) arbpz®7,
k=p+1 J
and ( in general )
D3, (fx9) () = DOy (f+9) (2)
= d(pj) "7 + Z (p Ik p)) 6 (k;7) apbpz*=7
k=p+1 ‘7
()\20;p>j,p€N,j,n€N0;z€U). (8)
From (8), we can easily deduce that
Az n j / n j n j
= (03, (79 () = DR () (2) — (=N D, (f )Y (2)
(A>0;p>jipeNyn, j € Nosz € U). (9)

We observe that the linear operator DY, (f * g)(j ) (z) reduces to several inter-
esting many other linear operators considered earlier for different choices of j,n, A
and the function ¢:

(i) Forj =0, DY, (f * g)(o) (2) = D}, (f * g) (2), where the operator D}  (f * g)
(A>0,peN,n e Ny) was introduced and studied by Selvaraj et al. [21] (see also
[8]) and DY, (f * g) (2) = D} (f * g) (2), where the operator D} (f * g) was intro-
duced by Aouf and Mostafa [6];

(ii) For

P
1—-=2
we have DY (f = g)(j) (z) = D;\"pf(j)(z), Df\L)pf(O)(z) = D;\’,pf(z), where the op-
erator DY is the p—valent Al-Oboudi operator which was introduced by El-Ashwah
and Aouf [13], Dﬁpf(j)(z) = D;}f(j)(z), where the operator D;‘f(j) (p>7,peNn,jeNy)
was introduced and studied by Aouf [[3], [4]] (see also [7]) and D]’fo(o)(z) =Dy f(2)

, where the operator D} is the p—valent Salagean operator which was introduced
and studied by Kamali and Orhan [14] (see also [5]);
(iii) For

peN;zelU) (10)

9(z) =

(@1)k—p (Vg ip 2" (z€U), (11)

g(Z) =P +20:p+1 (ﬁl)k_p...(ﬁs)k—p (1)k:7p
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(for complex parameters aq,...,cq and B1,...,0s (8; ¢ Z; = {0,—1,-2,..}, j =
1,..,8);g<s+1;peN;q, s € Ny) where (v); is the Pochhammer symbol defined
in terms to the Gamma function I'; by

) _F(u+k)_{ 1, (k =0),
EETT0) T v+ )W+ 2 v+ k—1), (keN),

we have DY (f % 9)¥) (2) = D}, (Hyq.5(01) /)7 (2) and DY, ( % 9)© (2) = Hp (1) £(2),
where the operator Hy , s(1) = Hp g5(a1, ..., aq; b1, ..., Bs) is the Dziok-Srivastava
operator which was introduced and studied by Dziok and Srivastava [12] and which
contains in turn many interesting operators;
(iv) For

g(z) = 2+ Z (p+l+akp)) 2F (12)

k=p+1 p+l
(a>0;1>0;, peN; meNyzeU),

we have DY | (f * g)(j) (z) = Dy, (I,(m, a,l)f)(j) (z) and D/O\J) (f = g)(o) (2) = Ip(m, a, 1) f(2),
where the operator I,,(m, 1) was introduced and studied by Catas [11] and which
contains in turn many interesting operators such as, I,(m,1,1) = I,(m,[), where

the operator I,(m,[) was investigated by Kumar et al. [15];
(v) For

Lpta+p)™  Tk+p) 4
F(p—i—ﬂ) k:p+lr(k+a+ﬁ)
(a>0;peN; B> -1;2€U)

9(2)

wehave DY, (F ¢ )7 (2) = D3, (@5,4)” (=) and D, (F )™ () = @5, £(2).
where the operator QO‘ 3.p was introduced and studied by Liu and Owa [16];

(vi) For j = 0 and g of the form (11) with p = 1, we have D}, (f *g) (2) =
DY (a1, ..., aq; f1, ..., Bs)(2), where the operator D”(al,...,aq,ﬁl,...,,@‘) was intro-
duced and studied by Selvaraj and Karthikeyan [20];

(vii) For j =0,p=1 and

Lk+1)T2-m)]" ,
z
I'(k+1—m)
neN;0< m<1l;zeU)

9(z) = z+7%, (14)

we have DY, (f * g) (2) = D\ f(z), where the operator D" was introduced and
studied by Al-Oboudi and Al-Amoudi [2].

In this paper, we will derive several subordination, superordination and sandwich
results involving the operator DY | (f = g)(j).

2. DEFINITIONS AND PRELIMINARIES

In order to prove our results, we need the following definition and lemmas.
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Definition 2.1 [18]. Denote by @, the set of all functions f that are analytic
and injective on U\E(f), where

B(f) = {CeaU:;ig}f(z):oo},
and are such that f (¢) # 0 for ¢ € QU\E (f).

Lemma 2.1 [22]. Let ¢ be univalent function in U with ¢(0) = 1. Let ; €
C(i =1,2), 72 # 0, further assume that

R {1 + Z;’(S) } > max {o, R @;) } . (15)

If B is analytic function in U, and

B (2) + 1228 (2) < 114 (2) + 1224 (2),

then 5 < g and ¢ is the best dominant.
Lemma 2.2 [22]. Let ¢ be convex univalent function in U, ¢(0) = 1. Let

% € Cli=1,2), 72 £ 0 and R (L) > 0. I B € H[g(0), 1] NQ, MB (=) + 228 (2)
is univalent in U and

14 (2) + 7224 (2) < 1B (2) + 7228 (2), (16)
then ¢ < 8 and ¢ is the best subordinant.

3. SUBORDINATION RESUTS

Unless otherwise mentioned, we assume throughout this paper that v € C* =
C\{0}, A>0,p>7,p€ N, n,j € Nyand 0 (p;j) is given by (7).
Theorem 3.1. Let ¢ be univalent in U with ¢(0) = 1 and assume that

R {1 + Z(‘j(g) } > max {o, R (i) } . (17)

If f € A(p) satisfy the following subordination condition:

Dy, 9" () =) ), D9 (DL (9 ()
e B oo ]

< q(2)+y2d (2), (18)
then

Dy, (f+9)Y (2)

DY (f g (2)

and ¢ is the best dominant.
Proof. Define a function 3 by

D3, (9" (2)
DY (fx )Y (2)

B () (z€U). (19)
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Then the function § is analytic in U and $(0) = 1. Therefore, differentiating
(19) logarithmically with respect to z and using the identity (9) in the resulting
equation, we have

Dy (=) (- _D;p(f*gw(z)pyg(f*gyj)(z)

D;L;;l (f * g)(j) (2) TN ! D’;\L;—)l (f * g)(j) (Z)r
= B(z)+728 (2),
that is,
B(2)+728 (2) < ¢(2) +72q (2).
Therefore, Theorem 3.1 now follows by applying Lemma 2.1. O
Putting ¢(z) = igz in Theorem 3.1, it easy to check that the assumption (17)

holds whenever —1 < B < A <1, hence we obtain the following corollary.
Corollary 3.1. Let —1 < B < A <1 and assume that

{152 oo ()

If f € A(p) satisty the following subordination condition:

Dy, (f *g)(j_) (2) 7(p -0}, DU +9) D (2)Dy 2 (f % ) (2)
DY (fx )Y (2) A { Dy (f 5 g)Y) (z)r

1+ Az (A—B)z

1+ Bz 7(1+Bz)2’

then '
Dy, (f+9)7 (2) L 144
DY (feg) () 1Bz

1+Az
1+Bz
2P

Taking g = 7= in Theorem 3.1, we obtain the following corollary.
Corollary 3.2. Let ¢ be univalent in U with ¢(0) = 1 and assume that (17)
holds. If f € A(p) satisfies the following subordination condition:

and the function is the best dominant.

DipfPG) | (=d) || DR/ VD)
DTG (z) A { DyHLFO) (Z)} ?

< q(2) +72q (2),
then
D f(j)(z)
o <4 ()
DYy fU)(2)

and ¢ is the best dominant.
Remark 3.1. Taking A =1 in Corollary 3.2, we obtain the result obtained by
Aouf and Seoudy [[7], Theorem 1].
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Taking p = A =1, j =0 and g = 1%, in Theorem 3.1, we obtain the following
corollary which improves the result obtained by Shanmugam et al. [[22], Theorem
5.1] and also obtained by Nechita [[19], Corollary 7].

Corollary 3.3. Let ¢ be univalent in U with ¢(0) = 1 and assume that (17)
holds. If f € A satisfies the following subordination condition:

D) [, DD RG)
D) D)

} < q(2) +72q (2),

then
D" f(z)
Gl
and ¢ is the best dominant.

Remark 3.2. Taking n = 0 in Corollary 3.3, we obtain the result obtained by
Shanmugam et al. [[22], Theorem 3.1].

4. SUPERORDINATION RESULTS

Now, by appealing to Lemma 2.2 it can be easily prove the following theorem.

Theorem 4.1. Let g be convex univalent in U with ¢ (0) = 1 and R (%) > 0.

. D3, (f*9)Y (2)
If f € A(p) such that D (200 (2) € H[q(0),1]NnQ,

DL, (9" () -0 ), Di, (9 DR (29 ()
Dg\;l (f * g)(j) (2) A D;L;I (f * g)(j) (2) 2

is univalent in U and the following superordination condition
q(2) +7zq (2)

Dy, (fx 9V (2) (=9 ), _ Dy (f )P ()D3 2 (f % )P (2)
Dy (= 9" () A [Dﬁj,l (f+9) (2) i

holds, then
Dy, (fx9)" ()

1) it (g (2)

and ¢ is the best subordinant.
Taking ¢(z) = %ig'z (-1 < B < A<1)in Theorem 4.1, we have the following
corollary.

n * ) 2
Corollary 4.1 Let ® (1) > 0 and f € A(p) such that il 07
Hlq(0),1]NnQ,

Dy, (fx9) (2) =) ) DU £ )9 (D2 (f 5 )9 (2)
Dy () (2) A DIt (F ) ()]
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is univalent in U and the following superordination condition
1+ Az (A-B)z
D, 9 () p-g) ), D9 @D (F 20 ()
n+1 (J) )\ - - 5
Dy (Fa) ) D23 (7299 (2)

holds, then
1+4z D3, (f+9) (2)
14 Bz D;f;l (f*g)(J) (2)

and %igz is the best subordinant.
Taking g = f_p — in Theorem 4.1, we obtain the following corollary.
Corollary 4.2.Let g be convex univalent in U with ¢ (0) =1 and R (%) > 0. If

D",pf(j)(z)
f € A(p) such that W S H[q(O),l] OQ,

DL () | (p—J)

N | DRIV D)
DY) A

Dyt o))

is univalent in U and the following superordination condition

q(2) +72q (2)

Dy, V() (-4

. | DR IDEDEO)
Dy A

(D370 (2)]

holds, then
) < D0
DR

and q is the best subordinant.

Remark 4.1. Taking A = 1 in Corollary 4.2, we obtain the result obtained by
Aouf and Seoudy [[7], Theorem 2].

Taking p = A =1, j =0 and g = 7% in Theorem 4.1, we obtain the following
result which improves the result obtained by Shanmugam et al. [[22], Theorem 5.2]
and also obtained by Nechita [[19], Corollary 12].

Corollary 4.3 . Let ¢ be convex univalent in U with ¢ (0) =1 and & (%) > 0.
If f € A such that 5040 € Hq(0),1]NQ,
DUG) [ D .0 )
D f(2) (DL £ (2)]
is univalent in U and the following superordination condition

D" f(z) B D" f(2).D" T2 f(2)
D+l f(z) +'y{1 [Dn+1f(z)]2 }

q(2) +v2q (2) <
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holds, then
an(z)

Q(z)<m

and ¢ is the best subordinant.
Remark 4.2. Taking n = 0 in Corollary 4.3, we obtain the result obtained by

Shanmugam et al. [[22], Theorem 3.2].

5. SANDWICH RESUTS

Combining Theorem 3.1 and Theorem 4.1, we get the following sandwich theorem

for the linear operator DY (f = g)(j).
Theorem 5.1. Let g; be convex univalent in U with ¢; (0) = 1, R %) > 0,
@2 be univalent in U with g2 (0) = 1 and satisfies (17). If f € A(p) such that

D;:;l(f*g)(j)(z) ceH [q (0), 1] nao,
D3, (Fx9) (D (f 29 (2)

D3, (F+9)”:)  (p—J)
Dt (fx )Y (2) A Dyt (1) ()]

is univalent in U and

a1 (2) +v2q, (2)

D3, (f *g)(j.) (2) (p—17) L Dy, (f *g)(j) (Z)D§;2 (f = g)(j) (2)
D e DIz (Frg)? (2)]

< @ (2) +y2q, (2)

holds, then
Dy, (f+9) (2)
q1 () D;\l;l (f g)(j) (2) <(2)

and ¢q; and g9 are, respectively, the best subordinant and the best dominant.
(1=1,2,-1< By < B; < 4 < A3 <1) in Theorem 5.1,

3 — 1 Aiz
Taking ¢;(z) = liBiz
we obtain the following corollary.
n(fag)@
Corollary 5.1. Let %(l) > 0 and f € A(p) such that D,?,ﬁ(fiw
v DY (Fx9)Y)(2)
Hq(0),1]NQ,

Dy, (fx9)P (2)DYE2 (fx 9)) (2)

Dy, (9" G - ),
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is univalent in U and
1+ Az (Al—Bl)Z
L+ Bz (14 B2y

D (fx9)V () (p—7)

D3, (9 (D (F )Y (2)

=< . 1 - 5
1+ Asz (A2 — By) z
+ )
1+ Bsz (1+ Bsz)
holds, then

1+ A1z DY, (Fx9)P(2) 14 Aye
1+ B = n+1 ) = 14 Byz’
12 DY (fx9)" (2) 2%

1+A 2z 1+Asz . . . .
I and § T are, respectively, the best subordinant and the best dominant.

Taking g = lzf
Corollary 5.2. Let ¢; be convex univalent in U with ¢; (0) = 1, R (%) > 0,

@2 be univalent in U with g2 (0) = 1 and satisfies (17). If f € A(p) such that

D3, (2)
W € Hlq(0),1]NQ,

— in Theorem 5.1, we obtain the following corollary.

DL, 9%  (p—j)

. DYV DR )
DY) A

1 2
(D370 (2)]

is univalent in U and
a1 (2) +7v2¢; (2)

D}, f9(2) (p—3) ). Dy fOEDN ()

- + 7y 1
n+1 ¢ (j) A n , 2
Dy [9(2) DAI)lf(J)(Z)}
< @2 (2) + 720, (2)
holds, then
Dy, fO(2)
0 (2) < = ————~ < q2(2),
D,\,Zlf(])(z)

q1 and g¢o are, respectively, the best subordinant and the best dominant.

Remark 5.1. Taking A = 1 in Corollary 5.2, we obtain the sandwich result
obtained by Aouf and Seoudy [[7], Theorem 3].

Taking p = A =1, j =0 and g = 1= in Theorem 5.1, we obtain the following
sandwich result which improves the result obtained by Shanmugam et al. [[22],

Theorem 5.3].

Corollary 5.3. Let ¢; be convex univalent in U with ¢; (0) =1, ® (%) >0, g2
be univalent in U with ¢ (0) = 1 and satisfies (17). If f € A such that %J(f()z) €
Hq(0),1]NQ,

D" f(2) _ D" f(2).D"2f(2)
D+l f(2) 7 {1 [Dn+1f(z)]2 }
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is univalent in U and

, nf(z "f(z).D"F2f (2 '
01 (2) +7241 (2) < DLZJ}()Z) 7{1-2 [J;(nlff(z)]é( IS )+ 20 (2)
holds, then
D" f(z)
q (z) < Df(z) <g2(2),

q1 and ¢ (z) are, respectively, the best subordinant and the best dominant.
Remark 5.2. Taking n = 0 in Corollary 5.3, we obtain the sandwich result
obtained by Shanmugam et al. [[22], Corollary 3.3].
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