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DEFORMATION OF AN INFINITELY LONG, ELASTIC
CYLINDER WITH CASSINI CURVE CROSS SECTION BY A
BOUNDARY INTEGRAL METHOD. A NUMERICAL SOLUTION.

A. R. EL DHABA

ABSTRACT. We use a boundary integral method to obtain the numerical so-
lution of the first fundamental problem of elasticity for a long cylinder with
Cassini curve cross-section under a uniformly distributed pressure on the bound-
ary.

1. INTRODUCTION

The boundary integral method to be used here was suggested by Abou-Dina and
Ashour [1] to solve a problem of current sheets in Electrodynamics. Abou-Dina
and Helal [2] used the same method to solve a problem of nonlinear gravity wave
propagation in ideal fluids. Abou-Dina and Ghaleb [3] introduced some modifica-
tions to the method in order to deal with the plane problem of linear elasticity
for isotropic, homogeneous media occupying simply connected regions analytically.
They also presented the numerical aspect of the method [4] for problems with non
simple shape of the boundary.

In this work, we use the above mentioned boundary integral method in numerical
form to solve the first fundamental problem of elasticity for a long cylinder of
an isotropic material with Cassini curve cross section, subjected to a uniformly
distributed pressure on the boundary.

2. DESCRIPTION OF THE PHYSICAL PROBLEM

It is required to find the deformation occurring in a long cylinder of an isotropic
material, with cross- section in the form of Cassini curve, subjected to an external
pressure (first fundamental problem) by the boundary integral method in numerical
form. The cross section of the cylinder is shown on the figure.

2000 Mathematics Subject Classification. T4B05.

Key words and phrases. The boundary Integral method, Boundary value problems, The first
fundamental problem in plane Elasticity, Numerical solution, Cassini curve.

Proc. of the 4th. Symb. of Frac. Calcu. Appl. Faculty of Science Alexandria
University, Alexandria, Egypt July, 11, 2012.

1



2 A.R. EL DHABA JFCA-2012/3(S)

£

N\

S —

Fig. 1: Cassini curve cross-section subjected to a uniform pressure

With respect to a system of orthogonal Cartesian coordinates (z,y) with center O
inside the domain D, the parametric representation for Cassini curve is

T cosh £ cos 6 y sinh £ sin 6
c

A L (1)

~ sinh? ¢ 4 cos2 6’ ¢ sinh*€ +cos26

The normal and the tangent unit vectors to the contour are

3. THE GOVERNING EQUATIONS

We solve the biharmonic equation
ViU =0,

inside the domain bounded externally by Cassini curve. For this, we use Airy’s
stress function representation in terms of two real harmonic functions:

U=2d+y®° + 7, (3)
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where ® and ¥ are harmonic functions belonging to the class of functions C2 (D) N
C' (D), where D denotes the closure of D, and superscript "¢” denotes the har-
monic conjugate. These harmonic functions satisfy the following well-known inte-
gral representations of Potential Theory written as in [1, 2, 3]:

1 OlnR OlnR
(o, 0) = 3§ (% 0) o+ 0 (29) 0 ) s (@)
. 1 ./ . _0lR dln R
o (x07y0):%g <® (x7y) on —(I)(.Z',y) o7 )d87 (5)
1 OlnR OlnR
¥ (a0 = 5§ (9@ g 40 ) T Yas @
C
1 OlnR OlnR
¥ (o) = 3§ (¥ ) o - 9 (o) T ) )
C
and
R=/(e 20" + (- w)* (s)

where (z9,y0) is a field point inside the domain D, and the point (x,y) belongs
to the boundary. When the point (zg,y0) tends towards a boundary point, the
expressions for the harmonic functions are

 Gan,a0) = 4 (@ (0.0) Tt + 8 (o) T ) s, )
¥ (a0,0) = +f (¥ @) Gt~ 2 ) Gt s (10
¥ o) = =6 (¥ @) Gt 4 0 @) TG s
¥ o) = 2§ (¥ @) Gt - v @) G )i 2

3.1. The boundary conditions. The force distribution prescribed on the bound-
ary C of the domain D is given as:
f= fa:iJnyj = fTT+f7ln7

where f denotes the external force per unit length of the boundary. Then, at a
general boundary point @) the stress vector satisfies:

o, =1, f = —Pyn,

where Py is the pressure acting on the boundary, where the Airy’s stress function
is:

0*U 02U 02U
= —’ o'yy = —, O-Z'y = ——,

Oy>? Ox? Oxdy

The boundary conditions are [3]

0’1‘1‘

(2®y, + 20, +y®y, + Uyy)y+ (2®sy + y®;, + Uoy) T = wfo, (13a)

— (2Pay + y®5, + Uoy)y — (285 + 2Pup + Y5, + Vao) 2 = wfy, (13b)
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with
Yy T
= —F ) =P ) 14
fo=-mY  f=R° (14)

where the dot over a symbol denotes derivative with respect to the parameter s.

3.2. Conditions for eliminating the rigid body translation. These are two
conditions. Following [5], we require that the displacement at the point O vanishes,
ie.

w(0,0)=0,  v(0,0)=0.

These two conditions may be rewritten respectively as

(3-4)2(0,0)- 22 (0,0) = o, (15)
(3—4u)<1>0(0,0)—g—§(0,0) _— (16)

In terms of the boundary values of the unknown harmonic functions, conditions
(15) and (16) become

c

+ (qf (s)) %%%') + T (s) % “””](%')) } ds', (17a)
Fio-w (060 Ot e )
C
+ <\1u (') % y;%') + T () % yé?) } ds' =0. (17b)

3.3. Condition for eliminating the rigid body rotation. This condition is
applied in the form:

ou ov o
a_y (0,0) ~ (0,0) =0, or 4(1—V)a—y(0,0) =0. (18)

In terms of the boundary values of the unknown harmonic functions, conditions
(18) become

4(1— y)f (<I> (s)) %y%) + 3¢ (') % y;%l)) ds' = 0. (19)
C
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3.4. Additional simplifying conditions. We shall require the following supple-
mentary conditions to be satisfied at the point Qy (s = 0) of the boundary, in order
to determine the totality of the arbitrary integration constants appearing through-
out the solution process. These additional conditions have no physical implication
on the solution of the problem:

z (0)®(0) + y (0) ®°(0) + T(0) =0, (20a)

z (0) ®°(0) — y (0) @ (0) + T°(0) =0, (20Db)

2 (0) 22 (0)+2(0) +5/(0) 2 (0) + 27 () =0, (200
2(0) G (0)+ % 0) 4 y/(0) - 0+ 5 (0) 0. (20)

This last condition amounts to determining the value of ¥¢ at Qg and is chosen for
the uniformity of presentation as in [6].
4. THE DISPLACEMENT VECTOR

The mechanical displacement components may be expressed in terms of the
harmonic functions ®, ®° and ¥ as [3]:

E 0d  0%° 9V
ARG Oh e ik el e (21)
E . 0> 0% 0T

We can get the values of displacement vector at the boundary of the domain by
substituting the harmonic functions from equations (9, 10 and 11) into equations
(21 and 22). The values of the displacement vector inside the domain at any point
may be obtained by substituting the harmonic functions from equations (4, 5 and
6) into equations (21 and 22).

5. THE NUMERICAL METHOD

The numerical method depends on partitioning the contour of the domain by
means of a properly chosen set of M points (nodes) and applying the system of
equations which consists of the boundary representations of four harmonic functions
(9, 10, 11 and 12), two boundary conditions (13a and 13b) and the seven conditions
(17a, 17b,19, 20a, 20b, 20c and 20d) at each point of the contour to get a rectangular
system of linear algebraic equations

AX =B, (23)
where A is the coefficients matrix of type 6 M +7x 4M, X is the vector of unknown

boundary values of the harmonic functions [®;, ®¢, ¥,, \I/f]T of 4M x 1 and B is
the right hand side vector of type 6M +7x 1, and i = 1...M.

5.1. Discretization of the harmonic representations of harmonic func-
tions. For any function f harmonic inside the domain, this is carried out using
equations (9, 10, 11, and 12) as in [4] and [7]:

M
§fds =" fi As,
c i=1
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then the value of the harmonic function at the i — th node may be written as:

1 (91an] . O0ln R;;
71';( j (f f) T >As]7
with
Rij = \/(wj — )’ + (Y5 —v)°
Oln R;; _ 1 (w; — xz)% (y; —¥1) v
a7, Wi (zj—xi)’ 4y —w)®
OlmR;; 1 (z;— xz)yj (v — y%) T
on; Wi (- )’ + (5 — v’
These equations include singularities. To remove them, one may use the results of
[7):
0ln R;; TiYi — Tiys
}131 (fj on, ) B 2w3 fi
. ¢ c GlnRZ 1 e
}131((3—1) aTJJ) = ol Asj=wj A0
to get
M M M
Bifit Y anfit X v fi— X% v [+ fa0=0,  (20)
J=1,j7#i J=1,j#i J=1,j#1
with
_ yzxz - mzyi _
ﬁi - 2(4)12 Ae T,
A (2 — i) y; — (y; — yz‘);ﬂj N
(j — @)™ + (Y5 — vi)
Vi = (xj ) z; + (yj - yi)2yj N
(zj —=:)” + (Y5 — vi)

The harmonic functions (equations 9, 10, 11, and 12) can be written in matrix form

as follows

. C

[A] [®]+[B] [®]+[® ]+ [0][¥] + +[0] [T =0, (25)
~[B] [®]-[ @ ]+[A] [@°]+ (0] [¥]+ +[0] [¥] = 0, (26)
0] (@] + [0] (9] + [A] [¥]+ [B] [¥] + [¥] =0, (27)
0] [®] +[0][®] + — [B] [¥]—[¥]+][A] [¥°]=0, (28)
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where
Qij, 1> Vij 1>
[A]: ﬁiv 'L:j ) [B]: _)‘iv Z:] ’ Ai = )
Qs 1< Yijo 1< I=
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M
Z igs

1,j#i

The derivatives along the contour must be evaluated carefully. This is carried out

by using 15 points on each side of the point where the derivative is to
and Taylor’s expansion as:

. i (=11 5C5 (firs — fimj) s

= — | =1,2,..M.
f AH iz ? ) 4y
Constants C; are defined in Appendix, Also

(@] =[®], [®]=[®F], [¥]=[¥], [®]=[¥]], i

The dot over the symbol f refers to differentiation relative to 6.

5.2. Two boundary conditions. The two boundary conditions are
[A*][®] + [BY] [®°] + [C"] [¥] + [D*] [¥°] = [fz],

[A™][@] + [B™] [@] + [C™] [¥] + [D™] [¥°] = [£, ],

where
[fa:] = [wi (fw)z]a [fy] = [wi (fy)z] I Z = 1727 M7
and
AW i=k
Ar={ B it1<k<it15
W 1<k <i-15
D i=k
B'=¢ B, i+1<k<i+15
R i-1<k<i-15
G, i=k
C = HY, i+t1<k<i+t15
W i-1<k<i-15
L) i=k
D*={ NV, i+t1<k<i+t15 ,
W i-1<k<i-15

be evaluated

(29)

i =1,2,..M.
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and
AP i=k
A ={ BE) ., i+1<k<it15
¢, i-1<k<i-15
D, i=k
B*={ B, i+1<k<i+l15 ,
F2, i-1<k<i-15
7, i=k
C*={ HY , i+1<k<i+15
K2, i-1<k<i-15
L2, i=k
D" ={ N3, i+1<k<i+15

M2 i-1<k<i-15

5.3. Seven additional conditions. The seven additional conditions yield:

M M M M
S ED @+ Y KD op+ > KD U+ Y K wg =0, (33)
k=1 k=1 k=1 k=1
M M M M
- KD o+ Y KD g+ S KV w - > KY g =0, (33b)
k=1 k=1 k=1 k=1
M M
XK o - 5 K 9 =0, (33¢)
IE]@] + \Ifl = 0, (33d)
19 + ¥ =0, (33e)

16 M 16 M
o+ > Ie+ Y TP0+ Y Ve + Y Ve
k

k=2 k=M-14 k=2 =M-14
16 M 16 M
+3 100+ 2 190+ v+ S 18w =, (33f)
k=2 k=M-—-14 k=2 k=M-—-14

16 M 16 M
Pe+ Y e+ ei- S Ve - > 1%
k=2 k=M-14 k=2 k=M-—14

M
>
=M-

16 16
+ 3 I, + IOU, — 3 w5, -
k=2 =

M (6)
S 9% =0,  (33g)
14 k=2 k=M

k

6. THE SOLVING METHOD

Equations (25, 26, 27, 28, 31, 32 ,33a, 33b, 33c, 33d, 33e ,33f and 33g) written at
each nodal point of the contour, yield a rectangular system of linear algebraic equa-
tions in the unknown functions [®1, @3, ...<I>M]T, (@5, DS, ...<I>§\4]T, [Ty, Ty, ...\I/M]T
and [W$, U5, ... 5,7, Solving this system of equations by the Least Square Method
or by Gauss Elimination or by any other method yields the values of harmonic func-
tions on the boundary.
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7. DISCRETIZATION OF THE DISPLACEMENT VECTOR

7.1. Numerical treatment of the partial derivatives of harmonic func-
tions. From equations (4 and 5 or 6 and 7 ), the integral representations for the
derivatives with respect to the coordinates of a field point (zg, yo) are

aof 1 0 (O0lnR . 0 (O0lnR
Tt (T (B) + 7@ )ax () s

of 1 0 (0lRY . dlnR
o = ff( 125 () +97e  (F5))

Y) By

ofe _ . 0 (0ln 0 (0ln

oo 27rC (f (, )3—1,0< (19nR> 3—1,0< ITR>)ds,

afe . o (O 8 (9

3_’5;0 = %C (f (z,y) 8—% (%) 8_ ( gTR>) ds,
but

9 (alnR) ) ((x—xof—<y—yo>2)a‘c+2<x—xz> =i

A w ((UC—xo)2 + (y—yo)z)

2 (2 _ (0o - i =20 —o0) ()&

0xg on w <($ B :ro)2 +(y— y0)2>2

9 (alnR) 2 —20) v —w0) e+ (v —w)* - <x—xo)2)y7

Oyo \ OT w <($ ) 4y y0)2>2

9 (GlnR) 26 —20) (= w)y— (- w)’ ~ (e —x0)*) &

o\ ot w <($—$0)2+ (y—yo)2>2 7
then

of 1 [ (@=20’ - -0))y-2(@-w0) y-0)a
00 © w ((35 - 1‘0)2 +(y — y0)2>2
((35 —x0)’ — (y - y0)2> x+2(z—x0) (Y — Y)Yy

w ((1‘ - 960)2 +(y - y0)2>2

f(z,y)

fole,y) | ds,  (34)

o 1y
B0 2z o (@~ 20 + (- w0)?)
2(z —x0) (y — yo) x + <(y —y0)° — (z — 1‘0)2> y

w ((1‘ - 960)2 +(y - y0)2)2

2 (2~ 20) (5~ 90) & — (W~ w0)” (x—xof)écf(

z,y)

+

fe(@,y) | ds,  (35)
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and
ore 1 [ (=20~ —w)")y—2(c—z0) (v - yo)a':fc( |
T or .y
O e o (=20 + (- 10)°)’
(=20 = (—w0)*) &+ 2 (@ —20) (v — 90)
a 3 f(z,y) | ds,  (36)
w (@ =20)* + (- w0)°)
afe 1 2(z —x0) (y — o)y — <(y—yo)2—(ﬂc—x0)2>i‘fc( |
~ o z,y
o e o (=20 + —w)?)’
2(z — o) (y —yo) = + <(y —10)* — (x - 1‘0)2> y
- 5 N2 f(z,y) | ds. (37)
w (@ =20’ + (v —w)?)
Numerically
0 M , Ve
(3_350)j,k N kzlz,l:cséj (i + 750 55) (38a)
(ﬂ) = % (V) e fe — a1 %) (38D)
Y0/ jk hetdny " dikdk)
(afc) . % (Ol/- fc _ A f ) (38(})
Oxo ik - -y ik — VikJE) >
(afc) = %43 (Vi f + e fr) (38d)
o ) .k k=1 k] Gk Ik T g kIR
with
049-716 _ % ((1‘3 — x]Jﬂ?) - (yj - yj,k)2> yj -2 (fL‘j — 1‘372;@) (yj — ijg) ij 20, itk

(G2 = 230" + @5 — v50)°)

, 1 ((xj —zj0)" = (y; — yj,k)2> i+ 2 (x5 — %) (Y5 — Yik) s Ny L
Tik = 9n 2 2\ 2 TR
(%-%H+%—wd>

where (2 k,yjk) is a field point and (zj,y;) is a boundary point. The notation
fj,k means the value of the function f taken at the node (j, k) for the coordinates

& 0).

7.2. The displacement vector inside the domain. From equations (21 and 22)
the displacement vector inside the domain numerically written as

0P o0P° ov
T <3‘4”>‘1’f‘%(%>;%(%>f(%)g

E . od o0d¢ oy
1+Vvi = @-w)e-n <8_y>i_yZ ( dy >i_ <8_y)i’
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using equations (38a and 38b) into the last equations, then

E M
— Uiy, = (3 —4v) D, — o ®r + 7 DY
1+ 9P ( ) Jp J,pk:%;#j( Gk Yik k)
M M
—Yip D, (a;',kq)i—%,kq)k)— > (a},k‘lfk+7§,k‘1f2)7 (40a)
=1k k=1rk#i
and
B —(3—a)ae S (VB — o, B5)
—j, —4v) ¢ — x; v P —
11,0 = 3. ka:l,kgéj 3k 5k Pk
Ly S (B al D) - St (o o, U 40b
Vie 2 (Via®h+ix®e) = 3 (VjaTe—ajTE) . (40D)
k=1,k#j k=1,k#j

7.3. The displacement vector on the boundary. The displacement vector on
the boundary take the form:

E o Noc.owo oy ©
1+V’U,Z‘ = (3—4V) @Z—w—gq)z— w_féf_w_?\llz_w_g\lll 5 (41&)
E . A 3. . y . .Z‘ . c
Y = (3_4”)®i_w_§@i +w_§®i_w_:2%+w_:2%’ (41Db)

8. NUMERICAL EXAMPLE
In equation (1) to get the equation of Cassini curve set £ = &, then

T cosh &, cos 6 y sinh &, sin 0

z_ Socost Y _ _smagesmO 42
¢ sinh®&; + cos2 6 ¢ sinh® ¢, + cos2 0 (42
use
.. 1 ., 1
sinh” ¢ = (cosh 26 —1) cos” 0 = 3 (cos20+1),
into equation (42) to get
xz _ 2cosh§ cos 6 y _ 2sinh¢, sin 6§
¢ cosh2g, <1+ h2£ cos?@) ¢ cosh2g <1+ h2£ cos?@)
Let
_ 1 . 2cosh¢, _ 2sinh¢,
~ cosh2¢,’ ~ cosh2¢,’ ~ cosh2¢,’
then
z _ acosb y _ bsind (43)
c 1+4+kcos20’ c 1+kcos20

Equation (42) gives an interior point (£, #) and boundary point with (£, 6), where
& is constant.

Equation (43) gives all the points on the boundary. From equation (43), if we
choose k = 0, then equation (43) gives the region outside an ellipse ( see figure)
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Fig. 2: an ellipse and Cassini curve with &, = 0.6

Let us choose

P, 0.1, 03, 0.5, ©v=025 & =0.6,
2 ) 27 .
M = 100, dﬁ—M, 0i—(z—1)M, l—l, 2, ..M.

Solving the system of equations (23) one gets the values of harmonic functions

[®1,8,..85)", [®¢, B, ... 85,]", [¥1, Us, ... Wp)" and [¥§, U5, ... T5,]" on the bound-
ary.

8.1. The harmonic functions on the boundary. Plotting the data for the har-
monic functions obtained from the system of linear equations with three different
values for the pressure yields the following figures:

J

0.3

0.2+

0.1+

Fig. 3: The harmonic function ® at the boundary with changing the pressure
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J
0.3 1

0.2 5

0.1 7

0

Fig. 4: The harmonic function ®¢ at the boundary with changing the pressure

Fig. 5: The harmonic function ¥ at the boundary with changing the pressure
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lIJf

3

Fig. 6: The harmonic function ¥¢ at the boundary with changing the pressure

8.2. The displacement vector at the boundary. Substituting the data for the
harmonic functions obtained from the system of linear equations into equations (41a
and 41b) with three different values for the pressure yields the following figures:

¥

0.2+

0.1+

ol olE ol H

Fig. 7: The harmonic function % at the boundary with changing the pressure
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¥
0.4 -

0.3 5
0.2 5

0.1 1

Fig. 8: The harmonic function < at the boundary with changing the pressure

8.3. The harmonic functions inside the domain. To plot the harmonic func-
tion inside the domain, we use the data from the system of linear equations into
equations (40a, 40b). For this, consider the domain as composed of a multitude
(20) of Cassini curves each characterized by a constant value of £, as shown on the
figure:

¥

=1 RS 5 = | ¢=§L4
gt};" o f = _\ !

Fig: 9 :- the region of inside the domain.
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then we plotted the harmonic functions on each of the arising curves:

3 .
N =20, £y = 0.6, & =1, ng:gj_NO, j=1,2, ..N—6.

The following three-dimensional plots show the distributions of the harmonic func-
tions inside the domain:

Fig. 10:- The harmonic function ® inside the domain

“1.0

Fig. 11:- The harmonic function ®¢ inside the domain
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Fig. 12:- The harmonic function ¥ inside the domain

Fig. 13:- The harmonic function ¥¢ inside the domain

8.4. The displacement vector inside the domain. The displacement vector
inside the domain can be obtained from the harmonic function distributions inside
the domain. They are shown on the following three-dimensional plots:
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Fig. 14:- The displacement %

Fig. 15:- The displacement

9. CONCLUSIONS

In this paper, we use the boundary integral method in numerical form to solve
the first fundamental problem of elasticity for a long cylinder with cross section
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bounded by Cassini curve. The used computer program was tested to solve the first
fundamental problem for a long cylinder with circular or elliptical cross sections and
the results were compared with the numerical and analytical solutions in [3] and
[4]. In the present case, no analytical solutions are available for comparison.

(1) In figures (3, 4, 5 and 6) the harmonic functions ®, ¢, ¥ and ¥° were
drawn on the boundary against the discretization angle 6;, i =1, 2 ,...M,
for three different values of the normal pressure. One observes that the
harmonic functions ¢ and ¥ have oppsite concavities, the same is true for
®¢ and Pe.

(2) Figures (7 and 8) show the displacement vector % and 2 against the dis-
cretization angle 6;, i = 1, 2 ,...M, where the normal pressure takes dif-
ferent three values. One can observe that the displacement % and ¢ looks
like the harmonic functions ® and ®€ respectively.

(3) Figures (10, 11, 12 and 13) show the harmonic functions ®, ®¢, ¥ and
¥¢ inside the domain against the discretization ¢;, ¢ =1, 2 ,...N and 6;,
i=1,2,..M.

(4) Figures (14 and 15) show the displacement vector % and 2 inside the domain
against the discretization ¢;, i =1, 2 ,..N and §;,i=1, 2 ,..M.

10. APPENDIX

10.1. New Coordinates. In this paper we introduce new coordinates, called Cassini
coordinates, for which the position vector for any point is

r=xi+yj
From equation (1):
ccosh&cosf sinh £ sin 6
r=-——"—5 1 . 12 J (44)
sinh” € +cos26  sinh” £ + cos2 6
The unit vectors along the coordinates are
1 1 2 o .
e = — cosh” £ + sin“ #) sinh € cos 0 i
¢ sinh? € 4 cos2 6 \/cosh? & —cos?0 i ¢ ) ¢
+ (sinh® € — cos® 0) cosh € sinf j}, (45a)
e = — L 1 {(sinh® ¢ — cos? ) cosh ¢ sin 6 i
sinh® € + cos2 ¢ V/cosh? € — cos2 6
— (cosh2 € + sin? 9) sinh £ cos 6 J} , (46)

and the scale factor is

c
h=——5———4/ cosh? € — cos26. 47
sinh? € + cos2 0 ¢ (47)

From equations (45a and 46) by scalar multiplication one gets:

ec-ep =0, ec- e =eg-eg=1.
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10.1. New Coordinates.
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; 1 3 +1
fi = Ejzl(—l)jJr JCj (fivs — fizj),
f 2_(cofi+ 3 (“1Y C
L = e -1 . A i ,
fz (A0)2 sz J;( ) ](fl+] fz ])
with
oo _ 205234915681
O T 129859329600’
15 105 455
G = 1% “Tmw MYV
o _ 455 1001 715
YT 20672 >~ 129200’ 6~ 979072’
o _ 19 195 455
T T 953232 87 950012’ %7 9627984’
273 21 7
o = Sgmeo00r " T Tamsmar 9T 3s511936°
1 1 1
Ciy = — Cpy=—— O = ————.
13 60264048’ 147 1013434464’ 157 34901442000
10.3. Quantities appearing in boundary conditions.
(1) For the first boundary condition
a0 = 2 Mgl 2 B
' (202 wi (L80)? W]
GV - L2 Wig w2 T
' (D02 wi (20 wi
@ _ k=it Cemi (Wi o 2 Ay
O (W, 2 A,
dl) _ 1 i—k Yi—k [ Wi _k A
i,k ( ) ] w? (’L ) 0 w;ﬁ, ’
) _ kit Cei (Ui 2 5
) ik Cick (U; 2 %
Fg,k = (-1 N (w_f (i —Fk)+ PR E
o k—it1 Ch—i [ Pi (). 2y
v _ o ik Gk [P gy i&
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MY = (i Ch—i
) ik Cik

Af
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25
ANOw? )’
2 z;

A_(?w_>

(k—1)

0
w?
0
w?

(1—k)+

(2) For the second boundary condition

1
Kgc)

3
Ki)

(3 — 411) Fk

2 % 2 A
A£2) = D) _3 05 D£2) = 2 _3 05
(Af)” wi (A0)” w;
a2 @__2 U
Z (802 wE T (agP Wl
2 k—it1 Cr—i (Vi ) 2 %
2 _ ik Cik (Vi 25
2 k=i Gk (Wi 2 A
Eg’k = (=D YAY.) (wf (k=) + 0 wf’) ’
2 _ k1 Cice (Wi (0 0 2 A

@ _ vk Cick
2) k=i Ch—i
NI = (DT
2 i—k+1 Ci
e

)
T+ yi

(yl2<: - xi) Yk + 2T YR T

2
(=% +v7)

A0,

For the seven additional conditions

(3 — 4TIy
T} + Y

NG,

2
K(k)

K _ (yi — 23) Tr — 2T1YrYn
W —

2
(23 + i)
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with
Si1k-1 _ S1M—-k+1
70— ppEEle @) Mtz M RS
k ( ) w% N k—15 k ( ) w% N M—k+1,
AMEk—1 _ AMM-—k+1
73— (LR 2L Co . TW — (_pyk—M+15 A1 Cor
k ( ) w% AO k—1, k ( ) wf—AG M—k+1,
k-1 _ 1 M—k+1
70— R TE e g0 My T M RS
k ( ) w% N k—1, k ( ) w% N M—k+1,
nk—1 _ y1 M —k+1
70— R E s g® M L M R
and
& = ¥ —xy, G =2my;, 0 =Xy — 1Y, 05 = % + Y,
2.2 . . ) )
w? = x ‘v, 0 =xi0+yioi, p;=xi0;— Yidi,
I, = mx;+yivi, » Li=ay — iy,
A = ziyi+ s, i = TiTi — Yils,
o 2
W, = 2zyw; — (Aid; — Si04), Ui = 2y; wi+ Aoy + 205,
.2
Vi = —2x; Wi+ Ao+ Xid;.
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